氯氧化铋的形貌调控及其光催化降解全氟辛酸
Morphological Regulation of Bis-muth Oxychloride and Its Photocatalytic Degradation of Perfluorooctanoic Acid
DOI: 10.12677/MS.2023.135045, PDF, HTML, XML, 下载: 285  浏览: 446 
作者: 周爱华, 郭书妤, 郑煜腾, 赵慧平*:武汉工程大学化学与环境工程学院,绿色化工过程教育部重点实验室,新型反应器与绿色化工工艺 湖北省重点实验室,湖北 武汉
关键词: 氯氧化铋形貌调控光催化全氟辛酸 Bismuth Oxychloride Morphology Regulation Pho-tocatalysis Perfluorooctanoic Acid
摘要: 为了探究形貌对氯氧化铋(BiOCl)光催化去除全氟辛酸(PFOA)性能的影响,通过改变溶剂热法合成体系的溶剂种类制备得到不同形貌的BiOCl。其中,二维纳米片BiOCl具有最优异的光催化去除PFOA性能,即模拟太阳光辐射一小时对PFOA的降解率为98.8%。电子顺磁共振(EPR)、漫反射光谱(DRS)、瞬态光电流响应测试(IT)和光致发光(PL)测试结果表明,具有更大的比表面积、更多的氧空位、更窄的带隙以及更高的载流子分离效率的样品并未表现出更优异的光催化性能。电化学阻抗谱(EIS)测试结果表明,不同形貌样品的载流子迁移速率顺序与其光催化去除PFOA的活性顺序一致,表明载流子迁移速率可能是影响其光催化活性的重要因素。
Abstract: In order to explore the effect of morphology on the photocatalytic removal of perfluorooctanoic acid (PFOA) by bismuth oxychloride (BiOCl), BiOCl with different morphologies were prepared by changing the solvent type of solvothermal synthesis system. Among them, two-dimensional nanosheets BiOCl exhibited the best photocatalytic removal performance for PFOA, with a degradation rate of 98.8% on PFOA after simulating solar radiation for one hour. The results of electron paramagnetic resonance (EPR), diffuse reflectance spectrosco-py (DRS), transient photocurrent response (IT), and photoluminescence (PL) tests indicated that samples with larger specific surface area, more oxygen vacancies, narrower bandgap, and higher carrier separation efficiency do not exhibit better photocatalytic performance. The electrochemical impedance spectroscopy (EIS) test results indicated that the carrier migration rate order of sam-ples with different morphologies was consistent with their photocatalytic activity order for remov-ing PFOA, indicating that the carrier migration rate may be an important factor affecting their pho-tocatalytic activity.
文章引用:周爱华, 郭书妤, 郑煜腾, 赵慧平. 氯氧化铋的形貌调控及其光催化降解全氟辛酸[J]. 材料科学, 2023, 13(5): 401-405. https://doi.org/10.12677/MS.2023.135045

1. 引言

全氟辛酸(PFOA)是一种人工合成有机氟化物,其中与碳原子相连的氢原子全部被氟原子取代。由于碳氟键极其稳定,PFOA具有高稳定性等性质并被称为“永久性物质”,且其因具有优异的性质和潜在危害性而引起研究者的广泛关注。自20世纪50年代以来,PFOA因其优异的化学稳定性、热稳定性和低表面张力而被广泛应用于一系列工业生产活动,特别是在金属电镀、纺织和消防设备行业。1951年至2004年,PFOA产量约为3600~5700吨,其中约400~700吨在其生产、供应、使用和处置过程中释放到环境中 [1] 。因此,PFOA广泛存在于地表水、地下水甚至饮用水中。更重要的是,PFOA已被证明具有遗传毒性、生殖毒性、神经毒性和发育毒性,以及破坏内分泌系统 [2] [3] [4] 。自从意识到PFOA的严重危害性以来,国际社会开启了全球的污染防治行动。2005年,联合国环境署将PFOA列入持久性有机污染物(POPs)的候选名单。2015年,PFOA及其盐类被列入《斯德哥尔摩公约》,同意减少并最终禁止使用该类物质,并确定了饮用水中PFOA的临时健康咨询值为70 ng/L [5] 。但是,由于PFOA具有优越的性质,短时间内难以从源头上放弃生产和使用PFOA,因此目前大多数国家尚未完全禁止PFOA的生产和使用。许多研究报告称,PFOA在普通水处理过程中去除率很低,因此估计人类通过饮用水每天摄入的PFOA可能在1.5%~55%之间 [6] 。因此,亟待开发有效的技术来去除污染水源中的PFOA,以消除其对健康的不良影响。

据报道,光催化技术适合有效降解PFOA,因为它具有高氧化效率、易于操作、成本较低和环境兼容性好等优点 [7] [8] [9] [10] 。近年来,利用具有合适能带结构和特殊层状结构的光催化剂氯氧化铋(BiOCl)降解去除PFOA受到研究者们的广泛关注。目前报道BiOCl单一材料去除PFOA的文献 [7] - [16] 中,研究者大多关注于某种特定单一形貌BiOCl的光催化性能,鲜有研究工作对不同形貌结构的BiOCl去除PFOA的活性差异及原因进行探究分析。众多有关光催化材料的研究工作表明,形貌结构和尺寸大小是影响材料光催化性能的重要因素,并且具有多级结构和小尺寸的材料往往因具有更多的活性位点而表现出更优异的光催化性能 [17] [18] [19] [20] 。Xing等人 [21] 采用不同的溶剂经溶剂热法制备了不同形貌结构溴氧化铋(BiOBr),其中以甘油作为溶剂合成的花状多级BiOBr在阳光辐照下对活性艳蓝具有较好的光催化性能,研究者认为这与其小的晶体尺寸和大的比表面积有关。Hao等人 [20] 合成的微花状、纳米板、微球状和微孔板BiOCl中,微球状BiOCl表现出良好的光催化性能,研究者认为这可能是因为它们具有更大的比表面积。因此,本文旨在制备具有不同形貌结构的BiOCl,并测定其光催化降解去除PFOA的活性,最后研究结构与活性的构效关系。目前,BiOCl的制备方法主要包括水解法 [12] 、溶剂热法 [20] 、水热法 [22] 、离子液体辅助超声法 [23] 、溶胶凝胶法 [24] 、固相法 [25] 。其中,通过改变溶剂的性质从而调控形貌的溶剂热法是一种简便高效的方式。众多文献报道探究了溶剂各种性质对材料生长的影响,主要包括溶剂的粘度 [26] [27] [28] [29] [30] 、酸碱性 [31] [32] [33] [34] 、饱和蒸汽压 [29] 、羟基数量 [32] [35] [36] 、氧化还原性 [8] 、极性 [30] [37] - [42] 、沸点 [43] 等物理化学性质。其中,溶剂的粘度、极性、羟基数量等性质对BiOCl的形貌结构影响很大。因而,选择合适的溶剂体系并且通过改变其极性和粘度等性质溶剂热法制备具有不同形貌结构的BiOCl是值得尝试的策略。

基于此,本文以乙二醇和水为溶剂,通过改变二者的比例从而较连续地改变溶剂粘度和极性,经溶剂热法合成具有不同形貌结构的BiOCl,并测定所制备样品的PFOA光催化去除性能,探究材料的结构和性能之间的构效关系,分析具有不同形貌结构的BiOCl光催化去除PFOA活性差异的原因,以期为开发具有优异光催化去除PFOA活性的材料提供实验数据与理论基础。

2. 实验部分

2.1. 药品与试剂

氯化钠(NaCl)、乙二醇(EG)和五水合硝酸铋(Bi(NO3)3·5H2O)均购自国药集团化学试剂有限公司(上海)。全氟辛酸(PFOA)和乙酸铵(CH3COONH4)购自上海麦克林生化科技有限公司。碳酸钠(Na2CO3)、商业氧化镓(C-Ga2O3)和商业氯氧化铋(C-BOC)均购自上海阿拉丁生化科技股份有限公司。商业二氧化钛(C-TiO2, P25)购自德国德固赛公司。实验用水为去离子水。实验药品与试剂使用前均未作任何处理及纯化。

2.2. 材料合成

本文通过溶剂热法制备四个样品,具体实验操作步骤如下:准确称取0.1169克NaCl (2 mmol)和0.9701克Bi(NO)3·5H2O (2 mmol)各四份,并且分别分散在50 mL EG含量不同的四种溶剂(H2O、30% EG、70% EG和EG)中,超声溶解后,在室温搅拌下将氯化钠溶液逐滴地滴加到硝酸铋溶液中,滴加完毕后继续搅拌半小时。然后将混合溶液转移至容积为150 mL的不锈钢反应釜中,置于180℃烘箱中反应三小时。反应完成后,待反应釜自然冷却至室温,弃去上层清液,收集下层固体,离心水洗五次后,置于60℃真空干燥箱中干燥12小时,所得样品分别命名为BOC-1 (H2O)、BOC-2 (30% EG)、BOC-3 (70% EG)以及BOC-4 (EG)。合成流程图如图1所示。

2.3. 材料表征

通过粉末X-射线衍射仪(X-ray diffractometer,XRD,Bruker axs D8 Advance,德国)对所合成样品的物相结构进行表征,以Cu靶(Kα = 1.5406 Å)为X射线辐射源,电流为40 mA,电压为40 kV,扫描范围为10˚~80˚,扫描速度为5˚/min。通过场发射扫描电镜(Field Emission Scanning Electron Microscope,FESEM,Hitachi Su8010,日本)观测样品的微观形貌,取适量待测样品的粉末于导电胶上测试,加速电压为2.0 kV。通过物理吸附仪(Micromeritics ASAP 2020,美国)测定样品的Brunauer Emmett Teller (BET)比表面积及孔分布,以氮气为吸附质,样品在120℃下预处理4小时。通过电子顺磁共振(Electron Paramagnetic Resonance,EPR,Bruker EMX A200,德国)测试样品的未成对电子信号。利用光致发光(Photoluminescence,PL,Hitachi F4600,日本)测定样品的荧光强度,扫描范围为300~800 nm,且激发波长为350 nm。通过紫外–可见漫反射光谱(DRS,Hitachi UH 4150,日本)测定样品的光吸收性能,并经后续公式转换得到样品的带隙宽度(以BaSO4作为内部反射标准)。利用电化学工作站(上海辰华CHI 760型,中国)测定样品的光电化学性质,包括瞬态光电流响应测试和电化学阻抗测试。

Figure 1. Flowchart of BiOCl samples prepared by solvothermal method in different solvents

图1. 不同溶剂中溶剂热法合成的BiOCl样品的流程图

2.4. 光催化去除PFOA性能测试

以PFOA作为光催化活性评价的目标污染物,测定不同样品在模拟太阳光下的光催化活性(以中教金源300 W氙灯作为光源)。具体实验操作步骤:准确称取0.04克样品于反应器中,并向其中加入40 mL浓度为0.5 mmol/L的PFOA溶液。超声分散均匀后,避光搅拌半小时使样品与PFOA达到吸附脱附平衡。避光处理结束后,于电流稳定的光源下进行光催化降解反应,通过循环冷却水控制反应液温度为20℃。于预定的时间间隔内,吸取2 mL反应液,经8000 rpm/min离心三分钟,通过0.22 mm滤膜过滤后留待后续的分析检测用。

2.5. PFOA去除率测定分析方法

1) PFOA浓度测定

利用高效液相色谱仪(Agilent 1260 Infinity Ⅱ,美国)进行PFOA的定性及定量分析,其中检测器为RID-G7162A示差折光检测器、分析柱为ZORBAX Eclipse XDB-C18 (150 mm × 4.6 mm, 5 μm)。柱温为30℃,待测溶液的进样体积为40 μL。以甲醇与20 mM乙酸铵(体积比为70:30 V/V)混合物作为流动相,且流速为0.9 mL/min。

2) 氟离子浓度测定

通过离子色谱仪(Metrohm 940 Professional IC Vario,瑞士)测定PFOA降解脱下的氟离子的浓度。采用Metro A Guard 保护柱(5 mm × 4.0 mm)和Metrosep A Supp 5分析柱(150 mm × 4.0 mm)进行分析,柱温为40℃。流动相为Na2CO3 (3.2 mmol/L),且流速为0.8 mL/min。

3. 结果与讨论

3.1. 材料表征

通过X射线固体粉末衍射(XRD)表征所制备样品的物相结构。如图2所示,BOC-1、BOC-2、BOC-3和BOC-4样品的所有特征峰与BiOCl (PDF# 85-0861,四方晶系,P4/nmm空间群,α = β = γ = 90˚,a = b ≠ c)的标准卡片相符,并且无杂质峰,表明成功合成出BiOCl材料。其中,2θ值为12.0˚、25.9˚、32.5˚和33.5˚的四个最强衍射峰依次对应于BiOCl的(001)、(101)、(110)和(102)晶面。结合XRD图谱,用谢乐(Scherrer)公式可计算样品的平均晶粒大小。Scherrer公式为Dc = Kλ/βcosθ。其中,Dc表示平均晶粒度,K表示Scherrer常数,λ表示X射线的波长,β表示由晶粒大小引起的衍射线条变宽时衍射峰的半峰宽,θ表示衍射角。因而,在相同测试条件下,衍射峰的半峰宽越宽表明样品的平均晶粒越小,当样品为单晶时样品的平均粒径越小。BOC-1、BOC-2和BOC-3的衍射峰相对于BOC-4更加尖锐,说明它们具有高度结晶性,而BOC-4的衍射峰较宽化,说明它的结晶性比BOC-1~BOC-3样品的差。进一步观察知,BOC-1、BOC-2、BOC-3和BOC-4的衍射峰由尖锐逐渐宽化,说明它们的结晶性逐渐变差,平均晶粒逐渐变小,平均粒径可能逐渐变小 [44] 。

Figure 2. XRD patterns of BiOCl samples (BOC-1~BOC-4) prepared by solvothermal method in different solvents

图2. 不同溶剂中溶剂热法合成的BiOCl样品(BOC-1~BOC-4)的XRD图谱

图3图4分别为所合成BiOCl样品的SEM图与粒径分布图。由图知BOC-1为不规则二维微米片(平均厚度约为70 nm,平均粒径为2.74 μm),BOC-2为较规则二维纳米片(平均厚度约为20 nm,平均粒径为0.26 μm),BOC-3为二维纳米片组装而成的不规则三维多级结构(平均直径为0.59 μm,纳米片的平均厚度约为19 nm且平均宽度约为100 nm),BOC-4为二维纳米片组装而成的较规则三维多级结构(平均粒径为1.01 μm,纳米片的平均厚度约为10 nm且平均宽度约为90 nm)。进一步观察知,随着EG含量增加,片逐渐变小变薄并且聚集成三维多级结构,即片的平均粒径逐渐减小,这和上述XRD的分析结论相符。

这四个样品的形貌呈现此规律性变化与它们在不同溶剂中的生长有关。结合文献 [27] [35] [45] 知,水或乙二醇作为溶剂时,Bi3+在水中快速水解,迅速成核生长为BiOCl片。随着EG含量增加,EG与Bi3+形成络合物,减慢了Bi3+的释放速率,从而减慢了晶体的生长速率。随着EG含量增加,片变小变薄;当EG含量继续增加,为减小表面能片继续变小变薄并且聚集成三维多级结构。

Figure 3. SEM images of the prepared BiOCl samples: BOC-1 (a, b), BOC-2 (c, d), BOC-3 (e, f) and BOC-4 (g, h)

图3. 所合成BiOCl样品的的SEM图:(a, b) BOC-1,(c, d) BOC-2,(e, f) BOC-3和(g, h) BOC-4

Figure 4. Particle size distribution of BiOCl samples with different morphologies and structures: (a) BOC-1, (b) BOC-2, (c) BOC-3 and (d) BOC-4

图4. 不同形貌结构BiOCl样品的粒径分布图:(a) BOC-1,(b) BOC-2,(c) BOC-3和 (d) BOC-4

3.2. 不同形貌结构BiOCl光催化去除PFOA的性能

测定了所合成不同形貌结构BiOCl样品光催化去除PFOA的活性,结果如图5所示。由图5(a),图5(b)知,对照实验中不添加光催化剂时模拟太阳光照射对PFOA几乎无降解作用;BOC-1、BOC-2和BOC-3光催化去除PFOA的性能优于商业氯氧化铋(C-BOC)、商业氧化镓(C-Ga2O3)、商业二氧化钛(C-TiO2);在模拟太阳光辐射60分钟后,BOC-1、BOC-2、BOC-3和BOC-4对PFOA的光催化降解率依次为54.5%、98.8%、74.8%和39.2%。随着EG含量增大,具有不同形貌结构的BiOCl样品去除PFOA的光催化活性先增加后减小,其中BOC-2纳米片表现出最佳性能。

为更全面地评价PFOA的去除情况,测定了光催化60分钟时的脱氟率,结果如图5(c)所示。由图5(c)知,BOC-2样品光催化60分钟时对PFOA的脱氟率为38.2%,说明PFOA的15个氟原子未全部脱下,这与文献 [8] [10] [12] 报道的相符,印证了PFOA因含有极稳定的碳氟键而难以完全矿化的特点。

3.3. 不同形貌结构BiOCl光催化去除PFOA性能差异的原因分析

以上光催化去除PFOA的活性测试结果说明,片状样品BOC-2光催化去除PFOA的活性优于片组装成的三维多级结构BiOCl (BOC-3和BOC-4),这与文献 [7] - [16] 报道相符。为探究具有不同形貌结构的BiOCl光催化去除PFOA性能差异的原因,分析了这四个样品的比表面积和光生载流子分离效率与迁移速率。

Figure 5. (a) Degradation activity diagram of photocatalytic removal of PFOA by different BOC-X samples, and (b) comparison diagram of degradation rate and defluorination rate of PFOA removal by different BOC-X samples after 60 minutes of photocatalysis, (c) degradation activity diagram of photocatalytic removal of PFOA by different materials ([PFOA] = 0.5 mM, [catalyst] = 1 g/L)

图5. (a) 不同BOC-X样品光催化去除PFOA的降解活性图,(b) 不同BOC-X样品光催化60分钟时去除PFOA的降解率与脱氟率对比图,(c) 不同材料光催化去除PFOA的降解活性图([PFOA] = 0.5 mM, [catalyst] = 1 g/L)

1) 比表面积

所制备的四个样品呈现二维片状和三维多级结构的不同形貌,且众多文献 [28] [33] [46] [47] [48] 报道材料由于具有更大的比表面积而表现出更优异的活性,例如,Sun等人 [33] 指出多孔纳米片组装成的分层结构BiOBr,由于具有更大的比表面积,而表现出更高的光催化降解甲基橙的活性。因而,通过氮气吸附脱附测试得到四个样品的比表面积等数据,探究其与光催化活性之间的关系。

图6为所合成BOC-1~BOC-4样品的氮气吸附脱附等温线及对应的孔径分布图。由图中可知,所合成样品的吸附等温曲线在相对压力为0.7~1.0 P/P0时存在一个回滞环,对应的曲线可归属于IV型,表明材料具备一定的介孔结构(2~50 nm)。由图6(a)和图6(b)可知,BOC-1和BOC-2样品的孔径分布图分别于2.0 nm和2.2 nm处存在一个孔分布,其为纳米片堆叠过程中形成的狭缝孔。由图6(c)和图6(d)可知,BOC-3和BOC-4样品的孔径分布图分别于29.1 nm和15.8 nm处存在第二个孔分布,其为纳米片组装成三维多级结构时形成的孔,此测试结果与扫描电镜图片观察到的结果相符。BOC-3和BOC-4样品的PFOA光催化去除活性并未因存在更多孔而增强。通过Brunauer Emmett Teller (BET)方程计算得到BOC-1~BOC-4样品的BET比表面积依次为2.4663、12.6320、16.2486和31.3376 m2/g,这与SEM结果一致,即随着EG含量增加,片变小变薄并且组装成三维多级结构,BET比表面积随之增大。值得注意的是,BOC-1~BOC-4样品的BET比表面积依次增大,这与其PFOA降解率依次为54.5%、98.8%、74.8%和39.2%的先增加后减小的顺序不相符。此结果说明比表面积大小也许不是影响四个样品光催化去除PFOA性能的主要因素。总的来说,在比表面积接近的前提下,二维纳米片BiOCl光催化去除PFOA的活性优于二维纳米片组装成的三维多级结构BiOCl。

Figure 6. N2 adsorption-desorption isotherm and the corresponding pore size distribution of BOC-1 (a), BOC-2 (b), BOC-3 (c) and BOC-4 (d)

图6. 所合成样品的氮气吸附–脱附曲线和孔径分布图:(a) BOC-1,(b) BOC-2,(c) BOC-3和 (d) BOC-4

2) 光生载流子分离效率与迁移速率

光激发下,光催化剂的光生载流子分离效率以及迁移速率是影响光生载流子及其转化产物等活性物种氧化还原目标物的重要因素。诸多文献 [37] [49] [50] 报道,以乙二醇等还原剂为溶剂时,高温溶剂热法合成的卤氧化铋BiOX (X = F, Br, Cl, I)易产生氧空位,且适宜种类及浓度的氧空位可改变材料的能级结构、促进光生载流子的分离、改变材料的表面性质并促进分子氧活化等,从而影响材料的催化活性。基于本文以不同浓度乙二醇为溶剂高温溶剂热法制备样品的事实,利用电子顺磁共振测定样品的缺陷信号。图7(a)和图7(b)分别为四个样品的磁场强度式与g因子式EPR图谱。这两张图表明,BOC-1样品无缺陷信号,而BOC-2、BOC-3和BOC-4样品在g = 2.004处存在较明显的信号,说明后三者均存在氧空位。

Figure 7. EPR spectrum of the synthesized samples: magnetic field intensity (a) and g factor (b); the solid UV-Vis diffuse reflectance spectrum (a), (αhv)1/2-hv diagram (b), valence band XPS diagram (c) and energy level structure diagram (d) of the synthesized samples (d)

图7. 所合成样品的EPR图谱:磁场强度式(a)和g因子式(b);所合成样品的固体紫外–可见漫反射谱图谱(c)和(αhv)1/2-hv图(d)

其次,利用DRS分析样品的光学吸收性能,且经后续公式计算得到光催化剂的带隙宽度。图7(c)为样品的DRS图,图7(d)为图7(c)经Kubelka-Munk公式(αhv)1/n = A(hv − Eg)转换得到的(αhv)1/2-hv图,其中α表示吸收系数,hv表示光子能量,对于间接带隙半导体其n等于2,A表示比例系数,Eg表示带隙宽度。如图7(c)所示,BOC-1仅在紫外光区表现出光吸收性能,而BOC-2、BOC-3和BOC-4在紫外和可见光区均表现出光吸收性能。如图7(d)所示,BOC-1、BOC-2、BOC-3和BOC-4的带隙宽度分别为3.42、3.19、3.11和3.11 eV,即BOC-1的带隙宽度明显宽于其它三个样品的。Zhang等人 [50] 以乙二醇为溶剂利用溶剂热法合成了氧空位含量不同的样品,其测试结果说明随着氧空位含量的增加,样品在可见光区的光吸收性能增加且吸收带边红移,带隙变窄。因此,BOC-2、BOC-3和BOC-4样品的带隙宽度变窄可能是由于样品在乙二醇还原作用下产生了氧空位并产生了缺陷能级。

接着,利用瞬态光电流响应测定样品的光生电子和空穴(载流子)的分离及复合性质。开灯后光电流越大表明载流子的分离能力越强,且关灯后逆向电流与正向电流的差值可反映载流子的复合性质,另外电流的平稳与波动情况可反映材料的稳定性。如图8(a)所示,开灯后BOC-1~4样品产生的光电流大小,随着溶剂中EG含量的增加,由BOC-1到BOC-4样品依次递增,这可能与它们的光吸收性能相关。这是因为若光催化剂的带隙宽度越窄,在相同光源激发下其吸收的光越多,产生的光生电子和空穴则相应地越多,瞬态光电流响应也越大。因而,BOC-3和BOC-4样品的瞬态光电流响应值较其它两个样品的大说明其带隙宽度更窄,这与DRS数据结果相符。

然后,通过光致发光测定了样品的光生载流子的复合率。在光激发下,光催化剂的电子从价带跃迁至导带且在价带留下空穴;光生电子和空穴在各自的导带和价带中经弛豫达到各自没被占据的最低激发态(导带底和价带顶),即成为准平衡态;准平衡态下的光生电子和空穴再通过复合发光,从而形成不同波长光的强度分布光谱图。光致发光的谱峰越强表明光生电子空穴对的复合率越高,分离效率越低。如图8(b)所示,BOC-1样品的荧光强度最高,而其它三个样品的较低并且差异不大,说明BOC-1样品的光生电子空穴对的复合率最高,分离效率最低,这不利于光催化降解。BOC-2、BOC-3和BOC-4的光生电子空穴对的复合率较低可能是由于它们的氧空位成为光生电子的捕获中心,从而抑制了光生电子空穴对的复合 [49] 。

Figure 8. The transient photocurrent response (a) and photoluminescence of the synthesized samples (b)

图8. 所合成样品的瞬态光电流响应(a)和光致发光(b)

最后,通过电化学阻抗谱测定了样品的光生载流子的迁移速率。电化学阻抗谱测试分析中,以小频率交流信号为输入信号,得到的阻抗谱为如图9所示的“半圆 + 尾巴”型曲线(Nyquist图),其中高频低电阻区的“半圆区”主要由电荷转移电阻主导,而低频高电阻区的“尾巴”主要是物质转移电阻,因此一般可以通过对比半圆区的半径大小来判断载流子迁移的电阻大小。具体来说就是,圆弧半径越小,载流子迁移的阻抗越小、迁移越快、分离效率越高。如图9所示,四个样品的圆弧半径并非随着EG含量增加而线性增大或减小。仔细对比知,BOC-1、BOC-2、BOC-3和BOC-4样品的圆弧半径依次增大,说明它们的载流子迁移速率依次较小,此顺序与它们的光催化活性顺序相符,说明载流子迁移速率可能是影响其光催化活性的关键原因。BOC-1~4样品的载流子迁移速率呈现此顺序可能与其形貌结构有关。Tian等人 [51] 通过改变氯源的种类调控制备了具有不同厚度的BiOCl纳米片,并且其载流子迁移速率随厚度的减小而增大。但是,球形纳米颗粒由于受限的空间而表现出更高的光生电子空穴复合率 [18] 。综合分析知,四个样品中,BOC-2为尺寸较小的二维纳米片而具有最大的载流子迁移速率;在BOC-2基础上,BOC-3纳米片的尺寸进一步减小且为较松散的三维多级结构,因而其载流子迁移速率仅次于BOC-2;BOC-1为尺寸较大的二维微米片而具有较小的载流子迁移速率;BOC-4为较致密的三维多级结构而具有较小的载流子迁移速率、较高的载流子复合率以及较低的载流子分离效率。

Figure 9. The electrochemical impedance spectroscopy of the synthesized samples

图9. 所合成样品的电化学阻抗谱

综上所述,BOC-1~BOC-4样品的比表面积随着溶剂中EG含量增多而逐渐增大,但它们的活性并未相应地逐渐增强。在比表面积接近的前提下,BiOCl二维纳米片光催化去除PFOA的活性优于二维纳米片组装成的三维多级结构BiOCl。BOC-2、BOC-3和BOC-4样品由于含有氧空位而具有更窄的带隙以及更高的载流子分离效率。此外,三维多级结构的BOC-3和BOC-4样品具有更大的比表面积,但它们并未相应地表现出更优的光催化降解PFOA性能。值得注意的是,BOC-1~BOC-4样品的载流子迁移速率与其光催化活性顺序相符,表明载流子迁移速率可能是其光催化去除PFOA性能差异的重要原因。因此,BOC-2因具有最快的载流子迁移速率而表现出最佳的光催化去除PFOA性能。

4. 结论

本文讨论了形貌结构对BiOCl光催化去除PFOA性能的影响。改变溶剂调控合成的二维微米片、二维纳米片和三维多级结构的BiOCl中,二维纳米片BiOCl具有最优异的光催化去除PFOA性能,即模拟太阳光辐射一小时对PFOA的降解率为98.8%。SEM、EPR、DRS、IT、PL、EIS和比表面积测试结果表明,比表面积、氧空位、带隙以及载流子分离效率可能不是影响样品光催化去除PFOA活性的主要因素,而载流子迁移速率可能是主要因素。

参考文献

NOTES

*通讯作者。

参考文献

[1] Prevedouros, K., Cousins, I.T., Buck, R.C. and Korzeniowski, S.H. (2006) Sources, Fate and Transport of Perfluoro-carboxylates. Environmental Science & Technology, 40, 32-44.
https://doi.org/10.1021/es0512475
[2] Wang, W., Hong, X., Zhao, F.Q., Wu, J.Y. and Wang, B. (2023) The Effects of Perfluoroalkyl and Polyfluoroalkyl Substances on Female Fertility: A Systematic Review and Meta-Analysis. Environmental Research, 216, Article ID: 114718.
https://doi.org/10.1016/j.envres.2022.114718
[3] Mokra, K. (2021) Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)—A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. International Journal of Molecular Sciences, 22, Article 2148.
https://doi.org/10.3390/ijms22042148
[4] Li, K., Gao, P., Xiang, P., Zhang, X.X., Cui, X.Y. and Ma, L. Q. (2017) Molecular Mechanisms of PFOA-Induced Toxicity in Animals and Humans: Implications for Health Risks. Environment International, 99, 43-54.
https://doi.org/10.1016/j.envint.2016.11.014
[5] Podder, A., Sadmani, A.H.M.A., Reinhart, D., Chang, N.B. and Goel, R. (2021) Per and Poly-Fluoroalkyl Substances (PFAS) as a Contaminant of Emerging Concern in Surface Water: A Transboundary Review of Their Occurrences and Toxicity Effects. Journal of Hazardous Materials, 419, Article ID: 126361.
https://doi.org/10.1016/j.jhazmat.2021.126361
[6] Angelino, D., Gennari, L., Blasa, M., Selvaggini, R., Urbani, S., Esposto, S., Servili, M. and Ninfali, P. (2011) Chemical and Cellular Antioxidant Activity of Phytochemicals Purified from Olive Mill Waste Waters. Journal of Agricultural and Food Chemistry, 59, 2011-2018.
https://doi.org/10.1021/jf103881b
[7] Song, Z., Dong, X.L., Wang, N., Zhu, L.H., Luo, Z.H., Fang, J.D. and Xiong, C.H. (2017) Efficient Photocatalytic Defluorination of Perfluorooctanoic Acid over BiOCl Nanosheets via a Hole Direct Oxidation Mechanism. Chemical Engineering Journal, 317, 925-934.
https://doi.org/10.1016/j.cej.2017.02.126
[8] Liao, H.R., Liu, C., Zhong, J.B. and Li, J.Z. (2022) Fabrication of BiOCl with Adjustable Oxygen Vacancies and Greatly Elevated Photocatalytic Activity by Using Bamboo Fiber Surface Embellishment. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 634, Article ID: 127892.
https://doi.org/10.1016/j.colsurfa.2021.127892
[9] Wu, Y.Y., Hu, Y.X., Han, M.Q., Ouyang, Y.M., Xia, L.C., Huang, X.F., Hu, Z.F. and Li, C.H. (2021) Mechanism Insights into the Facet-dependent Photocatalytic Degradation of Perfluorooctanoic Acid on BiOCl Nanosheets. Chemical Engineering Journal, 425, Article ID: 130672.
https://doi.org/10.1016/j.cej.2021.130672
[10] Yang, C., He, Y.X., Zhong, J.B. and Li, J.Z. (2022) Photocatalytic Performance of Rich OVs-BiOCl Modified by Polyphenylene Sulfide. Advanced Powder Technology, 33, Article ID: 103427.
https://doi.org/10.1016/j.apt.2022.103427
[11] Bacha, A.U.R., Nabi, I., Fu, Z.Y., Li, K.J., Cheng, H.Y. and Zhang, L.W. (2019) A Comparative Study of Bismuth-Based Photocatalysts with Titanium Dioxide for Perfluorooc-tanoic Acid Degradation. Chinese Chemical Letters, 30, 2225-2230.
https://doi.org/10.1016/j.cclet.2019.07.058
[12] Liu, H.H., Huang, J., Chen, J.F., Zhong, J.B., Li, J.Z. and Ma, D.M. (2020) Influence of Different Solvents on the Preparation and Photocatalytic Property of BiOCl toward Decontam-ination of Phenol and Perfluorooctanoic Acid. Chemical Physics Letters, 748, Article ID: 137401.
https://doi.org/10.1016/j.cplett.2020.137401
[13] Zhong, J.B., Zhao, Y.K., Ding, L.Y., Ji, H.W., Ma, W.H., Chen, C.C. and Zhao, J.C. (2019) Opposite Photocatalytic Oxidation Behaviors of BiOCl and TiO2: Direct Hole Transfer vs. indirect OH oxidation. Applied Catalysis B: Environmental, 241, 514-520.
https://doi.org/10.1016/j.apcatb.2018.09.058
[14] Sun, Y., Li, G., Wang, W., Gu, W., Wong, P.K. and An, T. (2019) Photocatalytic Defluorination of Perfluorooctanoic Acid by Surface Defective BiOCl: Fast Microwave Sol-vothermal Synthesis and Photocatalytic Mechanisms. Journal of Environmental Sciences, 84, 69-79.
https://doi.org/10.1016/j.jes.2019.04.012
[15] Liao, H.R., Zhong, J.B. and Li, J.Z. (2022) Tunable Oxygen Vacan-cies Facilitated Removal of PFOA and RhB over BiOCl Prepared with Alcohol Ether Sulphate. Applied Surface Science, 590, Article ID: 152891.
https://doi.org/10.1016/j.apsusc.2022.152891
[16] Song, Z., Dong, X., Fang, J., Xiong, C., Wang, N. and Tang, X. (2019) Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Ox-ychloride Nanosheets Prepared by a Facile Hydrolysis. Journal of Hazardous Materials, 377, 371-380.
https://doi.org/10.1016/j.jhazmat.2019.05.084
[17] Liu, Z.S., Wu, B.T., Xiang, D.H. and Zhu, Y.B. (2012) Effect of Solvents on Morphology and Photocatalytic Activity of BiOBr Synthesized by Solvothermal Method. Materials Re-search Bulletin, 47, 3753.
https://doi.org/10.1016/j.apt.2022.103427
[18] Wu, N.Q., Wang, J., Tafen, D., Wang, H., Zheng, J.G., Lewis, J.P., Liu, X.G., Leonard, S.S. and Manivannan, A. (2010) Shape-Enhanced Photocatalytic Activity of Single-Crystalline Ana-tase TiO2 (101) Nanobelts. Journal of the American Chemical Society, 132, 6679-6685.
https://doi.org/10.1021/ja909456f
[19] Wang, J.M., Cao, F., Deng, R.P., Huang, L.J., Li, S., Cai, J.J., Lu, X. and Qin, G.W. (2016) Structural and Morphological Modulation of BiOCl Visible-light Photocatalyst Prepared via an in Situ Oxidation Synthesis. Chemical Research in Chinese Universities, 32, 338-342.
https://doi.org/10.1007/s40242-016-5397-y
[20] Hao, H.Y., Xu, Y.Y., Liu, P. and Zhang, G.Y. (2015) BiOCl Nanostructures with Different Morphologies: Tunable Synthesis and Visible-Light-Driven Photocatalytic Properties. Chinese Chemical Letters, 26, 133-136.
https://doi.org/10.1016/j.cclet.2014.11.022
[21] Xing, H.M., Ma, H.C., Fu, Y.H., Zhang, X.X., Dong, X.L. and Zhang, X.F. (2015) Preparation of BiOBr by Solvothermal Routes with Different Solvents and Their Photocatalytic Ac-tivity. Journal of Renewable and Sustainable Energy, 7, Article ID: 063120.
https://doi.org/10.1063/1.4937120
[22] Intaphong, P., Phuruangrat, A., Thongtem, T. and Thongtem, S. (2020) Effect of pH on Phase, Morphologies and Photocatalytic Properties of BiOCl Synthesized by Hydrothermal Method. Journal of the Australian Ceramic Society, 56, 41-48.
https://doi.org/10.1007/s41779-019-00373-z
[23] Yang, C.Y., Li, F., Li, T.H. and Cao, W. (2016) Ionic-liquid Assisted Ultrasonic Synthesis of BiOCl with Controllable Mor-phology and Enhanced Visible Light and Sunlight Photocatalytic Activity. Journal of Molecular Catalysis A-Chemical, 418, 132-137.
https://doi.org/10.1016/j.molcata.2016.03.041
[24] Wu, S.J., Wang, C., Cui, Y.F., Wang, T.M., Huang, B.B., Zhang, X.Y., Qin, X.Y. and Brault, P. (2010) Synthesis and Photocatalytic Properties of BiOCl Nanowire Arrays. Materials Letters, 64, 115-118.
https://doi.org/10.1016/j.matlet.2009.10.010
[25] Shi, Y.S., Dong, C. and Shi, J.J. (2018) Influence of Different Synthesis Methods on Structure, Morphology and luminescent Properties of BiOCl: Eu3+ Phosphors and J-O Analysis. Journal of Materials Science-Materials in Electronics, 29, 186-194.
https://doi.org/10.1007/s10854-017-7903-5
[26] Zheng, Y., Hu, X., Wu, C.M., Chen, M.X., Chen, Q.F., Wang, Y., Hu, S., Xiang, J., Liu, Q., Zhang, X. and Yang, P. (2019) Binary Solvent Controllable Synthesis of BiOCl towards En-hanced Photocatalytic Activity. Journal of Physics and Chemistry of Solids, 135, Article ID: 109119.
https://doi.org/10.1016/j.jpcs.2019.109119
[27] Hu, J., Weng, S.X., Zheng, Z.Y., Pei, Z.X., Huang, M.L. and Liu, P. (2014) Solvents Mediated-Synthesis of BiOI Photocatalysts with Tunable Morphologies and Their Visible-Light Driven Photocatalytic Performances in Removing of Arsenic from Water. Journal of Hazardous Materials, 264, 293-302.
https://doi.org/10.1016/j.jhazmat.2013.11.027
[28] Ge, F.J., Zhu, J., Xu, Y., Li,J. and Zhang, X.Y. (2021) The Ef-fects of Solvent Viscosity on the Morphology and Photocatalytic Activity of BiOBr Catalysts. Functional Materials Let-ters, 14, Article ID: 2143006.
https://doi.org/10.1142/S1793604721430062
[29] Fan, Y.S., Xi, X.L., Liu, Y.S., Nie, Z.R., Zhang, Q.H. and Zhao, L.Y. (2020) Growth Mechanism of Immobilized WO3 Nanostructures in Different Solvents and Their Visible-Light Photocatalytic Performance. Journal of Physics and Chemistry of Solids, 140, Article ID: 109380.
https://doi.org/10.1016/j.jpcs.2020.109380
[30] Liang, C., He, X., Cai, Z.W., Chang, G., Lin, S., Hao, Y.A., Du, Y.X., Fan, D.Y., Wang, Y.G., Bi, K. and Lei, M. (2019) Effects of Organic Solvents on Morphologies, Photolumines-cence, and Photocatalytic Properties of ZnO Nanostructures. Micro & Nano Letters, 14, 1146-1150.
https://doi.org/10.1049/mnl.2018.5289
[31] Jiang, J., Zhao, K., Xiao, X.Y. and Zhang, L.Z. (2012) Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. Journal of the American Chemical Society, 134, 4473-4476.
https://doi.org/10.1021/ja210484t
[32] Nawaz, M., Mou, F.Z., Xu, L.L. and Guan, J.G. (2018) Effect of Solvents and Reaction Parameters on the Morphology of Ta2O5 and Photocatalytic Activity. Journal of Molecular Liquids, 269, 211-216.
https://doi.org/10.1016/j.molliq.2018.08.026
[33] Sun, D.F., Huang, C.C., Yu, Y., Ma, Y.L., Hao, H., Li, R.X. and Xu, B.S. (2019) Synthesis and Photocatalytic Activity of BiOBr Hierarchical Structures Constructed by Porous Nanosheets with Exposed (110) Facets. Catalysis Today, 335, 429-436.
https://doi.org/10.1016/j.molliq.2018.08.026
[34] Hao, Z.X., Lv, X.W., Hou, W. X. and Liu, X. (2021) Facile Synthesis of BiOCl Single-Crystal Photocatalyst with High Exposed (001) Facets and Its Application in Photocatalytic Degradation. Inorganic Chemistry Communications, 134, Article ID: 109038.
https://doi.org/10.1016/j.inoche.2021.109038
[35] Zhang, X., Wang, X.B., Wang, L.W., Wang, W.K., Long, L.L., Li, W.W. and Yu, H.Q. (2014) Synthesis of a Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Ex-posing {001} Facets. ACS Applied Materials & Interfaces, 6, 7766-7772.
https://doi.org/10.1021/am5010392
[36] Zhao, L. Y., Xi, X.L., Liu, Y.S., Ma, L.W. and Nie, Z.R. (2020) Growth Mechanism and Visible-Light-Driven Photocatalysis of Organic Solvent Dependent WO3 and Nonstoichiometric WO3-x Nanostructures. Journal of the Taiwan Institute of Chemical Engineers, 115, 339-347.
https://doi.org/10.1016/j.jtice.2020.10.031
[37] Wang, J.Z., Cao, C.S., Zhang, Y., Zhang, Y.Q. and Zhu, L.Y. (2021) Underneath Mechanisms into the Super Effective Degradation of PFOA by BiOF Nanosheets with Tunable Ox-ygen Vacancies on Exposed (101) Facets. Applied Catalysis B: Environmental, 286, Article ID: 119911.
https://doi.org/10.1016/j.apcatb.2021.119911
[38] Hu, W.Y., Dong, F.Q., Zhang, J., Liu, M.X., He, H.C., Wu, Y.D., Yang, D.M. and Deng, H.Q. (2018) Differently Ordered TiO2 Nanoarrays Regulated by Solvent Polarity and Their Photocatalytic Performances. Applied Surface Science, 442, 298-307.
https://doi.org/10.1016/j.apsusc.2018.02.147
[39] Wang, W., Dong, L., Wang, J.P., Shi, X.M. and Han, S.Y. (2014) Characterization and Photocatalytic Activity of Mesoporous TiO2 Prepared from an Ethanol-Diethyl Ether Binary Solvent System. Chemical Physics Letters, 616, 1-5.
https://doi.org/10.1016/j.cplett.2014.10.006
[40] Fang, L., Zhang, X.L., Xiang, J., Zhao, M., Zheng, B. and Bai, L. (2020) Solvent Polarity Resulted in Different Structures and Photocatalytic Abilities of Ag/ZnO Composites. Journal of Sol-Gel Science and Technology, 93, 695-702.
https://doi.org/10.1007/s10971-019-05181-2
[41] Feng, J., Zhang, Z.Q., Gao, M.M., Gu, M.Z., Wang, J.X., Zeng, W.J., Lv, Y.Z., Ren, Y.M. and Fan, Z.J. (2019) Effect of the Solvents on the Photocatalytic Properties of ZnFe2O4 Fab-ricated by Solvothermal Method. Materials Chemistry and Physics, 223, 758-761.
https://doi.org/10.1016/j.matchemphys.2018.11.038
[42] Pei, L., Xu, Y., Liu, J.Q., Wu, J.B., Han, Y.D. and Zhang, X. (2019) Effects of Solvent-Induced Morphology Evolution of Zn2GeO4 on Photocatalytic Activities of g-C3N4/Zn2GeO4 Composites. Journal of the American Ceramic Society, 102, 6517-6528.
https://doi.org/10.1111/jace.16605
[43] Guo, R.Y., Bao, Y., Kang, Q.L., Liu, C., Zhang, W.B. and Zhu, Q. (2022) Solvent-Controlled Synthesis and Photocatalytic Activity of Hollow TiO2 Microspheres Prepared by the Solvothermal Method. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 633, Article ID: 127931.
https://doi.org/10.1016/j.colsurfa.2021.127931
[44] Wu, X., Chen, Z.G., Gao, Q. and Wang, L.Z. (2011) Na-nosized Anatase TiO2 Single Crystals with Tunable Exposed (001) Facets for Enhanced Energy Conversion Efficiency of Dye-Sensitized Solar Cells. Advanced Functional Materials, 21, 4167-4172.
https://doi.org/10.1002/adfm.201100828
[45] Cui, Z.K., Mi, L.W. and Zeng, D.W. (2013) Oriented Attachment Growth of BiOCl Nanosheets with Exposed {110} Facets and Photocatalytic Activity of the Hierarchical Nanostructures. Journal of Alloys and Compounds, 549, 70-76.
https://doi.org/10.1016/j.jallcom.2012.09.075
[46] Zhang, W.D., Dong, X.A., Jia, B., Zhong, J.B., Sun, Y.J. and Dong, F. (2018) 2D BiOCl/Bi12O17Cl2 Nanojunction: Enhanced Visible Light Photocatalytic No Removal and in Situ DRIFTS Investigation. Applied Surface Science, 430, 571-577.
https://doi.org/10.1016/j.apsusc.2017.06.186
[47] Peng, Y., Wang, D., Zhou, H.Y. and Xu, A.W. (2015) Con-trolled Synthesis of Thin BiOCl Nanosheets with Exposed {001} Facets and Enhanced Photocatalytic Activities. CrystEngComm, 17, 3845-3851.
https://doi.org/10.1039/C5CE00289C
[48] Fu, S.Y., Zhang, Y., Xu, X.Y., Dai, X. and Zhu, L. (2022) Peroxymo-nosulfate Activation by Iron Self-Doped Sludge-Derived Biochar for Degradation of Perfluorooctanoic Acid: A Singlet Oxygen-Dominated Nonradical Pathway. Chemical Engineering Journal, 450, Article ID: 137953.
https://doi.org/10.1016/j.cej.2022.137953
[49] Guo, J.Y., Li, X., Liang, J., Yuan, X. Z., Jiang, L.B., Yu, H.B., Sun, H.B., Zhu, Z.Q., Ye, S.J., Tang, N. and Zhang, J. (2021) Fabrication and Regulation of Vacancy-Mediated Bismuth Ox-yhalide towards Photocatalytic Application: Development Status and Tendency. Coordination Chemistry Reviews, 443, Article ID: 214033.
https://doi.org/10.1016/j.ccr.2021.214033
[50] Li, H., Shi, J., Zhao, K. and Zhang, L. (2014) Sustainable Molecular Oxygen Activation with Oxygen Vacancies on the {001} Facets of BiOCl Nanosheets under Solar Light. Nanoscale, 6, 14168-14173.
https://doi.org/10.1016/j.ccr.2021.214033
[51] Tian, F., Zhang, Y.F., Li, G.F., Liu, Y.L. and Chen, R. (2015) Thickness-Tunable Solvothermal Synthesis of BiOCl Nanosheets and Their Photosensitization Catalytic Performance. New Journal of Chemistry, 39, 1274-1280.
https://doi.org/10.1039/C4NJ01591F