Ag QDs对耐药沙门氏菌的细胞壁的损伤研究
The Effect of Ag Quantum Dots on Cell Wall of Drug-Resistant Salmonella spp.
DOI: 10.12677/JAPC.2023.122014, PDF, HTML, XML, 下载: 194  浏览: 761  科研立项经费支持
作者: 汪 艳*, 赵正轩, 张 强#, 郭少波:陕西理工大学化学与环境科学学院,陕西 汉中;熊 滢:西安市城市排水监测站,陕西 西安
关键词: 纳米银银量子点抑菌活性Silver Nanoparticles Silver Quantum Dots Antibacterial Activity
摘要: 因有机抗生素滥用使细菌产生耐药,所以探寻高效且不产生耐药的抑菌剂已成为21世纪的最大挑战之一,无机抑菌剂纳米Ag对细菌甚至耐药菌都具有强的抑制性能,但纳米银的抑制活性和粒径相关,粒径越小,表面能越高,抑菌活性越强,但粒径越小越易团聚从而降低其性能。为此,本研究利用Ag可与供电子基团N原子的强配位性,将制备的Ag量子点(Ag QD)负载在聚多巴胺表面合成超小粒径的Ag QDs复合材料,通过透射电镜(TEM),X射线衍射(XRD),X射线光电子能谱分析(XPS)等对其形貌和晶型进行分析,以耐药沙门氏菌为模式菌研究Ag QDs的抑菌活性,并探究其抑菌机制。结果表明,相比单独的纳米Ag,将~3 nm Ag量子点分散在聚多巴胺表面可提高其稳定性,抑菌性能研究中显示,制备的Ag QDs在30 min内,浓度为300 μg/mL时对耐药沙门氏菌的抑菌效率为99%以上,且可高效的损害沙门氏菌的细胞壁,诱使细菌内部的K+,Ca2+和Mg2+离子泄露而使细菌产生不可逆死亡。因此,Ag QDs复合材料高效的抑菌活性有望应用于抑菌敷料等医疗领域。
Abstract: Due to the abuse of organic antibiotics, bacteria are resistant to antibiotics, so it has become one of the biggest challenges in the 21st century to explore efficient and non-resistant bacteriostatic agents. Inorganic bacteriostatic agent nano-Ag has strong inhibitory properties against bacteria and even drug-resistant bacteria, but the inhibitory activity of nano-Ag is related to particle size. The smaller the particle size, the higher the surface energy, the stronger the bacteriostatic activity, but the smaller the particle size, the easier it is to agglomerate and reduce its performance. Therefore, in this study, the prepared Ag quantum dots (Ag QDs) were loaded on the surface of polydopamine to synthesize Ag QDs composites with ultra-small particle size by using the strong coordination of Ag with the electron-donating group N atom. The morphology and crystal form were analyzed by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc. The antibacterial activity of Ag QDs was studied by using drug-resistant Salmonella as a model bacterium, and its antibacterial mechanism was explored. The results showed that the dispersion of ~3 nm Ag quantum dots on the surface of polydopamine could improve its stability compared with single nano-Ag. The antibacterial performance study showed that the prepared Ag QDs had an antibacterial efficiency of more than 99% against drug-resistant Salmonella within 30 min at a concentration of 300 μg/mL, and could efficiently damage the cell wall of Salmonella, inducing the leakage of K+, Ca2+ and Mg2+ ions inside the bacteria and causing irreversible death of the bacteria. Therefore, the efficient antibacterial activity of Ag QDs composites is expected to be applied in medical fields such as antibacterial dressings.
文章引用:汪艳, 赵正轩, 张强, 熊滢, 郭少波. Ag QDs对耐药沙门氏菌的细胞壁的损伤研究[J]. 物理化学进展, 2023, 12(2): 122-129. https://doi.org/10.12677/JAPC.2023.122014

1. 引言

病源微生物引起的全球性传染疾病时有发生,尤其是从2019年到2022年,由新型冠状病毒引发的疫情对全人类健康与社会经济均造成了重大的影响。而目前大多数的治疗方案是利用有机抑菌剂协同用药来提升治愈效果。但随着人口的增长和对卫生健康水平的日益提高,对抗生素的过量使用不可避免,其结果诱导细菌质粒中抗性基因的表达,导致大量的耐药菌甚至是“超级细菌” [1] 出现,其中ABC (ATP-binding cassette) [2] 转运蛋白作为耐药菌多抗药性的重要机制,其功能是运输氨基酸,糖类、蛋白质、抗生素、金属等(分子量小于600 D,粒径小于4 nm的粒子)跨膜转运和外排作用。当细菌中抗生素含量较高时,ABC转运蛋白可将部分抑菌剂转运至细胞外而使细菌免受抗生素的毒害,因此,有机抑菌剂虽可靶向作用于活性酶、功能蛋白、代谢细胞器、转录和翻译的代谢物质等使细菌暂时性失活,但无法对细菌造成根本性破坏。无机市售抑菌剂如泰喷剂(汇涵术)、银尔洁、杰可沙、脉舒宝等常见抑菌药剂的主要成分为Ag+,因具广谱杀菌性,对人体副作用小,不产生耐药、安全可靠等优点被广泛应用于医药领域。但Ag+作为一次性生活用药抑菌效率较低,银 [3] 作为古老的烫伤药不仅具有较高的生物相容性,且在介质中可释放Ag+和ROS,两者协同可彻底杀灭细菌,具有较高的应用潜力。纳米银(Ag NAs) [4] - [12] 的抑菌活性与比表面积相关,理论上粒径越小抑菌性能越强,但表面能越大,Ag NAs越易团聚,从而降低了其抑菌活性。

银量子点(Ag QD) [12] - [22] 是粒径小于10 nm的Ag NAs,且小粒径的Ag QD不仅可通过ABC转运系统进入细菌内部,与蛋白质中的酚羟基、羧基、巯基、氨基等官能团形成配位键继而合成稳定的复合物(根据软硬酸碱理论中Ag+ d轨道空缺,易和氮、氧、硫等元素中的孤对电子结合形成金属配合物)而使细菌二级结构产生不可逆损伤,且可对耐药菌产生致命伤害。但目前对于超小粒径的Ag QD在耐药菌中的抑菌应用的研究较少。

为此,本研究以聚多巴胺为核,通过其表面的氨基和羧基的配位作用将超小粒径Ag QD稳定的吸附在表面合成Ag QDs,这不仅可解决Ag QD易团聚的问题,且可提高其稳定性。以耐药沙门氏菌(T-Salm)为模式菌研究Ag QDs的抑菌活性,并探讨机制,这可为Ag QD在抑菌中的应用提供新思路。

2. 实验部分

2.1. 仪器和试剂

FEI Tecnai G2 F20型透射电子显微镜(荷兰FEI公司);D8 ADVANCE X射线粉末衍射仪(德国,BRUKER);紫外–可见漫反射吸收光谱(日本Cray 100);Kratos X射线光电子能谱仪(日本,AXIS Supra);YXQ-50G干燥型立式蒸汽高压消毒锅(浙江,中友公司)。一缩二乙二醇(AR),异丙醇(AR),多巴胺(AR)等均购于天津市新欣化工厂,氯化钠(AR),硫氢化钠(AR),醋酸银(AR),柠檬酸钠(AR),硼氢化钠(AR)等均购于天津大沽化工股份有限公司,琼脂,酵母浸粉,胰蛋白胨等均为实验纯,购于环凯微生物。耐药沙门氏菌由陕西理工大学生物科学与工程学院提供。

2.2. 实验方法

材料的具体制备方法如表1所示。

Table 1. Preparation method of material

表1. 材料的制备方法

2.3. 抑菌实验

抑菌实验具体步骤如表2所示。

Table 2. Experiment of bacteriostasis

表2. 抑菌实验

注:式中N代表抑菌效率,G0为参照中菌落个数,G是含有不同材料的抑菌结果菌落数。

3. 结果与讨论

3.1. Ag QDs的结构表征

Figure 1. (a)~(d) TEM image of PDA, Ag NAs and Ag QDs; (e) (f) XRD and XPS spectra of Ag QDs

图1. (a)~(d)为PDA, Ag NAs和Ag QDs的TEM图;(e)和(f)是Ag QDs的XRD和XPS图谱

图1(a)为单分散球形结构的PDA,粒径为300 ± 25 nm,Ag NAs (图1(c))粒径为15 ± 5 nm,有团聚现象,且形状不规则,这是因为纳米Ag在介质中易团聚,且在空气中不稳定造成的。Ag QDs (图1(b),图1(d))复合材料为核壳型结构,粒径分散较为均匀,表面均匀负载3 ± 2 nm的纳米Ag粒子,相比Ag NAs,Ag QDs未发生明显团聚,这是因为PDA表面含有大量的氨基和羟基,在酸性条件下带正电荷,用柠檬酸钠制备的超小粒径的纳米Ag表面含有大量的负电荷,PDA可通过静电吸引将超小粒径的纳米Ag稳定的吸附在其表面形成Ag QDs,且根据软硬酸碱理论,氨基和羟基可与供电子金属Ag发生配位,因此,制备Ag QDs未发生明显的团聚。TEM证明Ag QD均匀的负载PDA表面。

为进一步确定所制备的材料的晶体结构,用粉末X射线衍射测定Ag QDs的结果如图1(e)所示,纳米Ag在衍射峰2θ = 38.9˚,44.28˚,64.43˚和77.38˚依次对应面心立方Ag晶格常数a = 4.91Å (标准衍射峰卡片JCPDS 4-0783)的(111),(200),(230)和(331)晶面,衍射峰25˚对应PDA,因为PDA为非晶聚合物,此处的包峰为非晶峰,此外,未出现其他杂峰,证明制备的Ag QDs纯度较高,且化学性质稳定,这与TEM结果相一致。通过XDR表明,Ag QDs中含有非晶PDA,面心立方相的Ag。为确定材料Ag QDs中Ag的元素状态,图1(f)为Ag结合能谱峰,368.27 eV和374.22 eV出现的谱峰分别对应单质Ag的Ag3d5/2和Ag3d3/2的结合能,且两峰之间相差6 eV,并未出现其他的峰,证明Ag QDs未发生氧化。由XPS分析可知材料中含有Ag0

3.2. 抑菌活性

为研究Ag QDs功能和应用,我们以T-Salm为模型,用滤纸片扩散法研究材料的抑菌性能并得到最佳抑菌浓度,图2(a)为抑菌结果,参照O中没有透明的抑菌圈,纳米Ag对T-Salm在300 μg/mL中有微弱的抑菌圈,Ag QDs在100 μg/mL时有抑菌活性,且其对细菌的抑菌活性随浓变大而增大,同菌株下对比这两个材料,Ag QDs抑菌活性更强,具体的抑菌圈直径如图2(b)表所示,且通过数据分析,得到最佳抑菌浓度为300 μg/mL,通过滤纸片扩散实验可知,Ag QDs具有优越的抑菌活性。

Figure 2. Diffusion of material on T-Salm filter paper (a); bacteriostatic results of colony counting method (c) and corresponding result data (b, d)

图2. 为材料对T-Salm滤纸片扩散(a);菌落计数法的抑菌结果(c)和相对应的结果数据(b, d)

我们用菌落计数法研究材料的时间抑菌效率,图2(c)和图2(d)展示了Ag QDs对T-Salm在浓度为300 μg/mL,不同时间的杀菌结果,图中40 min内,金黄色葡萄球菌几乎没有菌落数,证明对T-Salm的抑菌率为99%,通过时间抑菌测试证明,在浓度为300 μg/mL的浓度下,40 min对细菌抑制率达99.9%以上。为评估材料的杀菌机制,我们使用红色荧光染料PI来评估细菌的死亡率,荧光倒置显微镜分析如图3(a),图3(b)所示,T-Salm为杆状,而经过染色后,参照中红色斑点较少,其主要是正常细菌衰老致死所致,经过材料处理后的红色球状斑点较多,其原因是T-Salm的细胞壁中含有大量的脂多糖和少量的磷脂双分子层,材料中Ag粒子无法分解磷脂双分子结构,但可通过细菌细胞壁中的ABC转运蛋白进入细菌内部对细菌细胞壁造成致命伤害,因此大肠杆菌的PI染色结构为不规则状。

细菌表面含有大量的负电荷构成负电位差用以维持自身的新陈代谢,为研究材料对细菌细胞壁的破坏情况。通过细菌细胞壁表面电荷的电荷(图3(c))和细菌内部K+、Ca2+和Mg2+泄露进一步评价材料的杀菌机制(图3(d))。

通过实验可知,细菌浓度为7.5 × 107 CFU/mL时T-Salm的Zate电位值为−15.6 mV,与浓度为300 μg/mL的Ag QDs混合15 min后,T-Salm的电位值变为−10.2 mV,混合30 min后表面电荷分别为−6.4 mV,可证明材料Ag QDs对细菌细胞壁的负电位差造成破坏,使细菌细胞壁破坏,最终致使细菌死亡。Mg2+、K+、和Ca2+作为原核细胞的必须微量元素,Mg2+在细胞内以配合物的形式存在,K+和Ca2+以游离态的形式存在于细胞中。7 × 108 CFU/mL的菌悬液中含有的Mg2+、K+、和Ca2+的浓度依次为0.98、1.98和1.3 mg/mL,混合30 min浓度为0.46、0.71和0.56 mg/mL,证明Ag QDs破坏了T-Salm的细胞壁,致使细菌内部的Mg2+、K+、和Ca2+泄露而使细菌死亡。

Figure 3. PI staining analysis of inhibition of T-Salm (a), (b); Zate potential (c) and ion leakage analysis (d)

图3. 为材料对T-Salm的PI染色(a), (b);Zate电位(c)和离子泄露(d)分析

4. 结论

本研究以PDA为核,把Ag QD负载在PDA表面合成Ag QDs,通过对其形貌、晶型和结构等进行表征。抑菌结果证明:纳米复合Ag QDs对T-Salm在30 min内,浓度为300 μg/mL的抑菌效率为99%以上,抑菌机制结果显示,Ag QDs可明显杀死细菌,且对细菌细胞壁破坏较为严重,Ag QDs破坏细胞壁后,进一步杀死细菌,如图4所示,但具体机理有待进一步探究。综上所述,Ag QDs的最适应用浓度为300 μg/mL,其潜在的价值可这可为Ag QD在抑菌中的应用提供新思路。

Figure 4. Ag quantum dots were loaded on the surface of polydopamine to synthesize Ag QDs composites with ultra-small particle size of ~3 nm, it could destroy the cell wall of drug-resistant bacteria effectively and cause the bacteria to die

图4. 将Ag量子点负载在聚多巴胺表面,合成粒径为~3 nm的超小Ag量子点复合材料,可有效破坏耐药细菌的细胞壁,导致细菌死亡

基金项目

陕西省教育厅重点项目(20JS015);陕西理工大学科研项目(SLGPT2019KF01-20)。

NOTES

*第一作者。

#通信作者。

参考文献

[1] 赵雨佳, 廖湉毅, 范培蕾, 等. 超级细菌NDM-1及其检测方法的研究进展[J]. 化学试剂, 2021, 43(8): 1077-1082.
[2] 孙铭优, 吴照晨, 王斌, 等. ABC转运蛋白及其相关的多药抗性研究现状[J]. 植物保护学报, 2022, 49(1): 374-382.
[3] 樊晨, 倪琦, 朱婷, 等. 纳米银抗菌材料的研究进展[J]. 化工新型材料, 2022, 50(9): 229-234, 241.
[4] 陈勇, 谭晓明, 熊航行, 等. 聚甲基丙烯酸甲酯微球表面镀银的研究[J]. 贵金属, 2020, 41(1): 37-42.
[5] Rizzello, L. and Pompa, P.P. (2014) Nanosilver-Based Antibacterial Drugs and Devices: Mechanisms, Methodological Drawbacks and Guidelines. Chemical Society Reviews, 43, 1501-1518.
https://doi.org/10.1039/C3CS60218D
[6] Svitlana, C. and Matthias, E. (2013) Silver as Antibacterial Agent: Ion, Nanoparticle and Metal. Angewandte Chemie International Edition, 52, 1636-1653.
https://doi.org/10.1002/anie.201205923
[7] Marambio, J.C. and Hoek, E.M.V. (2010) A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. Journal of Nanoparticle Research, 12, 1531-1551.
https://doi.org/10.1007/s11051-010-9900-y
[8] Wignhoven, S.W.P., Peignenburg, W., Herberts, C.A., et al. (2009) Nano-Silver—A Review of Available Data and Knowledge Gaps in Human and Environmental Risk Assessment. Nanotoxicology, 3, 109-138.
https://doi.org/10.1080/17435390902725914
[9] Abadikhah, H., Kalali, E.N., Khods, S., et al. (2019) Multifunctional Thin-Film Nanofiltration Membrane Incorporated with Reduced Graphene Oxide@TiO2@Ag Nanocomposites for High Desalination Performance, Dye Retention and Antibacterial Propertie. ACS Applied Materials & Interfaces, 11, 23535-23545.
https://doi.org/10.1021/acsami.9b03557
[10] Kooti, M., Gharineh, S., Mehikhah, M., et al. (2015) Preparation and Antibacterial Activity of CoFe2O4/SiO2/Ag Composite Impregnated with Streptomycin. Chemical Engineering Journal, 259, 34-42.
https://doi.org/10.1016/j.cej.2014.07.139
[11] Wu, C.J., Zhang, G.X., Xia, T., et al. (2015) Bioinspired Synthesis of Polydopamine/Ag Nanocomposite Particles with Antibacterial Activities. Materials Science and Engineering: C, 55, 155-165.
https://doi.org/10.1016/j.msec.2015.05.032
[12] Cui, K.X., Yan, B., XIE, Y.J., et al. (2018) Regenerable Urchin-Like Fe3O4@PDA-Ag Hollow Microspheres as Catalyst and Adsorbent for Enhanced Removal of Organic Dyes. Journal of Hazardous Materials, 350, 66-75.
https://doi.org/10.1016/j.jhazmat.2018.02.011
[13] Chen, B., Jiao, X.L. and Chen, D.R. (2010) Size-Controlled and Size-Designed Synthesis of Nano/Submicrometer Ag Particles. Crystal Growth & Design, 10, 3379-3386.
https://doi.org/10.1021/cg901497p
[14] Ma, J.Q., Guo, S.B., Guo, X.H., et al. (2015) Modified Photodeposition of Uniform Ag Nanoparticles on TiO2 with Superior Catalytic and Antibacterial Activities. Journal of Sol-Gel Science and Technology, 75, 366-373.
https://doi.org/10.1007/s10971-015-3709-1
[15] Shi, Z.W., Guo, S.B. and Xue, Q.H. (2016) Reparation, Photocatalytic Property and Antibacterial Property of Ag@TiO2@SiO2 Composite Nanomaterials. Journal of Inorganic Materials, No. 5, 466-472.
[16] Daniel, R.D., Daniell, J.M., Benny, D.F., et al. (2012) Elucidating the Structure of Poly(Dopamine). Langmuir, 28, 6428-6435.
https://doi.org/10.1021/la204831b
[17] Fayaz, A.M., Balaji, K., Girilal, M., et al. (2010) Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect with Antibiotics: A Study against Gram-Positive and Gram-Negative Bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 103-109.
https://doi.org/10.1016/j.nano.2009.04.006
[18] Jiang, J.B., Sun, X.N., Li, Y., et al. (2018) Facile Synthesis of Fe3O4@PDA Core-Shell Microspheres Functionalized with Various Metal Ions: A Systematic Comparison of Commonly-Used Metal Ions for IMAC Enrichment. Talanta, 178, 600-607.
https://doi.org/10.1016/j.talanta.2017.09.071
[19] Ananda, S., Grieser, F. and Ashokkumar, M.J. (2008) Sonochemical Synthesis of Au-Ag Core-Shell Bimetallic Nanoparticles. Journal Physical Chemistry: C, 112, 15102-1510.
https://doi.org/10.1021/jp806960r
[20] Chen, Q.Q., Shah, K.N., Zhang, F.W., et al. (2019) Minocycline and Silver Dual-Loaded Poly Phosphoester-Based Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa. Molecular Pharmaceutics, 16, 1606-1619.
https://doi.org/10.1021/acs.molpharmaceut.8b01288
[21] Deng, H., Shan, D.M., Zhang, Y., et al. (2016) Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environmental Science & Technology, 50, 8840-8848.
https://doi.org/10.1021/acs.est.6b00998
[22] Li, P., Li, J., Wu, C.Z., et al. (2005) Synergistic Antibacterial Effects of β-Lactam Antibiotic Combined with Silver Nanoparticles. Nanotechnology, 16, 1912-1917.
https://doi.org/10.1088/0957-4484/16/9/082
[23] 解修超, 兰阿峰, 刘二奴, 等. PDA@Ag纳米复合材料的制备及抑菌性能研究[J]. 贵金属, 2021, 42(1): 34-40.
[24] 郭少波, 梁艳莉, 刘智峰. 四环素-Ag复合材料的协同抑菌性能[J]. 应用化学, 2021, 38(11): 1462-1468.
[25] 郭少波, 马剑琪, 兰阿峰, 等. 核-壳纳米Ag@ZrO2复合材料的制备及其抑菌性能[J]. 复合材料学报, 2016, 33(4): 822-826.
[26] 刘智峰, 房迅, 郭少波, 等. 核壳型纳米Au@Ag复合材料的制备、催化及光抑菌[J]. 功能材料, 2022, 53(4): 216-223.