脂蛋白与心血管疾病残余风险的研究现状
Research Status of Lipoprotein and Residual Risk of Cardiovascular Disease
DOI: 10.12677/ACM.2023.1361290, PDF, HTML, XML, 下载: 175  浏览: 307 
作者: 吴美霞:青海大学医学院,青海 西宁;李 蓉:青海大学附属医院老年科,青海 西宁
关键词: 动脉粥样硬化性心血管疾病残余心血管风险脂蛋白(a)残余脂蛋白甘油三脂Atherosclerotic Cardiovascular Disease Residual Cardiovascular Risk Lipoprotein(a) Remnant Lipoproteins Triglyceride
摘要: 尽管心血管疾病的防治取得了较为突出的成果,但其患病率和病死率仍较高。目前的指南针对降低低密度脂蛋白胆固醇(LDL-C)浓度,以减少动脉粥样硬化性心血管疾病(ASCVD)风险,尽管积极降低LDL-C,但残留ASCVD风险仍然存在,因此积极预防及治疗心血管疾病迫在眉睫,寻求新的方法降低心血管疾病的残余风险具有重要临床意义。本文主要总结了脂蛋白(LDL-C, HDL-C, TG, RLPs, Lp(a))与心血管疾病残余风险有关的证据。
Abstract: Although the prevention and treatment of cardiovascular diseases have made remarkable achievements, the prevalence and mortality of cardiovascular diseases are still high. Current guide-lines aim to reduce the concentration of low-density lipoprotein cholesterol (LDL-C) to reduce the risk of atherosclerotic cardiovascular disease (ASCVD). Despite aggressive lowering of LDL-C, the risk of residual ASCVD remains, making active prevention and treatment of cardiovascular disease urgent. It is of great clinical significance to seek new methods to reduce the residual risk of cardio-vascular disease. This review summarizes the evidence that lipoproteins (LDL-C, HDL-C, TG, RLPs, Lp(a)) are associated with residual risk of cardiovascular disease.
文章引用:吴美霞, 李蓉. 脂蛋白与心血管疾病残余风险的研究现状[J]. 临床医学进展, 2023, 13(6): 9211-9216. https://doi.org/10.12677/ACM.2023.1361290

1. 引言

动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease, ASCVD)与心血管事件风险增加密切相关,虽然ASCVD预后已显著改善,但仍是全球患病率、死亡率最高的疾病 [1] 。动脉粥样硬化的危险因素包括血脂异常、高血压、糖尿病和吸烟等。在众多危险因素中,控制LDL-C是目前抑制动脉粥样硬化最为有效的手段。已证实血脂异常是ASCVD发生发展的核心致病危险因素,血脂升高者ASCVD发病风险显著增加 [2] 。Khetarpal等 [3] 将LDL-C控制在目标水平后患者仍出现心血管事件的风险定义为残余风险。目前主要通过生活方式的干预和传统危险因素的控制来降低心血管病风险。近年来尽管对传统危险因素进行控制或给予最佳的药物治疗心血管病的防治取得了显著成效,虽然残余心血管风险(residual cardiovascular risk, RCVR)的风险涉及多个方面,其中血脂指标在ASCVD中扮演着重要的角色。

2. 低密度脂蛋白胆固醇与心血管疾病残余风险

基于血液胆固醇增加(尤其是低密度脂蛋白中的胆固醇)与ASCVD发病率和死亡率之间的明确关系,目前的治疗指南侧重于降低LDL-C浓度以降低ASCVD风险 [4] [5] 。然而,许多关于他汀类药物、非他汀类药物和联合治疗的临床试验显示,尽管积极降低LDL-C,但仍存在持续的残余ASCVD风险 [6] [7] [8] 。

一项针对18,924例急性冠脉综合征(acute coronary syndrome, ACS)患者进行中位随访2.8年的研究 [9] ,首次以LDL-C < 15 mg/dL作为阈值调整降脂药物的使用,通过阿利西尤单抗大幅降低LDL-C水平,从而显著降低ACS患者的全因死亡以及主要不良心脏事件(major adverse cardiovascualr event, MACE)的风险。

前蛋白转化酶枯草溶菌素9 (proprotein conver-tase subtilisin/kexin type 9, PCSK9)在LDL代谢中的作用于2003年由Abifadel [10] 等人首次描述,PCSK9功能突变与常染色体显性遗传性家族性高胆固醇血症(FH)有关。随后证实,功能丧失的PCSK9突变与LDL-C暴露减少和冠心病风险降低相关 [11] 。这为评估PCSK9抑制对冠心病风险的影响的大规模临床研究奠定了基础。在一项对4465名高危患者进行的随机开放研究中 [12] ,OSLER-1和OSLER-2试验测试了PCSK9单抗与标准治疗相比降低LDL的效果,结果显示,LDL显著降低了61%。FOURIER试验是一个检查PCSK9抑制的心血管结果的大规模随机临床试验。研究显示在volocumab组中,LDL-C降低了59%,主要综合结果(心血管性死亡、心肌梗死、中风、不稳定心绞痛或冠状动脉血运重建)绝对风险降低了1.5%,从而确立了PCSK9单抗是一种有效的治疗方法,可以减少高危患者中由LDL-C介导的残余冠心病风险 [8] 。长期的血脂干预临床研究表明,降低心血管事件风险与LDL-C绝对减少值呈正相关。

以上研究证实,针对ASCVD人群将LDL-C水平进一步降低,可带来显著临床获益,为血脂指南的更新提供了有力证据,目前LDL-C仍是ASCVD风险防控的首要靶标。

3. 高密度脂蛋白胆固醇与心血管疾病残余风险

高密度脂蛋白胆固醇(high-density lipoprotein cholesterol, HDL-C)具有动脉粥样硬化保护作用。HDL-C参与胆固醇的反向运输,并具有抗氧化、抗炎和抗血栓的特性 [13] 。随着对HDL拮抗动脉粥样硬化的众多机制的认识,进一步的研究试图确定HDL是否真的具有动脉粥样硬化保护作用,以及提高其血清浓度是否降低冠心病的风险,但结果相互矛盾。

根据目前广泛公布的心血管危险模型,表明HDL-C与冠心病风险呈负相关。低水平HDL-C一直被认为与心血管不良事件的风险增加相关 [14] 。但孟德尔随机试验并未揭示HDL-C和心血管疾病之间的因果关系 [15] 。临床试验发现烟酸或胆固醇酯转移蛋白(cholesteryl ester transfer protein, CETP)抑制剂虽然能提高HDL-C的水平,但并不能降低患者心血管事件的风险 [16] [17] 。有研究表明,HDL-C与全因死亡的关系并非呈线性,而是呈“U”形,过高或过低的HDL-C水平均与全因死亡风险增加相关 [18] 。HDL具有很大的异质性,除了调节脂质代谢和脂质运输外,HDL还参与抗炎、止血、抗氧化等活动,分别与不同的蛋白质有关,故单纯提高HDL水平并不能实现临床获益 [19] 。

虽然低HDL-C水平是一个心血管事件风险的有力预测因素,但以HDL为靶点的心血管治疗策略,更可行的方向是确定具有抗动脉粥样硬化功能以及导致HDL功能失调的成分,并最终通过调节这些组分发挥治疗作用。

4. 甘油三酯和残余脂蛋白与心血管疾病残余风险

血浆甘油三酯在乳糜粒和极低密度脂蛋白(VLDL)中携带,统称为富含甘油三酯脂蛋白(triglyceride- rich lipoproteins, TGRL)。甘油三酯不溶于水,它们必须通过脂蛋白在血清中运输,而乳糜粒和极低密度脂蛋白颗粒通常太大而不能穿过内皮,然在高甘油三酯状态下,残余脂蛋白(Remnant lipoproteins, RLP)由外源性乳糜粒或内源性VLDL水解而产生,具有相对较长的血浆停留时间,提供了更长的进入内皮下间隙的机会,导致促炎环境,从而增强黏附分子的表达、泡沫细胞的形成和平滑肌细胞的毒性 [20] 。与这些发现一致,RLP已在几个大型观察性联合研究中被证明是一个原因和独立的CHD危险因素,孟德尔随机研究进一步证实了这一点 [21] [22] 。来自10个干预试验的他汀类药物治疗患者的冠状动脉动脉粥样硬化和临床事件的评估中 [23] ,治疗中较高的RLP-C浓度与24个月后冠状动脉粥样硬化的更大进展和ASCVD事件的累积发生率增加显著相关。这些结果与另一项报告RLP-C与冠状动脉总斑块负荷的关系的研究是一致的 [24] 。

在大多数随机的他汀类试验中,MIRACL、Dal-Results [25] 、Ideal和TNT [26] [27] 等研究表明,甘油三酯水平升高与心血管风险增加有关。在TNT和IDEAL试验中,甘油三酯浓度为≥150 mg/dL与发生急性心肌梗死事件的高风险相关。试验显示阿托伐他汀80 mg/天与中等剂量他汀类药物治疗(IDEAL为辛伐他汀20至40 mg/天,TNT为10 mg/天)在冠心病或心肌梗死病史患者中,结果是在试验第一年之后发生的MACE。在调整年龄、性别和研究后,MACE的风险随着TG的增加而增加(p < 0.001),患者的MACE发生率比最低五分位数的患者高63%。此外,参与TGRL代谢的基因变异,即LPL和那些调节LPL功能的基因,也与ASCVD有关:LPL功能丧失和错义致病变异的杂合子携带者甘油三酯浓度更高,冠心病的风险增加 [28] 。ApoA5基因变异使甘油三酯浓度增加16%,与CHD风险增加相关 [29] 。

流行病学和遗传学研究确定TRL及其残余物是ASCVD的重要贡献者,尽管他汀类药物和其他降低低密度脂蛋白的治疗减少了ASCVD事件,但复发事件仍有相当大的残余风险。此外,基因研究为降低血清甘油三酯提供了新的治疗靶点,还需要进行临床试验来测试它们对心血管结果的影响。

5. 脂蛋白a与心血管疾病残余风险

目前大规模遗传学及人群队列研究均证实脂蛋白a (Lipoprotein(a), Lp(a))显著增加ASCVD风险。在一项对63,746名已知冠心病患者和130,681名对照组的研究中,全基因组关联分析揭示了与CHD最有效的遗传关联是LPA基因;LPA基因是一种比与低密度脂蛋白或任何其他与脂质代谢或炎症相关的基因变异更有效的单基因风险标记 [30] 。

同时,有关Lp(a)与ASCVD关系在循证证据中亦得到验证。一项包括36项前瞻性研究的荟萃分析发现,Lp(a)浓度与冠心病风险之间存在显著关联 [31] 。Khera [32] 等人通过纳入他汀类药物用于一级预防的论证:评价瑞舒伐他汀的干预性试验人群进行研究,发现在接受瑞舒伐他汀治疗使LDL-C水平显著降低后,Lp(a)水平每增加1个标准差,心血管疾病发病风险增加27%。在JUPITER试验中,应用瑞舒伐他汀的3877例ASCVD患者LDL-C控制在55.0 mg/dl及Lp(a) > 21 mg/dl的患者发生MACE的风险高达71%。在代谢综合征伴低高密度脂蛋白/高甘油三酯动脉粥样硬化血栓形成干预和对全球健康结局的影响研究中 [33] ,应用烟酸的1427例ASCVD患者中,在LDL-C达到65.2 mg/dl,Lp(a) > 50 mg/dl显著增加MACE的发生风险。由此可见,在他汀治疗LDL-C水平得到控制后,Lp(a)升高是主要的ASCVD残留风险。因此降低Lp(a)水平可能会带来一定的临床获益。而生活方式干预和已获批的药物均不能显著降低Lp(a)水平,且目前尚无特异性降低Lp(a)水平的药物获批。

6. 结语

流行病学和遗传学研究以及随机临床试验的累积证据表明,残余脂蛋白、Lp(a)与已经接受他汀类药物治疗的个体的ASCVD风险相关。就目前的研究来看,只把降脂治疗的重点放在LDL-C上似乎已经无法满足改善CAD患者预后及预防不良心脑血管事件发生的需求。non-HDLC、ApoB、脂蛋白(a)等指标更能在深层次上反应患者的预后状况及发病风险。许多药理药物的开发已经取得了很大的进展,以对抗这些危险因素,但也有一些值得注意的失败和成功。需要进一步的研究,以更全面地描述残留风险的来源,并实施有效的预防性治疗。

参考文献

[1] Arnett, D.K., Blumenthal, R.S., Albert, M.A., et al. (2019) 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Associa-tion Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology, 74, 1376-1414.
https://doi.org/10.1016/j.jacc.2019.03.009
[2] Jacobson, T.A., Ito, M.K., Maki, K.C., et al. (2015) National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 1—Full Report. Journal of Clin-ical Lipidology, 9, 129-169.
https://doi.org/10.1016/j.jacl.2015.02.003
[3] Khetarpal, S.A. and Rader, D.J. (2015) Triglyceride-Rich Lipopro-teins and Coronary Artery Disease Risk: New Insights from Human Genetics. Arteriosclerosis, Thrombosis, and Vas-cular Biology, 35, e3-e9.
https://doi.org/10.1161/ATVBAHA.114.305172
[4] Grundy, S.M., Stone, N.J., Bailey, A.L., Beam, C., Birtcher, K.K., Blumenthal, R.S., et al. (2019) 2018 AHA/ACC/ AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cho-lesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology, 73, e285-e350.
https://doi.org/10.1016/j.jacc.2018.11.003
[5] Mach, F., Baigent, C., et al. (2019) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Man-agement of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). European Heart Journal, 41, 111-188.
[6] Baigent, C., Blackwell, L., Emberson, J., Holland, L.E., Reith, C., Bhala, N., et al. (2010) Efficacy and Safety of More Intensive Lowering of LDL Cholesterol: A Meta-Analysis of Data from 170,000 Participants in 26 Randomised Trials. Lancet, 376, 1670-1681.
https://doi.org/10.1016/S0140-6736(10)61350-5
[7] Cannon, C.P., Blazing, M.A., Giugliano, R.P., McCagg, A., White, J.A., Theroux, P., et al. (2015) Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. The New England Journal of Medicine, 372, 2387-2397.
https://doi.org/10.1056/NEJMoa1410489
[8] Sabatine, M.S., Giugliano, R.P., Keech, A.C., Honarpour, N., Wiv-iott, S.D., Murphy, S.A., et al. (2017) Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. The New England Journal of Medicine, 376, 1713-1722.
https://doi.org/10.1056/NEJMoa1615664
[9] Maki, K.C. (2018) The ODYSSEY Outcomes Trial: Clinical Impli-cations and Exploration of the Limits of What Can Be Achieved through Lipid Lowering. Journal of Clinical Lipidology, 12, 1102-1105.
https://doi.org/10.1016/j.jacl.2018.05.016
[10] Abifadel, M., Varret, M., Rabès, J.P., Allard, D., Ouguerram, K., Devillers, M., et al. (2003) Mutations in PCSK9 Cause Autosomal Dominant Hypercholesterolemia. Nature Genetics, 34, 154-156.
https://doi.org/10.1038/ng1161
[11] Cohen, J.C., Boerwinkle, E., Mosley, T.H. and Hobbs, H.H. (2006) Sequence Variations in PCSK9, Low LDL, and Protection against Coronary Heart Disease. The New England Journal of Medicine, 354, 1264-1272.
https://doi.org/10.1056/NEJMoa054013
[12] Sabatine, M.S., Giugliano, R.P., Wiviott, S.D., Raal, F.J., Blom, D.J., Robinson, J., et al. (2015) Efficacy and Safety of Evolocumab in Reducing Lipids and Cardiovascular Events. The New England Journal of Medicine, 372, 1500-1509.
https://doi.org/10.1056/NEJMoa1500858
[13] Toth, P.P., Barter, P.J., Rosenson, R.S., Boden, W.E., Chapman, M.J., Cuchel, M., et al. (2013) High-Density Lipoproteins: A Consensus Statement from the National Lipid Association. Journal of Clinical Lipidology, 7, 484-525.
https://doi.org/10.1016/j.jacl.2013.08.001
[14] Di Angelantonio, E., Sarwar, N., Perry, P., et al. (2009) Major Li-pids, Apolipoproteins, and Risk of Vascular Disease. JAMA, 302, 1993-2000.
https://doi.org/10.1001/jama.2009.1619
[15] Voight, B.F., Peloso, G.M., Orho-Melander, M., et al. (2012) Plasma HDL Cholesterol and Risk of Myocardial Infarction: A Mendelian Randomisation Study. Lancet, 380, 572-580.
https://doi.org/10.1016/S0140-6736(12)60312-2
[16] Boden, W.E., Probstfield, J.L., Anderson, T., et al. (2011) Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. The New England Journal of Medicine, 365, 2255-2267.
https://doi.org/10.1056/NEJMoa1107579
[17] Schwartz, G.G., Olsson, A.G., Abt, M., et al. (2012) Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome. The New England Journal of Medicine, 367, 2089-2099.
https://doi.org/10.1056/NEJMoa1206797
[18] Madsen, C.M., Varbo, A. and Nordestgaard, B.G. (2017) Extreme High High-Density Lipoprotein Cholesterol Is Paradoxically Associated with High Mortality in Men and Women: Two Prospective Cohort Studies. European Heart Journal, 38, 2478-2486.
https://doi.org/10.1093/eurheartj/ehx163
[19] Rohatgi, A., Westerterp, M., von Eckardstein, A., et al. (2021) HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation, 143, 2293-2309.
https://doi.org/10.1161/CIRCULATIONAHA.120.044221
[20] Yu, K.C. and Cooper, A.D. (2001) Postprandial Lipoproteins and Atherosclerosis. Frontiers in Bioscience, 6, 332-354.
https://doi.org/10.2741/Yu
[21] Balling, M., Afzal, S., Varbo, A., Langsted, A., Smith, G.D. and Nordestgaard, B.G. (2020) VLDL Cholesterol Accounts for One-Half of the Risk of Myocardial Infarction Associated with apoB-Containing Lipoproteins. Journal of the American College of Cardiology, 76, 2725-2735.
https://doi.org/10.1016/j.jacc.2020.09.610
[22] Joshi, P.H., Khokhar, A.A., Massaro, J.M., Lirette, S.T., Griswold, M.E., Martin, S.S., et al. (2016) Remnant Lipoprotein Cholesterol and Incident Coronary Heart Disease: The Jackson Heart and Framingham Offspring Cohort Studies. Journal of the American Heart Association, 5, e002765.
https://doi.org/10.1161/JAHA.115.002765
[23] Elshazly, M.B., Mani, P., Nissen, S., et al. (2020) Remnant Cho-lesterol, Coronary Atheroma Progression and Clinical Events in Statintreated Patients with Coronary Artery Disease. European Journal of Preventive Cardiology, 27, 1091-1100.
https://doi.org/10.1177/2047487319887578
[24] Lin, A., Nerlekar, N., Rajagopalan, A., et al. (2019) Remnant Cholesterol and Coronary Atherosclerotic Plaque Burden As-sessed by Computed Tomography Coronary Angiography. Atherosclerosis, 284, 24-30.
https://doi.org/10.1016/j.atherosclerosis.2019.02.019
[25] Schwartz, G.G., Abt, M., Bao, W., et al. (2015) Fasting Triglycerides Predict Recurrent Ischemic Events in Patients with Acute Coronary Syndrome Treated with Statins. Journal of the American College of Cardiology, 65, 2267-2275.
https://doi.org/10.1016/j.jacc.2015.03.544
[26] Faergeman, O., Holme, I., Fayyad, R., et al. (2009) Plasma Tri-glycerides and Cardiovascular Events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering Trials of Statins in Patients with Coronary Artery Disease. The American Journal of Cardi-ology, 104, 459-463.
https://doi.org/10.1016/j.amjcard.2009.04.008
[27] Vallejo-Vaz, A.J., Fayyad, R., Boekholdt, S.M., et al. (2018) Triglyceride Rich Lipoprotein Cholesterol and Risk of Cardiovascular Events among Patients Receiving Statin Therapy in the TNT Trial. Circulation, 138, 770-781.
https://doi.org/10.1161/CIRCULATIONAHA.117.032318
[28] Khera, A.V., Won, H.H., Peloso, G.M., et al. (2017) Association of Rare and Common Variation in the Lipoprotein Lipase Gene with Coronary Artery Disease. JAMA, 317, 937-946.
https://doi.org/10.1001/jama.2017.0972
[29] Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration, Sarwar, N., Sandhu, M.S., Ricketts, S.L., et al. (2010) Triglyceride-Mediated Pathways and Coronary Disease: Collaborative Analysis of 101 Studies. Lancet, 375, 1634-1639.
https://doi.org/10.1016/S0140-6736(10)60545-4
[30] Deloukas, P., Kanoni, S., Willenborg, C., Farrall, M., As-simes, T.L., Thompson, J.R., et al. (2013) Large-Scale Association Analysis Identifies New Risk Loci for Coronary Ar-tery Disease. Nature Genetics, 45, 25-33.
https://doi.org/10.1038/ng.2480
[31] Erqou, S., Kaptoge, S., Perry, P.L., Di Angelantonio, E., Thompson, A., White, I.R., et al. (2009) Lipoprotein(a) Concentration and the Risk of Coronary Heart Disease, Stroke, and Nonvascular Mortality. JAMA, 302, 412-423.
https://doi.org/10.1001/jama.2009.1063
[32] Khera, A.V., Everett, B.M., Caulfield, M.P., et al. (2014) Lipoprotein (a) Concentrations, Rosuvastatin Therapy, and Residual Vascular Risk: An Analysis from the JUPITER Trial (Justifica-tion for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin). Circulation, 129, 635-642.
https://doi.org/10.1161/CIRCULATIONAHA.113.004406
[33] Albers, J.J., Slee, A., O’Brien, K.D., et al. (2013) Relationship of Apolipoproteins A-1 and B, and Lipoprotein(a) to Cardiovascular Outcomes: The AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). Journal of the American College of Cardiology, 62, 1575-1579.
https://doi.org/10.1016/j.jacc.2013.06.051