2型DKD患者血清焦亡相关蛋白与肾损伤的分析
Analysis of Serum Pyrodeath Re-lated Proteins and Renal Injury in Patients with Type 2 DKD
DOI: 10.12677/ACREM.2023.112009, PDF, HTML, XML, 下载: 138  浏览: 336 
作者: 马茹洁, 巴应贵:青海大学附属医院,青海 西宁
关键词: 2型糖尿病肾病细胞焦亡NLRP3炎症小体肾损伤 Type 2 Diabetic Nephropathy Pyrocytosis NLRP3 Inflammasome Renal Injury
摘要: 糖尿病肾病(DKD)是糖尿病最常见的并发症之一,也是导致终末期肾病的主要原因。全球30%~40%糖尿病患者因病情迁延而进展至DKD,伴有终末期肾病的患者五年生存率 < 20%。因此,延缓DKD进展对于改善患者生存质量具重大意义。目前研究发现,2型DKD发病进展中的无菌性炎症机制与病情进展密切相关。
Abstract: Diabetic nephropathy (DKD) is one of the most common complications of diabetes and the main cause of end-stage renal disease. Globally, 30%~40% of diabetic patients progress to DKD due to disease delay, and the five-year survival rate of patients with end-stage re-nal disease is less than 20%. Therefore, delaying DKD progression is of great significance for im-proving patients’ quality of life. Current studies have found that the aseptic inflammatory mecha-nism in the progression of type 2 DKD is closely related to the progression of the disease.
文章引用:马茹洁, 巴应贵. 2型DKD患者血清焦亡相关蛋白与肾损伤的分析[J]. 亚洲急诊医学病例研究, 2023, 11(2): 53-58. https://doi.org/10.12677/ACREM.2023.112009

1. 引言

DKD发病机制复杂,包括慢性炎症反应、氧化应激、血流动力学异常、糖脂代谢紊乱等 [1] [2] 。糖尿病肾病主要发病机制为长期高血糖暴露引起,导致肾脏结构和功能进行性改变。糖尿病肾病的一个关键性标志是无菌性炎症。多项研究表明 [3] [4] ,持续存在的低度炎症反应是DKD发生发展的关键因素。然而目前对于其分子机制的研究仍较少,目前可知NLRP3炎症小体(调节半胱天冬酶-1激活的先天免疫系统受体和传感器)是一种表明足细胞Nlrp3同时发挥了典型和非典型的作用。因此,足细胞NLRP3炎症小体激活对于DKD病变进展十分关键,并支持足细胞发挥一些免疫细胞样功能的概念。由于足细胞NLRP3发挥的这种作用,靶向NLRP3可能是DKD的一种有前途的治疗方法。

2. 细胞焦亡

无菌性炎症是DKD的标志。肾脏中炎症细胞积聚的程度与肾功能下降有关 [5] 。需要引起注意的是一种与炎症反应相伴的特殊的细胞程序性死亡方式——细胞焦亡(pyroptosis) [6] [7] [8] 。细胞焦亡是继细胞坏死、凋亡和自噬后发现的又一种促炎症程序性细胞死亡方式,该过程依赖半胱氨酸天冬氨酸蛋白酶(cysteinylaspartate specific proteinase Caspase) 1且伴有炎症反应发生。细胞焦亡在形态学上同时具有坏死和凋亡的特征:发生焦亡的细胞会出现细胞核皱缩、外吐小泡、染色质DKDA断裂、末端脱氧核苷酸转移酶介导的dUTP缺口末端标记测定法(terminal dexynucleotidyl transferasemediated dUTP nick end labeling, TUNEL)染色阳性及膜连蛋白V (annexin V)染色阳性等细胞凋亡的特征。像坏死细胞一样,其细胞膜上会形成许多1~2 nm的小孔,使水得以进入细胞内部,导致细胞肿胀、细胞膜爆裂、内容物释放,即诱发炎症反应;释放白细胞介素-1β (IL-1β)和白细胞介素-18 (IL-18),进而募集更多炎症细胞,诱发级联放大的炎性反应 [9] 。这说明细胞焦亡对机体有抵御感染的积极作用,也有诱发病理性炎症的消极作用。

含有细胞内吞噬细菌和病毒分子的炎性小体的激活诱导细胞焦亡,这是一种依赖于半胱天冬酶-1激活的促炎和细胞死亡程序 [10] [11] 。焦亡通常见于受感染的巨噬细胞、单核细胞和树突状细胞。它被认为是一种具有坏死和凋亡的形态学和生化特征的细胞死亡方式 [10] [11] 。细胞焦亡是在Gasdermin D (GSDMD)蛋白介导下的细胞程序性死亡,主要依赖于炎性半胱天冬氨酸(caspase)-1,4,5,11的激活并伴有大量促炎症因子〔白细胞介素(IL)-1β、IL-18〕的释放,释放的细胞因子会吸引更多免疫细胞,进一步使组织中的级联反应继续 [12] 。半胱天冬酶1依赖性细胞死亡的机制、特征和结果与细胞凋亡不同。沿着焦亡程序,生化和形态学事件的相互影响导致质膜中孔(1~2 nm)的形成,从而导致钾外排、水流入、细胞肿胀、质膜破裂和细胞内内容物释放 [13] 。研究表明,在焦亡期间,半胱天冬酶-1和可能的半胱天冬酶-7(21)共同作用于几种类型的蛋白质的蛋白水解消化,包括伴侣HSP-90、γ-肌动蛋白、共济失调素-3、HnRNP-A2和糖酵解酶甘油醛-3-磷酸脱氢酶、烯醇化酶、丙酮酸激酶等蛋白质。焦亡导致的宿主细胞死亡有助于控制微生物感染,如沙门氏菌、志贺氏菌、李斯特菌、假单胞菌、弗朗西斯菌和军团菌 [10] [11] 。需要更多的研究来确定哪些半胱天冬酶-1底物具有在这些病理中诱导焦亡特征的能力。

3. 细胞焦亡与糖尿病肾病

最近的研究表明,细胞焦亡在DKD的发病中起着关键作用,持续的高血糖促使ROS和多种炎性因子过度生成,激活NLRP3发挥作用 [14] [15] 。细胞焦亡免疫反应过程中的模式识别受体(pattern-recognition receptors, PRR)包括NLRs受体(NLRP1、NLRP3和NLRC4)、TOLL样受体(Toll-like receptors, TLR)和PYHIN蛋白(AIM2),其均能直接或间接上调炎症小体中心分子和IL-1β、IL-18前提的表达。研究已发现 [16] 可介导细胞焦亡的炎症小体有:NLRP3、NLRP1、NLRC4、AIM2和TLR4等。

NLRP3作为一种模式识别受体所介导的细胞焦亡是DKD进展过程中炎症反应和肾细胞死亡的主要介质,在高血糖的状态下被激活,与ASC和pro-Caspase-1共同形成NLRP3炎性复合体,进而激活Caspase-1。活性Caspase-1促进pro-IL-1β成熟,使IL-1β分泌到细胞外,并且切割GSDMD诱导细胞程序性死亡即细胞焦亡,引起炎性反应。炎性反应使肾脏损伤持续进展,进而发展成肾纤维化,最终导致ESRD [17] 。

4. NLRP3炎症小体

炎症小体于2002年首次被发现为具有诱导炎症功能的多蛋白复合物 [18] 。炎症小体的组装和激活可能发生在不同的细胞器中,例如线粒体、内质网和细胞核 [19] 。某些疾病的临床诊断和治疗反应的监测可以通过炎症小体成像系统实现 [20] 。NLRP3炎症小体的激活不仅会导致炎症反应,还会诱导一种被称为细胞焦亡的裂解细胞死亡 [14] 。NOD样受体热蛋白结构域相关蛋白3 (NLRP3)炎症小体是一种研究广泛的炎症小体,主要由NLRP3组成,NLRP3是一种含有半胱天冬酶的凋亡相关斑点样蛋白 [14] 。其相对分子量约为700,000的多蛋白复合物,其作用已被证明;它在5种炎症的过程中起着转化作用 [15] 。NLRP3炎症小体由核苷酸结合和低聚结构域样受体家族pyrin结构域含3 (NLRP3)、凋亡相关斑点样蛋白(ASC)和胱天蛋白酶-1或胱天蛋白酶-5组成。NLRP3是复合物中的核心蛋白 [21] 。NLRP3包含三个不同的结构域:1) 位于N末端的pyrin结构域(PYD)或C末端胱天蛋白酶募集结构域(CARD),其在信号转导过程中介导蛋白质–蛋白质相互作用;2) 位于分子中心的核苷酸结合寡聚化结构域(NOD)/神经元凋亡抑制剂蛋白CIITA、HET-E和TP1 (NACHT)结构域,对通过自身介导的寡聚化激活NLRP3至关重要;3) 位于C末端的富含亮氨酸重复序列(LRR)结构域,通过蛋白质–蛋白质或蛋白质–糖脂相互作用识别和鉴定致病微生物和其他配体 [22] 。NLRP3在NLPR3炎症小体中的功能是特异性配体识别。当配体在C末端被LRR识别时,由于NOD结构域寡聚化的影响,NLR家族的分子发生构象重排,从而暴露效应结构域,最终诱导N-末端具有相同CARD或PYD结构域的效应分子,并激活其生物效应 [23] 。NLRP3与ASC结合,募集前半胱氨酸蛋白酶-1形成炎症小体,并通过水解转化为半胱氨酸蛋白酶-1。然后炎症小体将促进胱天蛋白酶-1自酶水解为由P10和P20亚基组成的异二聚体。P20亚单位诱导前IL-1β成熟和IL-1β分泌 [24] 。ASC由pycard基因编码,是一种重要的195个氨基酸的蛋白质,与NLRP3上游和半胱氨酸蛋白酶-1下游连接。ASC是NLRP3炎症小体复合体 [25] 中的关键炎症小体适配器,具有两种不同的结构。1) 位于6N-末端的PYD结构域是参与活化的NLPR3的N-末端PYD结构区的蛋白质–蛋白质相互作用的低聚结构域。2) 位于ASC C末端的CARD结构域参与将胱天蛋白酶-1募集到炎症小体,并在效应结构域激活胱天蛋白酶1中发挥作用 [26] [27] 。NLRP3炎症小体的激活主要发生在免疫细胞中,包括巨噬细胞、树突状细胞、固有肾免疫细胞,如肾小管细胞 [28] [29] 。NLRP3炎症小体活化需要两个步骤“启动”和“激活”,正常情况下NLRP3在体内表达极低,当体内代谢物异常时可触发NLRP3蛋白酶体活化。在启动阶段,首先由Toll样受体(TLRs)等识别病原体相关分子模式(PAMPs)或危险信号分子(DAMPs)识别受体来激活核转录因子-κB (NF-κB),随后由NF-κB上调NLRP3前体蛋白和Caspase-1的表达,为第二阶段(激活阶段)做充分的准备。在激活阶段,多种因素 [14] [15] [21] (例如病毒、细菌、各种干预等)可通过激活NLRP3蛋白寡聚化从而产生炎症小体,进而引起细胞线粒体损伤和ROS的产生,并在Caspase-1的作用下,活化炎症因子,引起炎症反应 [30] 。

5. NLRP3炎症小体与2型DKD肾损伤机制

2型DKD是一种代谢性炎性疾病。慢性肾脏病肾病的炎症反应损伤在其发展中起着关键作用。DKD的发生可诱导一系列异常变化,如肾小球肥大、足细胞丢失和系膜基质扩张 [31] 。进行性DKD不仅是葡萄糖代谢紊乱和活性氧(ROS)生成的结果,也是慢性低度炎症和纤维化的结果 [32] [33] 。炎症介导的DKD发病机制中的细胞、系膜和足细胞损伤在疾病进展中起着至关重要的作用。细胞焦亡促使一系列炎症小体的生成,而炎症小体的生成,CaspaseG1激活,下游促炎因子释放一系列反过来可以导致DKD细胞死亡的增加,促进2型糖尿病肾病的进一步进展。NLRP3炎症小体的激活,尤其是在葡萄糖和脂质的异常代谢产物刺激下,会加剧促炎细胞因子(即IL-1β和IL-18)的成熟和分泌,并进一步引发炎症级联反应 [34] 。此外,NLRP3炎症小体的激活与各种病理状况有关,从代谢综合征到肾脏疾病 [35] 。通过线粒体靶向抗氧化剂MitoTEMPO特异性降低线粒体活性氧(ROS)来防止肾小球NLRP3炎症小体激活,可以改善糖尿病小鼠的肾病 [36] ,这表明NLRP3炎性小体是治疗代谢性炎症疾病的潜在靶点,包括糖尿病的肾损伤。

6. 讨论

2型DKD早期发病极容易被忽略,如果不进行早期干预,会从期初的微量蛋白尿,转变成大量蛋白尿、进行性肾功能恶化,直至到终末期肾脏病。治疗方案即降糖、降压以减少肾脏负为主的对症治疗。近年研究发现肾脏固有细胞的程序性死亡如细胞焦亡对DKD发生发展有关键作用。因此,探索防治DKD进展的可能作用靶点细胞焦亡通路相关蛋白成为目前研究热点。细胞焦亡是一种促炎性程序性细胞死亡方式,可由NLRP3炎症小体、caspase-1及GSDMD共同介导。适度的炎症反应可对机体产生保护性免疫作用,但炎症的失控如级联反应、炎症风暴等则会导致机体系统的破坏进而加重DKD肾脏损伤。NLRP3是NOD样受体家族中的一个重要成员,能识别多种致病微生物(如病毒和细菌)、内源性或外源性(如尿酸盐结晶)危险信号,是炎症反应中的核心成分 [37] 。当机体在病原及损伤相关分子模式的刺激下,可启动细胞焦亡的上游反应原件,激活NLRP3,与凋亡相关斑点样蛋白、pro-caspase-1三者组装成蛋白复合物——NLRP3炎症小体 [38] ,进而激活caspase-1,促进炎症因子IL-1β、IL-18成熟和分泌。同时caspase-1还可通过切割GSDMD,释放其N端结构域并易位到质膜形成膜孔 [39] ,导致细膜破裂发生焦亡,最终释放炎症因子如IL-1β、IL-18,扩大炎症反应。caspase-1及GSDMD是参与细胞焦亡的关键蛋白,IL-1β、IL-18可桥联并参与先天及适应性免疫,是细胞焦亡通路发挥效应的关键下游因子。现有较多研究表明,NLRP3/caspase-1/GSDMD细胞焦亡通路的激活可能在DKD进展过程中发挥着重要作用。由此可见,调控细胞焦亡通路可为DKD的防治提供新的治疗策略和靶点。

参考文献

参考文献

[1] Jung, C.Y. and Yoo, T.H. (2022) Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes & Metabolism Journal, 46, 181-197.
https://doi.org/10.4093/dmj.2021.0329
[2] Thomas, M.C. (2021) Targeting the Pathobiology of Diabetic Kidney Disease. Advances in Chronic Kidney Disease, 28, 282-289.
https://doi.org/10.1053/j.ackd.2021.07.001
[3] Jung, S.W. and Moon, J.Y. (2021) The Role of Inflammation in Diabetic Kidney Disease. The Korean Journal of Internal Medicine, 36, 753-766.
https://doi.org/10.3904/kjim.2021.174
[4] Nicholas, S.B. (2021) Novel Anti-Inflammatory and Anti-Fibrotic Agents for Diabetic Kidney Disease—From Bench to Bedside. Advances in Chronic Kidney Disease, 28, 378-390.
https://doi.org/10.1053/j.ackd.2021.09.010
[5] Tang, S.C.W. and Yiu, W.H. (2020) Innate Immunity in Diabetic Kidney Disease. Nature Reviews Nephrology, 16, 206-222.
https://doi.org/10.1038/s41581-019-0234-4
[6] Chow, F., Ozols, E., Nikolic-Paterson, D.J., et al. (2004) Macrophages in Mouse Type 2 Diabetic Nephropathy: Correlation with Diabetic State and Progressive Renal Injury. Kidney International, 65, 116-128.
https://doi.org/10.1111/j.1523-1755.2004.00367.x
[7] Chow, F.Y., Nikolic-Paterson, D.J., Ozols, E., et al. (2006) Monocyte Chemoattractant Protein-1 Promotes the Development of Diabetic Renal Injury in Streptozotocin-Treated Mice. Kidney International, 69, 73-80.
https://doi.org/10.1038/sj.ki.5000014
[8] Moriya, R., Manivel, J.C. and Mauer, M. (2004) Juxtaglomerular Ap-paratus T-Cell Infiltration Affects Glomerular Structure in Type 1 Diabetic Patients. Diabetologia, 47, 82-88.
https://doi.org/10.1007/s00125-003-1253-y
[9] Sangiuliano, B., Perez, N.M., Moreira, D.F., et al. (2014) Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control. Mediators Inflammation, 2014, Article ID: 821043.
https://doi.org/10.1155/2014/821043
[10] Funk, S.L. and Cookson, B.T. (2007) Pyrosis: Host Cell Death and In-flammation. Cell Microbiology, 9, 2562-2570.
https://doi.org/10.1111/j.1462-5822.2007.01036.x
[11] Rabe, K. and Saleh, M. (2008) Cell Death in the Host Re-sponse to Infection. Cell Death and Differentiation, 15, 1339-1349.
https://doi.org/10.1038/cdd.2008.91
[12] Xu, J., Jiang, Y., Wang, J., et al. (2014) Macrophage Endocytosis of High-Mobility Group Box 1 Triggers Pyroptosis. Cell Death and Differentiation, 21, 1229-1239.
https://doi.org/10.1038/cdd.2014.40
[13] Bergsbaken, T., Fink, S.L. and Cookson, B.T. (2009) Pyroptosis: Host Cell Death and Inflammation. Nature Reviews Microbiology, 7, 99-109.
[14] Huang, X., Shen, H., Liu, Y., Qiu, S. and Guo, Y. (2021) Fisetin Attenuates Periodontitis through FGFR1/TLR4/ NLRP3 Inflammasome Pathway. International Immunopharmacology, 95, Article ID: 107505.
https://doi.org/10.1016/j.intimp.2021.107505
[15] Zhang, C., Boini, K.M., Xia, M., Abais, J.M., Li, X., Liu, Q. and Li, P.L. (2012) Activation of Nod-Like Receptor Protein 3 Inflammasomes Turns on Podocyte Injury and Glomeru-lar Sclerosis in Hyperhomocysteinemia. Hypertension, 60, 154-162.
https://doi.org/10.1161/HYPERTENSIONAHA.111.189688
[16] Jorgensen, I., Zhang, Y., Krantz, B.A., et al. (2016) Pyroptosis Triggers Pore-Induced Intracellular Traps (PITs) That Capture Bacteria and Lead to Their Clearance by Efferocytosis. Journal of Experimental Medicine, 213, 2113-2128.
https://doi.org/10.1084/jem.20151613
[17] Yang, M., et al. (2021) Targeting the NLRP3 Inflammasome in Diabetic Nephropathy. Current Medicinal Chemistry, 28, 8810-8824.
https://doi.org/10.2174/0929867328666210705153109
[18] Martinon, F., Burns, K. and Tschopp, J. (2002) The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-beta. Molecular Cell, 10, 417-426.
https://doi.org/10.1016/S1097-2765(02)00599-3
[19] Pandey, A., Shen, C., Feng, S. and Man, S.M. (2021) Cell Biology of Inflammasome Activation. Trends in Cell Biology, 31, 924-939.
https://doi.org/10.1016/j.tcb.2021.06.010
[20] Nandi, D., Farid, N.S.S., Karuppiah, H.A.R. and Kulkarni, A. (2022) Imaging Approaches to Monitor Inflammasome Activation. Journal of Molecular Biology, 434, Article ID: 167251.
https://doi.org/10.1016/j.jmb.2021.167251
[21] Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., Fitzgerald, K.A., Latz, E., Moore, K.J. and Golenbock, D.T. (2008) The NALP3 Inflammasome Is In-volved in the Innate Immune Response to Amyloid-beta. Nature Immunology, 9, 857-865.
https://doi.org/10.1038/ni.1636
[22] Carneiro, L.A., Magalhaes, J.G., Tattoli, I., Philpott, D.J. and Travassos, L.H. (2008) Nod-Like Proteins in Inflammation and Disease. The Journal of Pathology, 214, 136-148.
https://doi.org/10.1002/path.2271
[23] Inohara, C., McDonald, C. and Nunez, G. (2005) NOD-LRR Proteins: Role in Host-Microbial Interactions and Inflammatory Disease. Annual Review of Biochemistry, 74, 355-383.
https://doi.org/10.1146/annurev.biochem.74.082803.133347
[24] Segovia, J., Sabbah, A., Mgbemena, V., Tsai, S.Y., Chang, T.H., Berton, M.T., et al. (2012) TLR2/MyD88/NF-kappaB Pathway, Reactive Oxygen Species, Potassium Efflux Activates NLRP3/ASC Inflammasome during Respiratory Syncytial Virus Infection. PLOS ONE, 7, e29695.
https://doi.org/10.1371/journal.pone.0029695
[25] Stienstra, R., van Diepen, J.A., Tack, C.J., Zaki, M.H., van de Veerdonk, F.L., Perera, D., et al. (2011) Inflammasome Is a Central Player in the Induction of Obesity and Insulin Re-sistance. Proceedings of the National Academy of Sciences of the United States of America, 108, 15324-15329.
https://doi.org/10.1073/pnas.1100255108
[26] Martinon, F., Burns, K. and Tschopp, J. (2002) The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-beta. Molecular Cell, 10, 417-426.
https://doi.org/10.1016/S1097-2765(02)00599-3
[27] Srinivasula, S.M., Poyet, J.L., Razmara, M., Datta, P., Zhang, Z. and Alnemri, E.S. (2002) The PYRIN-CARD Protein ASC Is an Activating Adaptor for Caspase-1. Journal of Bio-logical Chemistry, 277, 21119-21122.
https://doi.org/10.1074/jbc.C200179200
[28] Karmakar, M., Katsnelson, M.A., Dubyak, G.R., et al. (2016) Neu-trophil P2X7 Receptors Mediate NLRP3 Inflammasome-Dependent IL-1β Secretion in Response to ATP. Nature Com-munications, 7, Article No. 10555.
https://doi.org/10.1038/ncomms10555
[29] Du, X., Que, W., Hu, X., et al. (2021) Oridonin Prolongs the Survival of Mouse Cardiac Allografts by Attenuating the NF-κB/NLRP3 Pathway. Frontiers in Immunology, 12, Article ID: 719574.
https://doi.org/10.3389/fimmu.2021.719574
[30] Molyvdas, A., Georgopoulou, U., Lazaridis, N., et al. (2018) The Role of the NLRP3 Inflammasome and the Activation of IL-1beta in the Pathogenesis of Chronic Viral Hepatic Inflam-mation. Cytokine, 110, 389-396.
https://doi.org/10.1016/j.cyto.2018.04.032
[31] Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045.
https://doi.org/10.2215/CJN.11491116
[32] Rayego-Mateos, S., Morgado-Pascual, J.L., Opazo-Ríos, L., Guerre-ro-Hue, M., García-Caballero, C., et al. (2020) Pathogenic Pathways and Therapeutic Approaches Targeting Inflamma-tion in Diabetic Nephropathy. International Journal of Molecular Sciences, 21, Article No. 3798.
https://doi.org/10.3390/ijms21113798
[33] Maiti, A.K. (2021) Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. International Journal of Molecular Sciences, 22, Article No. 9985.
https://doi.org/10.3390/ijms22189985
[34] Ralston, J.C., Lyons, C.L., Kennedy, E.B., Kirwan, A.M. and Roche, H.M. (2017) Fatty Acids and NLRP3 Inflammasome Mediated Inflammation in Metabolic Tissues. Annual Review of Nutrition, 37, 77-102.
https://doi.org/10.1146/annurev-nutr-071816-064836
[35] De Nardo, D. and Latz, E. (2011) NLRP3 Inflam-masomes Link Inflammation and Metabolic Disease. Trends in Immunology, 32, 373-379.
https://doi.org/10.1016/j.it.2011.05.004
[36] Shahzad, K., Bock, F., Dong, W., et al. (2015) Nlrp3-Inflammasome Activation in Non-Myeloid-Derived Cells Aggravates Diabetic Nephropathy. Kidney International, 87, 74-84.
https://doi.org/10.1038/ki.2014.271
[37] Xin, R., Sun, X., Wang, Z., et al. (2018) Apocynin Inhibited NLRP3/XIAP Signalling to Alleviate Renal Fibrotic Injury in Rat Diabetic Nephropathy. Biomedicine & Pharmacother-apy, 10, 1325-1331.
https://doi.org/10.1016/j.biopha.2018.07.036
[38] Zheng, J., Hu, Q., Zou, X., et al. (2022) Uranium Induces Kid-ney Cells Pyroptosis in Culture Involved in ROS/ NLRP3/Caspase-1 Signaling. Free Radical Research, 56, 40-52.
https://doi.org/10.1080/10715762.2022.2032021
[39] Aizawa, E., Karasawa, T., Watanabe, S., et al. (2020) GSDME-Dependent Incomplete Pyroptosis Permits Selective IL-1α Release under Caspase-1 Inhibition. iScience, 23, Article ID: 101070.
https://doi.org/10.1016/j.isci.2020.101070