#### 期刊菜单

Influence of Lead Rubber Bearing on Seismic Performance of Irregular Ramp Bridge
DOI: 10.12677/HJCE.2023.125075, PDF , HTML, XML, 下载: 69  浏览: 100  国家自然科学基金支持

Abstract: In order to study the influence of lead rubber bearing on the seismic performance of irregular ramp bridge, a finite element model is established based on an engineering example. The seismic performance of plate rubber bearing and lead rubber bearing in irregular ramp bridge is analyzed, and the damping effect of lead rubber bearing under different longitudinal slope and radius of curvature is discussed. The results show that the displacement response value at the top of the pier is basically unchanged but the internal force response value is significantly reduced. The change of stiffness ratio of each pier makes the seismic response of the consolidated piers increase slightly. The damping amplitude of lead rubber bearings to short piers is larger than that to high piers, and increases with the increase of longitudinal slope. With the increase of radius of curvature, the damping effect of lead rubber bearing decreases slightly. The lead rubber bearings have an obvious shock absorption effect in irregular ramp bridges with a small radius of curvature and short piers.

1. 引言

2. 工程背景

3. 有限元模型及地震动输入

Figure 1. Finite element model

$F=Kx$ (1)

$K=\frac{GA}{\sum t}$ (2)

$F=\left\{\begin{array}{ll}{K}_{1}D\hfill & D\le {D}_{y}\hfill \\ {F}_{y}+{K}_{2}\left(D-{D}_{y}\right)\hfill & D>{D}_{y}\hfill \end{array}$ (3)

Figure 2. Seismic wave

4. 桥梁动力特性比较

(a) 墩底剪力响应值 (b) 墩底弯矩响应值 (c) 墩底扭矩响应值 (d) 墩顶位移响应值

Figure 3. Analysis results of pier-top displacement and internal force

5. 几何参数影响分析

5.1. 纵向坡度的影响

(a) 墩底剪力响应值(b) 墩底弯矩响应值

Figure 4. Variation of maximum shear force and moment response at the pier bottom with longitudinal slope

5.2. 曲率半径的影响

(a) 墩底剪力响应值(b) 墩底弯矩响应值

Figure 5. Variation of maximum shear force and moment response at the pier bottom with radius of curvature

6. 结论

1) 在非规则匝道桥中，使用铅芯橡胶支座可以显著减小桥墩的地震动内力响应值，但对墩顶位移响应值的影响较小。同一联中的固结墩相对刚度会因铅芯橡胶支座的使用而增加，使其内力地震响应值小幅增大。

2) 采用铅芯橡胶支座后，匝道桥中矮墩的减震幅度随着纵向坡度的增大而增大，而高墩的减震幅度随坡度的变化基本保持稳定。矮墩采用铅芯橡胶支座后的减震幅度明显大于高墩。

3) 曲率半径对非规则匝道桥中铅芯橡胶支座减震性能的影响较小，其减震幅度总体上随着曲率半径的增大而小幅减小。铅芯橡胶支座在曲率半径较小的曲线桥梁中减震效果更明显。

 [1] 殷建强, 周跃, 洪亮, 等. 基于能力需求比法的矮墩大跨度PC连续梁桥延性和减隔震设计评价[J]. 中外公路, 2021, 41(5): 181-186. [2] 姜焱培, 周晓敏. 不同人工地震波作用下铅芯橡胶支座桥梁减震性能分析[J]. 公路, 2019, 64(4): 155-159. [3] 刘新华, 李加武, 周琴, 等. 简支梁桥铅芯橡胶支座减震特性研究[J]. 建筑科学与工程学报, 2014(3): 124-131. [4] 赵宇翔. 支座形式对简支梁桥地震反应的影响[J]. 震灾防御技术, 2018, 13(4): 903-910. [5] 刘智华, 韩之江, 王磊. 铅芯橡胶支座PC连续梁桥隔震性能试验研究[J]. 桥梁建设, 2016, 46(5): 18-23. [6] 李雪红, 周鹤鸣, 李晔暄, 等. 远场长周期地震动作用下减隔震连续梁桥的动力响应特性研究[J]. 自然灾害学报, 2016, 25(3): 137-142. [7] 钟铁毅, 杨风利, 夏禾. 基于能量法的铅芯橡胶支座隔震桥梁设计方法[J]. 中国铁道科学, 2009, 30(2): 43-48. [8] 吴彬, 庄军生, 臧晓秋. 铅芯橡胶支座的非线性动态分析力学参数试验研究[J]. 工程力学, 2004, 21(5): 144-149. [9] 吴彬, 庄军生, 臧晓秋. 铅芯橡胶支座等效线性分析模型参数的研究[J]. 中国安全科学学报, 2003, 13(8): 65-68. [10] Wang, J. and Liu, J.X. (2012) The Study of the Design Parameter of Lead Rubber Bearing. Applied Mechanics and Materials, 184-185, 591-594. https://doi.org/10.4028/www.scientific.net/AMM.184-185.591 [11] Tang, H., Wang, H., Zhou, B. and Chen, L.K. (2011) Study on Seismic Isolation of High-Speed Railway Bridge Fabricated Lead Rubber Bearings. Applied Mechanics and Materials, 80-81, 409-413. https://doi.org/10.4028/www.scientific.net/AMM.80-81.409 [12] Peng, W., Tang, Z., Wang, D., et al. (2020) A Forensic Investigation of the Xiaoshan Ramp Bridge Collapse. Engineering Structures, 224, Article ID: 111203. https://doi.org/10.1016/j.engstruct.2020.111203 [13] Hurff, J.B. and Kahn, L.F. (2012) Rollover Stability of Precast, Prestressed Concrete Bridge Girders with Flexible Bearings. PCI Journal, 57, 96-107. https://doi.org/10.15554/pcij.09012012.96.107 [14] 魏金校. 曲线梁桥倾覆计算理论与现场事故调查研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2019. [15] 管仲国, 李建中. 城市高架桥合理抗震体系选择与经济性对比[J]. 地震工程与工程振动, 2011, 31(3): 91-98. [16] 腾格, 张于晔. 强震下支座形式对曲线梁桥地震响应的影响[J]. 工程抗震与加固改造, 2016, 38(2): 101-107.