|
[1]
|
Wei, F.Y., Suzuki, T., Watanabe, S., et al. (2012) Deficit of tRNALys Modification by Cdkal1 Causes the Development of Type 2 Diabetes in Mice. Journal of Clinical Investigation, 121, 3598-3608. [Google Scholar] [CrossRef]
|
|
[2]
|
Cho, N.H., Shaw, J.E., Karuranga, S., Huang, Y., da Rocha Fernandes, J.D., Ohlrogge, A.W. and Malanda, B. (2018) IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Scott, L.J., Mohlke, K.L., Bonnycastle, L.L., et al. (2007) A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Science, 316, 1341-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kono, T., Ahn, G., Moss, D.R., et al. (2012) PPAR-γ Activation Restores Pancreatic Islet SERCA2 Levels and Prevents β-Cell Dysfunction under Conditions of Hyperglyce-mic and Cytokine Stress. Molecular Endocrinology, 26, 257-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ong, S.B., Lee, W.H., Shao, N.Y., et al. (2019) Stem Cell Reports Article Calpain Inhibition Restores Autophagy and Pre-vents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy. Stem Cell Reports, 12, 597-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ahmed, D. and Sharma, M. (2011) Cyclin-Dependent Kinase 5/p35/p39: A Novel and Imminent Therapeutic Target for Diabetes Mellitus. International Journal of Endocrinology, 2011, Article ID: 530274. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yin, X., Warner, D.R., Roberts, E.A., et a1. (2005) Novel Interaction between Nuclear Co-Activator CBP and the CDK5 Activator Binding Protein—C53. International Journal of Molecular Medicine, 16, 251-256. [Google Scholar] [CrossRef]
|
|
[8]
|
Ohara-Imaizumi, M., Yoshida, M., Aoyagi, K., et al. (2010) Deletion of CDKAL1 Affects Mitochondrial ATP Generation and First-Phase Insulin Exocytosis. PLOS ONE, 5, e15553. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Brambillasca, S., Altkrueger, A., Colombo, S.F., et a1. (2012) CDK5 Regulatory Subunit-Associated Protein 1-Like 1 (CDKALl) Is a Tail-Anchored Protein in the Endoplasmic Retic-ulum (ER) of Insulinoma Cells. Journal of Biological Chemistry, 287, 41808-41819. [Google Scholar] [CrossRef]
|
|
[10]
|
Torkko, J.M., Primo, M.E., Dirkx, R., et a1. (2015) Stability of proICA512/IA-2 and Its Targeting to Insulin Secretory Granules Require β4-Sheet-Mediated Dimerization of Its Ecto-domain in the Endoplasmic Reticulum. Molecular and Cellular Biology, 35, 914-927. [Google Scholar] [CrossRef]
|
|
[11]
|
Wei, F.Y. and Tomizawa, K. (2012) Development of Type 2 Diabetes Caused by a Deficiency of a tRNA1ys Modification. Islets, 4, 71-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dos, S., Maria, C.F., Cole, P.A., Susanne, N., Kimberly, B.Z., Steven, J.R., et al. (2020) Irp2 Regulates Insulin Production through Iron-Mediated Cdkal1-Catalyzed tRNA Modification. Nature Communications, 11, Article No. 296. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Setiawan, V.W., Hernandez, B.Y., Lu, S.C., et al. (2014) Diabe-tes and Racial/Ethnic Differences in Hepatocellular Carcinoma Risk: The Multiethnic Cohort. Journal of the National Cancer Institute, 106, dju326. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Reddy, B.M., Pranavchand, R. and Latheef, S.A.A. (2019) Overview of Genomics and Post-Genomics Research on Type 2 Diabetes Mellitus: Future Perspectives and a Framework for Further Studies. Journal of Biosciences, 44, Article Number: 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, L.M., Gao, P., Zhang, M., et al. (2017) Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA: The Journal of the American Medical Association, 317, 2515-2523. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bartolomé, A. (2022) Stem Cell-Derived β Cells: A Versatile Re-search Platform to Interrogate the Genetic Basis of β Cell Dysfunction. International Journal of Molecular Sciences, 23, Article 501. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Morris, A.P. (2018) Progress in Defining the Genetic Con-tribution to Type 2 Diabetes Susceptibility. Current Opinion in Genetics & Development, 50, 41-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Goodarzi, M.O., Palmer, N.D., Cui, J.R., et al. (2020) Classification of Type 2 Diabetes Genetic Variants and a Novel Genetic Risk Score Association With Insulin Clearance. The Journal of Clinical Endocrinology and Metabolism, 105, 1251-1260. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tan, J.T., Ng, D.P.K., Siti, N., et al. (2010) Polymorphisms Identified through Genome-Wide Association Studies and Their Associa-tions with Type 2 Diabetes in Chinese, Malays, and Asian-Indians in Singapore. The Journal of Clinical Endocrinology & Metabolism, 95, 390-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Rung, J., Cauchi, S., Albrechtsen, A., Shen, L., Rocheleau, G., Cavalcanti-Proença, C., et al. (2009) Genetic Variant near IRS1 Is Associated with Type 2 Diabetes, Insulin Resistance and Hyperinsulinemia. Nature Genetics, 41, 1110-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zeggini, E., Scott, L.J., Saxena, R., Voight, B.F., Marchini, J.L., Hu, T., et al. (2008) Meta-Analysis of Genome-Wide Association Data and Largescale Replication Identifies Additional Susceptibility Loci for Type 2 Diabetes. Nature Genetics, 40, 638-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lasram, K., Ben Halim, N., Benrahma, H., Mediene Benchekor, S., Arfa, I., Hsouna, S., et al. (2015) Contribution of CDKAL1 rs7756992 and IGF2BP2 rs4402960 Polymorphisms in Type 2 Diabetes, Diabetic Complications, Obesity Risk and Hy-pertension in the Tunisian Population. Journal of Diabetes, 7, 102-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Saxena, R., Voight, B.F., Lyssenko, V., Burtt, N.P., de Bakker, P.I., Chen, H., et al. (2007) Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science, 316, 1331-1336. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
The Wellcome Trust Case Control Consortium (2007) Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and 3,000 Shared Controls. Nature, 447, 661-678. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhou, B., Wei, F.Y., Kanai, N., Fujimura, A., Kaitsuka, T. and Tomizawa, K. (2014) Identification of a Splicing Variant That Regulates Type 2 Diabetes Risk Factor CDKAL1 Level by a Cod-ing-Independent Mechanism in Human. Human Molecular Genetics, 23, 4639-4650. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wei, F.Y. and Tomizawa, K. (2011) Functional Loss of Cdkal1, a Novel tRNA Modification Enzyme, Causes the Development of Type 2 Diabetes. Endocrine Journal, 58, 819-825. [Google Scholar] [CrossRef]
|
|
[27]
|
Kong, X.M., Xing, X.Y., et al. (2016) Genetic Variants Associated with Lean and Obese Type 2 Diabetes in a Han Chinese Population: A Case—Control Study. Medicine, 95, e3841. [Google Scholar] [CrossRef]
|
|
[28]
|
杜伟平. 延安汉族人群2型糖尿病易感基因的多态性研究[D]: [硕士学位论文]. 延安: 延安大学, 2019.
|
|
[29]
|
李伟, 牛庆, 李霞莲, 沈飞霞, 施红英, 曹淑彦, 张婷, 李春梅, 吕建新. CDKAL1基因rs7756992位点多态性与2型糖尿病发病风险及临床特征关联分析[J]. 温州医学院学报, 2013, 43(3): 141-146. [Google Scholar] [CrossRef]
|
|
[30]
|
陈乐. 蒙古族2型糖尿病与CDKAL1基因、KCNQ1基因多态性及基因-基因、基因-环境交互作用研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古医科大学, 2021.[CrossRef]
|
|
[31]
|
肖珊. 维吾尔族2型糖尿病相关基因的多态性及基因-基因、基因-环境交互作用研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2015.[CrossRef]
|
|
[32]
|
Ryoo, H., Woo, J., Kim, Y. and Lee, C. (2011) Heterogeneity of Genetic Associations of CDKAL1 and HHEX with Susceptibility of Type 2 Diabetes Mellitus by Gender. European Journal of Human Genetics, 19, 672-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wu, Y., Li, H., Loos, R.J.F., et al. (2008) Common Variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE Genes Are Associated with Type 2 Diabetes and Impaired Fasting Glucose in a Chinese Han Population. Diabetes, 57, 2834-2842. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
花巍, 尹立群, 步怀恩, 等. CDKAL1基因rs7756992位点多态性与2型糖尿病关系的Meta分析[J]. 天津医药, 2013, 41(3): 244-251. [Google Scholar] [CrossRef]
|