干细胞外泌体在阿尔茨海默病中的研究进展
Research Progress of Stem Cell Exosomes in Alzheimer’s Disease
DOI: 10.12677/BP.2023.132013, PDF, HTML, XML, 下载: 239  浏览: 670  国家科技经费支持
作者: 古良康, 戴晓雨, 徐志国:湖州学院生命健康学院,浙江 湖州
关键词: 阿尔茨海默病间充质干细胞外泌体药物递送系统 Alzheimer’s Disease Mesenchymal Stem Cells Exosomes Drug Delivery Systems
摘要: 阿尔茨海默病(Alzheimer’s Disease, AD)是一种病理机制复杂、以进行性认知功能障碍为主的中枢神经系统疾病,目前仍缺乏有效的治疗方法。间充质干细胞(Mesenchymal Stem Cells, MSCs)外泌体已被证实促进抗炎和Aβ降解,针对AD的病理生理分子机制特征从根本上改善AD症状,因其尺寸、形状、材料等特殊性,视为药物递送系统软纳米颗粒候选载体,有助于解决生物利用度问题,有效改善药物药动学和药效学性能。本文主要介绍AD病理研究最新进展、外泌体抑制Aβ蛋白表达水平方式及药物新型运输载体传递系统构建前沿,为AD治疗提供新的视角。
Abstract: Alzheimer’s Disease (AD) is a central nervous system disease with a complex pathological mechanism and progressive cognitive dysfunction, and there is still no effective treatment. Mesenchymal Stem Cells (MSCs) exosomes promote anti-inflammatory, accelerate Aβ degradation, and achieve therapeutic effects for the pathological characteristics of AD, and can be used as nano-drug delivery systems to effectively solve the problem of bioavailability and improve drug pharmacokinetics and pharmacodynamic properties due to their size, shape, material and other particularities. This article mainly introduces the latest progress in AD pathology research and the attempts of exosomes to improve Aβ clearance to construct a drug delivery system, which provides a new perspective for AD treatment.
文章引用:古良康, 戴晓雨, 徐志国. 干细胞外泌体在阿尔茨海默病中的研究进展[J]. 生物过程, 2023, 13(2): 91-97. https://doi.org/10.12677/BP.2023.132013

1. 引言

随着社会老龄化日益加速,人均寿命逐渐提高,神经退行性疾病日渐成为威胁人类生命健康的重要疾病。在各类神经退行性疾病中,阿尔茨海默症(Alzheimer’s Disease, AD)是威胁老年人认知功能及社会工作能力最主要的疾病,全球老年人口中的患病率正在大幅上升,根据《世界阿尔茨海默病报告》,全球有4680万阿尔茨海默病患者,随着人口老龄化加剧,预计到2050年这一数字将增加两倍 [1] 。

目前,普遍认为,阿尔茨海默症的病理特征为β淀粉样蛋白(β-amyloidpeptide, Aβ)1-42的生成及其所致的老年斑沉积和tau蛋白过度磷酸化诱发的神经元纤维缠结 [2] [3] ,另外肠道微生物 [4] [5] 和氧化应激假说 [6] 等新方向也受到广泛关注。阿尔茨海默病患者完全依赖护理人员,需承担高昂的治疗费用,增加了家庭和社会的经济负担。干细胞治疗干预和纳米载体技术为控制AD症状及后续治疗提供了可供期待的新方向 [7] 。

越来越多的研究认为,MSCs外泌体是行使细胞治疗功能、实现远端细胞交互作用的重要细胞学基础。理解MSCs外泌体对AD动物模型的治疗效应及相关的生物学机制能够为未来神经退行性疾病的新药开发及相关分子靶点的选择提供新的理论依据。现就近年来AD发病机制的研究和外泌体在AD治疗中的作用进行综述,为AD的预防、早期诊断和治疗提供依据。

2. 阿尔茨海默病的研究进展

AD的病因极其复杂,普遍认为,AD是多种危险因素协同导致,包括年龄、家族史、遗传背景、教育和脑损伤。其分类多种,根据发病年龄,AD通常分为早发性AD (EOAD,发病 < 65岁)和晚发性AD (LOAD,发病 ≥ 65岁) [8] 。

其病理生理的标志是神经毒性免疫炎症和细胞毒性蛋白聚积,导致伴随的、平行的、相互关联的免疫病变和蛋白质病变。现AD发病机制的研究主要集中在诱导转座因子、肠道微生物、淀粉样级联、tau蛋白、神经炎症、金属离子、氧化应激假说等方面,氧化应激是连接AD不同假说和机制的桥梁,作为神经系统疾病的关键治疗靶点,或可成为AD发病机制的一个重要因素。

Bai等 [9] 认为,AD是一个导致神经元损伤的过程,并在各种途径中发生,氧化应激在AD中起着至关重要的作用,Briyal等 [10] 提到,氧化应激在激活神经系统疾病进展和启动多种细胞信号通路中起着关键作用。Ho等 [11] 认为,可能导致AD的致病因素包括铜代谢障碍以及氧化应激的增加,这与分子抗氧化剂如谷胱甘肽(Glutathione, GSH)的改变有关。肠道微生物对AD发病存在作用,Susmitha [12] 指出,肠道内的微生物种群发生变化,肠道生态失调通过分泌几种代谢物促进AD的发展,通过健康个体的粪便逆转AD相关的肠道生态失调,可缓解AD相关的病理特征。除氧化应激和肠道微生物的影响外,近年来其他发病因素也受到广泛关注,Lauretti等 [13] 提出,基因表达中ncRNA、淀粉样蛋白-β产生、tau磷酸化是主要核心机制。据报道,神经节苷类物质参与阿尔茨海默病发病机制 [14] ,Evering等 [15] 提出,炎症、突触可塑性和神经元存活都被认为是AD发病机制的关键点,通过小胶质细胞和星形胶质细胞诱导转座因子转录,对tau蛋白的异常存在做出反应。

作为一种极其复杂的疾病,目前并无有效的药物来减缓或预防AD的进展,处方药物只能控制症状、延缓疾病进展和减轻不适。目前,美国FDA批准的AD治疗药物只有4种(卡巴拉汀、加兰他敏、多奈哌齐和美金刚),其中3种(卡巴拉汀、加兰他敏和美元刚)是胆碱酯酶抑制剂,美金刚靶点是NMDA受体 [16] ,这些药物的疗效有限且因人而异 [17] 。据报道,有126种药物正在进行临床试验,其中大部分针对Aβ代谢、tau、炎症、神经递质受体、突触可塑性等,在这些干预措施中,越来越多的药物是从淀粉样蛋白和tau病理以外的角度设计的 [18] 。此外,一些其他药物试图通过调节代谢、表观遗传变化、血管系统、神经发生以及蛋白质稳态等信号通路间接抑制AD发病 [18] [19] ,这些新观点从多个方面和视角对AD治疗进行了相关的尝试,逐渐成为未来AD治疗的潜在方法。纳米技术的进步在一定程度上缓解了阿尔茨海默症的症状,但仍难以找到确切的治疗方法,外泌体起源于各种类型的细胞和组织,其构建的药物新型运输载体可在AD治疗中发挥重要作用。

3. 干细胞外泌体的生物学特性

外泌体是40~130 nm的胞外膜囊泡,内吞起源,它们广泛存在于几乎所有的生物液体中,包括血浆、尿液、唾液、母乳、支气管肺泡灌洗液和细胞预处理培养基 [20] 。外泌体是细胞释放的微小粒子,是具有双层脂膜结构的微型胞外囊泡,根据国际细胞外囊泡学会(International Society for Extracellular Vesles, ISEV)的严格标准化声明,依据大小和生物发生机制,细胞外囊泡(Extracellular Vesle, EV)通常分为三种亚型:外泌体(Exosomes, 50~150 nm)、微囊泡(Microvesles, 100~1000 nm)和凋亡小体(Apoptosis Body, 500~5000 nm) [21] 。外泌体在旁分泌、内分泌过程和遗传信息交换中发挥着重要作用,表面上由多个粘附蛋白的细胞膜组成,是有效的药物载体。外泌体由多泡体和质膜结合形成的纳米级小生物囊泡熔断并释放到周围的体液中,可通过短距离和远距离传递各种生物分子,包括DNA、RNA、蛋白质和脂质,调节细胞间的通信 [22] 。

间充质干细胞(Mesenchymal Stem Cells, MSCs)是一种多组织来源的多能干细胞,可从脐带、脂肪组织、骨髓和牙龈组织中获得 [23] 。MSCs已被用于神经损伤和神经退行性疾病的治疗,其潜在机制涉及旁分泌因子增加、促进组织修复,通过旁分泌将生长因子、细胞因子、细胞外囊泡等一系列信号物质传递到体内。其中,MSCs衍生的外泌体作为细胞间信息传递的重要媒介,参与了许多生物和病理过程,为开发新的无细胞治疗方法提供了机会,例如Valerio [24] 等通过处理神经干细胞来源的外泌体,使其诱导并产生神经元相关的生物学标记物,通过标记物可以更加明晰药物靶点位置,达到高效治疗的效果。外泌体具有高效药物传递、较高生物相容性、易于穿越生理障碍和轻微副作用等天然特性,缩短了其临床转译的途径,在临床应用中具有多种方式,例如RNA干扰(RNAi)治疗、药物传输,以及作为疾病的生物学检验标志,MSCs具备了多种组织类型分化功能,同时也是治疗神经精神类疾病包括中风后脑功能失调、视网膜缺血、帕金森病及脊髓损伤等疾病的潜在生物资源 [25] [26] [27] [28] 。

4. 干细胞外泌体在AD治疗中的作用

4.1. Aβ沉积清除

脑内淀粉样β (Aβ)的积累被认为是阿尔茨海默病(AD)进展的主要病理改变之一 [29] 。外泌体通过恢复神经元功能或提高Aβ寡聚体(Aβoligomers, Aβ)的清除率 [30] ,以多种介导分子的方式对AD进行治疗。Chen等 [31] 在实验研究中,提取骨髓MSCs外泌体,纯化后将外泌体加入包括单核细胞在内的血液微环境中,经过检测发现,外周血所处环境中促炎细胞因子TNF-α、IL-1的含量明显减少,而生长因子及抗炎细胞因子(IL-4、IL-10)含量显著增加。结果表明,MSCs外泌体在体内环境中产生明显抗炎作用,减轻由Aβ寡聚体沉积产生的炎症反应,避免神经细胞变性坏死,达到减缓病程进展的效果。Yuyama等 [32] 发现,减少中性鞘磷脂酶-2 (Neutral Sphingomyelin-2, nSMase-2)的含量可以减弱AD患者病理性细胞的分泌功能,通过拮抗nSMase-2的合成,使得病理性外泌体减少,最终达到降低脑中Aβ含量的目的。研究显示,其周围的小胶质细胞将这些纤维组织摄取后,胞内的溶酶体进行分化降解,使Aβ的含量减少,而MSCs外泌体能促进整个降解过程加速运转。Yuyama等 [33] 在另一项实验中,将小干扰RNA (Small Interfering RNA, siRNA)序列转入正常神经元后,检测到神经元外泌体分泌增加,Aβ清除量增加,达到延缓AD病程进展效果,同时外泌体表面富含鞘糖脂,能促进Aβ与外泌体相互结合,拥有这一特性使得外泌体能够成为Aβ有效的吸附载体,加速移除体内的Aβ。

有研究发现,在正常人体内,脑组织中最能有助于分解吸收Aβ的是被命名为脑啡肽的酶 [34] 。脑啡肽酶NEP (Neprilysin, NEP)是一种有效降解aβ的锌金属肽酶,是一种内源性酶,在aβ降解中起限速作用,它的缺失使大脑中aβ水平增加2倍且随年龄的增长,体内NEP的水平和活性逐渐降低,这表明NEP参与AD病理,在aβ的清除中发挥重要作用 [35] 。Zhang等 [36] 将符合条件的研究汇总进行meta分析,得出在AD患者的大脑皮层中NEP的表达和活性显著改变,NEP参与这种神经退行性疾病,老年AD患者NEP功能下降更为明显,提示NEP这种aβ降解酶在AD的发病机制中发挥潜在作用。Li等 [37] 开发了一种物理的、可处理的经超声结合微泡的NEP基因递送系统用于AD治疗。将质粒hNEP (Human NEP, hNEP)导入6个月大的淀粉样前体蛋白/早老素-1 (APP/PS1) AD小鼠骨骼肌,发现将过表达的hNEP注入骨骼肌后1个月,脑内的Aβ负荷显著降低。此外,与未处理的AD小鼠相比,经hnep处理的AD小鼠在Morris水迷宫中的表现有所改善。实验表明,向高表达Aβ相关蛋白的AD模型细胞所处环境中加入脂肪MSCs外泌体后,细胞内与周边环境中能检测到的Aβ含量明显下降,而脂肪MSCs外泌体的特点之一是富含超过平均水平的脑啡肽酶 [38] 。综上所述,脂肪MSCs外泌体在分解Aβ方面能发挥重要作用,Aβ沉积正是AD病理改变的核心机制之一,其治疗AD的潜能得以检验。

4.2. 外泌体作为纳米药物递送系统

将药物、蛋白或基因高效且安全地递送到治疗部位一直是药学研究热点。近年来,纳米技术蓬勃发展,特别是新型纳米材料的出现为许多重大疾病治疗提供了新思路、新方法 [39] 。与传统药物递送系统相比,纳米药物递送系统因其高效、作用力强、靶点精准等特殊性,可有效改善药物的药代动力学和药效学性能,提高疗效。

Wang等 [40] 研究开发基于中性粒细胞来源外泌体的炎症刺激反应肿瘤靶向纳米载体,用于抗胶质瘤治疗,作为天然的细胞外囊泡,中性粒细胞外泌体药物递送系统(Neutrophil-Exosomes, NEs-Exos)主要通过网格蛋白的内吞作用有效内化到细胞中,并证实NEs-Exos具有血脑屏障穿透能力。Gao等 [41] 提出,中性粒细胞膜制成的纳米囊泡,可以特异性地靶向炎症组织,在纳米囊泡表面装载消退素RvD1,并在纳米囊泡内装载抗生素(头孢他啶),治疗细菌感染,在细菌诱导腹膜炎的小鼠模型中,证明了人中性粒细胞细胞膜形成的囊泡(NMVs)在共同递送RvD1和CEF后增强了炎症消退和细菌杀灭。由此可知,中性粒细胞膜衍生的纳米囊泡可能是治疗传染病的新型药物递送系统。Wang等 [42] 将外泌体进行特殊药物载体设计,从姜黄素处理的细胞中提取外泌体,外泌体携带姜黄素透过AD小鼠模型血脑屏障抑制tau蛋白高磷酸化,改善AD小鼠脑部神经病理学及认知功能障碍而达到治疗效果。Fayazi等 [43] 提出将干细胞来源的外泌体固有特性与靶向性修饰相结合,修饰干细胞来源外泌体表面或分子间内容,在特定目的需要时可提高归巢能力和治疗潜力,在未来可有效治疗神经退行性疾病。

现多数研究致力阐明AD病理机制,从而探索关键靶点并开发有效的疾病修饰治疗方法,Xi等 [44] 从靶向小胶质细胞治疗AD的纳米医学、靶向Aβ治疗AD的纳米药物、靶向tau的纳米医学用于AD治疗及金属离子螯合纳米材料在AD上的应用等方向进行了有益探索。利用间充质干细胞衍生的外泌体内在生物优势,激发相应纳米尺度工具长处,可基于纳米技术和生物技术组合生产用于临床的高效生物化合物。

5. 总结与展望

MSCs外泌体能在AD病理关键环节产生较好疗效,具有促进脑内沉积的Aβ降解,保护神经细胞及突触不受炎症反应损伤,低免疫原性、高生物相容性和高给药效率等优点。相关研究现状表明,外泌体结合纳米技术构建药物传递系统亦表现了不可忽视的影响力。然而,如何有效地将药物装载到外泌体上,并高度特异性针对靶细胞发挥外泌体功能仍是目前靶向治疗面临的挑战,鉴于细胞间外泌体分泌和传递机制复杂性,未来研究重心仍应放在外泌体对AD治疗的安全性和有效性上。不可否认的是,外泌体在AD诊断和治疗方面具有广阔前景,随着对MSCs进一步研究,以及其他分子生物学手段日趋成熟,将MSCs外泌体结合基因编辑、化学生物修饰和纳米材料等的新型技术手段有望进一步优化。

基金项目

浙江省重点高新技术产品开发项目(浙经信技术[2017] 290号第40号);国家级大学生创新训练项目(NO. 202213287003);大学生创新创业训练计划项目(2022CXCY22、2023CXCY98)。

NOTES

*通讯作者。

参考文献

[1] Tremblay-Mercier, J., Madjar, C., Das, S., et al. (2021) Open Science Datasets from PREVENT-AD, a Longitudinal Cohort of Pre-Symptomatic Alzheimer’s Disease. NeuroImage: Clinical, 31, Article ID: 102733.
https://doi.org/10.1016/j.nicl.2021.102733
[2] Jeremic, D., Jiménez-Díaz, L. and Navarro-López, J.D. (2021) Past, Present and Future of Therapeutic Strategies against Amyloid-β Peptides in Alzheimer’s Disease: A Systematic Review. Ageing Research Reviews, 72, Article ID: 101496.
https://doi.org/10.1016/j.arr.2021.101496
[3] Gouilly, D., Rafiq, M., Nogueira, L., et al. (2023) Beyond the Am-yloid Cascade: An Update of Alzheimer’s Disease Pathophysiology. Revue Neurologique.
https://doi.org/10.1016/j.neurol.2022.12.006
[4] Dhami, M., Raj, K. and Singh, S. (2023) Relevance of Gut Mi-crobiota to Alzheimer’s Disease (AD): Potential Effects of Probiotic in Management of AD. Aging and Health Research, 3, Article ID: 100128.
https://doi.org/10.1016/j.ahr.2023.100128
[5] Krishaa, L., Ng, T.K.S., Wee, H.N. and Ching, J. (2023) Gut-Brain Axis through the Lens of Gut Microbiota and Their Relationships With Alzheimer’s Disease Pathology: Review and Recommendations. Mechanisms of Ageing and Development, 211, Article ID: 111787.
https://doi.org/10.1016/j.mad.2023.111787
[6] Wang, Z., Gao, C., Zhang, L. and Sui, R. (2023) Hesperidin Methylchalcone (HMC) Hinders Amyloid-β Induced Alzheimer’s Disease by Attenuating Cholinesterase Activity, Mac-romolecular Damages, Oxidative Stress and Apoptosis via Regulating NF-κB and Nrf2/HO-1 Pathways. International Journal of Biological Macromolecules, 233, Article ID: 123169.
https://doi.org/10.1016/j.ijbiomac.2023.123169
[7] Sethi, B., Kumar, V., Mahato, K., Coulter, D.W. and Mahato, R.I. (2022) Recent Advances in Drug Delivery and Targeting to the Brain. Journal of Controlled Release, 350, 668-687.
https://doi.org/10.1016/j.jconrel.2022.08.051
[8] Zhang, Z., Yang, X., Song, Y.-Q. and Tu, J. (2021) Autophagy in Alzheimer’s Disease Pathogenesis: Therapeutic Potential and Future Perspectives. Ageing Research Reviews, 72, Arti-cle ID: 101464.
https://doi.org/10.1016/j.arr.2021.101464
[9] Bai, R., Guo, J., Ye, X.-Y., Xie, Y. and Tian, X. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619.
https://doi.org/10.1016/j.arr.2022.101619
[10] Briyal, S., Ranjan, A.K. and Gulati, A. (2023) Oxidative Stress: A Target to Treat Alzheimer’s Disease and Stroke. Neurochemistry International, 165, Article ID: 105509.
https://doi.org/10.1016/j.neuint.2023.105509
[11] Ho, T., Ahmadi, S. and Kerman, K. (2022) Do Glutathione and Copper Interact to Modify Alzheimer’s Disease Pathogenesis? Free Radical Biology and Medicine, 181, 180-196.
https://doi.org/10.1016/j.freeradbiomed.2022.01.025
[12] Susmitha, G. and Kumar, R. (2023) Role of Microbial Dysbiosis in the Pathogenesis of Alzheimer’s Disease. Neuropharmacology, 229, Article ID: 109478.
https://doi.org/10.1016/j.neuropharm.2023.109478
[13] Lauretti, E., Dabrowski, K. and Pratico, D. (2021) The Neurobiology of Non-Coding RNAs and Alzheimer’s Disease Pathogenesis: Pathways, Mechanisms and Translational Opportunities. Ageing Research Reviews, 71, Article ID: 101425.
https://doi.org/10.1016/j.arr.2021.101425
[14] Matsuzaki, K. (2022) Aβ-Ganglioside Interactions in the Pathogene-sis of Alzheimer’s Disease. Biochimica et Biophysica Acta (BBA)-Biomembranes, 186, Article ID: 183233.
https://doi.org/10.1016/j.bbamem.2020.183233
[15] Evering, T.H., Marston, J.L., Gan, L. and Nixon, D.F. (2022) Transposable Elements and Alzheimer’s Disease Pathogenesis. Trends in Neurosciences, 46, 170-172.
https://doi.org/10.1016/j.tins.2022.12.003
[16] Long, J.M. and Holtzman, D.M. (2019) Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179, 312-339.
https://doi.org/10.1016/j.cell.2019.09.001
[17] Knight, R., Khondoker, M., Magill, N., et al. (2018) A Systematic Review and Meta-Analysis of the Effectiveness of Acetylcholinesterase Inhibitors and Memantine in Treating the Cogni-tive Symptoms of Dementia. Dementia and Geriatric Cognitive Disorders, 45, 131-151.
https://doi.org/10.1159/000486546
[18] Cummings, J., Lee, G., Zhong, K., Fonseca, J. and Taghva, K. (2021) Alzheimer’s Disease Drug Development Pipeline: 2021. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 7, e12179.
https://doi.org/10.1002/trc2.12179
[19] Hara, Y., Mckeehan, N. and Fillit, H.M. (2019) Translating the Biology of Aging into Novel Therapeutics for Alzheimer Disease. Neurology, 92, 84-93.
https://doi.org/10.1212/WNL.0000000000006745
[20] Xun, C., Ge, L., Tang, F., et al. (2020) Insight into the Proteomic Profiling of Exosomes Secreted by Human OM-MSCs Reveals a New Potential Therapy. Biomedicine & Pharmacotherapy, 131, Article ID: 110584.
https://doi.org/10.1016/j.biopha.2020.110584
[21] Bao, C. and He, C. (2021) The Role and Therapeutic Potential of MSC-Derived Exosomes in Osteoarthritis. Archives of Biochemistry and Biophysics, 710, Article ID: 109002.
https://doi.org/10.1016/j.abb.2021.109002
[22] Chavda, V.P., Pandya, A., Kumar, L., et al. (2023) Exosome Nan-ovesicles: A Potential Carrier for Therapeutic Delivery. Nano Today, 49, Article ID: 101771.
https://doi.org/10.1016/j.nantod.2023.101771
[23] Ding, D.-C., Shyu, W.-C. and Lin, S.Z. (2011) Mesenchymal Stem Cells. Cell Transplant, 20, 5-14.
https://doi.org/10.3727/096368910X
[24] Valerio, L.S.A. and Sugaya, K. (2020) Xeno- and Transgene-Free Re-programming of Mesenchymal Stem Cells toward the Cells Expressing Neural Markers Using Exosome Treatments. PLOS ONE, 15, e0240469.
https://doi.org/10.1371/journal.pone.0240469
[25] Hoban, D.B., Howard, L. and Dowd, E. (2015) GDNF-Secreting Mesenchymal Stem Cells Provide Localized Neuroprotection in an Inflammation-Driven Rat Model of Parkinson’s Disease. Neuroscience, 303, 402-411.
https://doi.org/10.1016/j.neuroscience.2015.07.014
[26] Ji, S., Lin, S., Chen, J., et al. (2018) Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Current Eye Research, 43, 810-820.
https://doi.org/10.1080/02713683.2018.1440604
[27] Mathew, B., Ravindran, S., Liu, X., et al. (2019) Mesen-chymal Stem Cell-Derived Extracellular Vesicles and Retinal Ischemia-Reperfusion. Biomaterials, 197, 146-160.
https://doi.org/10.1016/j.biomaterials.2019.01.016
[28] Wang, L., Pei, S., Han, L., et al. (2018) Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury. Cellular Physiology and Biochemistry, 50, 1535-1559.
https://doi.org/10.1159/000494652
[29] Klein, C., Roussel, G., Brun, S., et al. (2018) 5-HIAA Induces Neprilysin to Ameliorate Pathophysiology and Symptoms in a Mouse Model for Alzheimer’s Disease. Acta Neuropathologica Communications, 6, Article No. 136.
https://doi.org/10.1186/s40478-018-0640-z
[30] Zhang, T., Ma, S., Lv, J., et al. (2021) The Emerging Role of Ex-osomes in Alzheimer’s Disease. Ageing Research Reviews, 68, Article ID: 101321.
https://doi.org/10.1016/j.arr.2021.101321
[31] Chen, W., Huang, Y., Han, J., et al. (2016) Immunomodulatory Ef-fects of Mesenchymal Stromal Cells-Derived Exosome. Immunologic Research, 64, 831-840.
https://doi.org/10.1007/s12026-016-8798-6
[32] Yuyama, K., Sun, H., Mitsutake, S. and Igarashi, Y. (2012) Sphingolipid-Modulated Exosome Secretion Promotes Clearance of Amyloid-β by Microglia. Journal of Biological Chemistry, 287, 10977-10989.
https://doi.org/10.1074/jbc.M111.324616
[33] Yuyama, K., Sun, H., Sakai, S., et al. (2014) Decreased Amyloid-β Pathologies by Intracerebral Loading of Glycosphingolipid-enriched Exosomes in Alzheimer Model Mice. Journal of Bi-ological Chemistry, 289, 24488-24498.
https://doi.org/10.1074/jbc.M114.577213
[34] Yoon, S.S. and Jo, S.-A. (2012) Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer’s Disease. Biomolecules & Therapeutics, 20, 245-255.
https://doi.org/10.4062/biomolther.2012.20.3.245
[35] Nalivaeva, N.N., Zhuravin, I.A. and Turner, A.J. (2020) Neprilysin Expression and Functions in Development, Ageing and Disease. Mechanisms of Ageing and Development, 192, Article ID: 111363.
https://doi.org/10.1016/j.mad.2020.111363
[36] Zhang, H., Liu, D., Wang, Y., et al. (2017) Meta-Analysis of Ex-pression and Function of Neprilysin in Alzheimer’s Disease. Neuroscience Letters, 657, 69-76.
https://doi.org/10.1016/j.neulet.2017.07.060
[37] Li, Y., Wang, Y., Wang, J., et al. (2020) Expression of Nepri-lysin in Skeletal Muscle by Ultrasound-Mediated Gene Transfer (Sonoporation) Reduces Amyloid Burden for AD. Methods & Clinical Development, 17, 300-308.
https://doi.org/10.1016/j.omtm.2019.12.012
[38] Katsuda, T., Tsuchiya, R., Kosaka, N., et al. (2013) Human Adi-pose Tissue-Derived Mesenchymal Stem Cells Secrete Functional Neprilysin-Bound Exosomes. Scientific Reports, 3, Article No. 1197.
https://doi.org/10.1038/srep01197
[39] Meghana, G.S., Gowda, D.V., Chidambaram, S.B. and Osmani, R.A. (2023) Amyloid-β Pathology in Alzheimer’s Disease: A Nano Delivery Approach. Vibrational Spectros-copy, 126, Article ID: 103510.
https://doi.org/10.1016/j.vibspec.2023.103510
[40] Wang, J., Tang, W., Yang, M., et al. (2021) Inflammatory Tu-mor Microenvironment Responsive Neutrophil Exosomes-Based Drug Delivery System for Targeted Glioma Therapy. Biomaterials, 273, Article ID: 120784.
https://doi.org/10.1016/j.biomaterials.2021.120784
[41] Gao, J., Dong, X., Su, Y. and Wang, Z. (2021) Human Neutrophil Membrane-Derived Nanovesicles as a Drug Delivery Platform for Improved Therapy of Infectious Diseases. Acta Biomaterialia, 123, 354-363.
https://doi.org/10.1016/j.actbio.2021.01.020
[42] Wang, H., Sui, H., Zheng, Y., et al. (2019) Curcumin-Primed Exosomes Potently Ameliorate Cognitive Function in Ad Mice by Inhibiting Hyperphosphorylation of the Tau Protein through the AKT/GSK-3β Pathway. Nanoscale, 11, 7481-7496.
https://doi.org/10.1039/C9NR01255A
[43] Fayazi, N., Sheykhhasan, M., Soleimani Asl, S. and Najafi, R. (2021) Stem Cell-Derived Exosomes: A New Strategy of Neuro-degenerative Disease Treatment. Molecular Neurobiology, 58, 3494-3514.
https://doi.org/10.1007/s12035-021-02324-x
[44] Xi, Y., Chen, Y., Jin, Y., et al. (2022) Versatile Nanomaterials for Alzheimer’s Disease: Pathogenesis Inspired Disease-Modifying Therapy. Journal of Controlled Release, 345, 38-61.
https://doi.org/10.1016/j.jconrel.2022.02.034