慢性创面细菌生物膜治疗策略研究进展
Research Progress on Therapeutic Strategies of Bacterial Biofilm in Chronic Wounds
DOI: 10.12677/ACM.2023.1361355, PDF, HTML, XML, 下载: 192  浏览: 375  科研立项经费支持
作者: 杜宗玥:重庆医科大学第二临床学院,重庆;曾 勇*:重庆医科大学附属第二医院急救部,重庆
关键词: 慢性创面细菌生物膜联合治疗Chronic Wound Bacteria Biofilm Combination Therapy
摘要: 慢性创面的难治愈性与细菌生物膜(BBF)的形成相关,治疗需消耗大量医疗资源,因此BBF成为临床医生与研究者所关注的重点问题。本文主要从BBF概述、诊断、预防与治疗三方面进行综述,重点关注其治疗策略的选择,包括清创、负压疗法、抗生物膜剂和各种创新敷料的应用,目前临床中BBF多以联合治疗为主,希望本文能为临床慢性创面BBF治疗提供新的思路与建议。
Abstract: The curability of chronic wounds is related to the formation of bacterial biofilm (BBF), and the treatment needs to consume a lot of medical resources. Therefore, BBF has become the focus of at-tention of clinicians and researchers. This paper mainly reviews the overview, diagnosis, prevention and treatment of BBF, focusing on the selection of therapeutic strategies, including debridement, negative pressure therapy, anti-biological film agent and the application of various innovative dressings. Currently, combination therapy is mainly used for BBF in clinical practice, hoping that this paper can provide new ideas and suggestions for the treatment of BBF in clinical chronic wounds.
文章引用:杜宗玥, 曾勇. 慢性创面细菌生物膜治疗策略研究进展[J]. 临床医学进展, 2023, 13(6): 9680-9689. https://doi.org/10.12677/ACM.2023.1361355

1. 引言

慢性难愈合性创面,又称慢性创面、慢性伤口,是指在各种内在或外在因素影响下,经过4周治疗,仍无法通过正常、有序、及时的修复过程达到生理解剖和功能上的完整状态的伤口创面,包括压疮、糖尿病足溃疡、动静脉溃疡等 [1] [2] 。慢性创面伤口管理为患者家庭及整个社会带来巨大的经济负担,患者心理负担与精神压力大,生活质量严重下降。据统计,英国国家卫生服务在2017/2018年伤口管理年度成本超过83亿英镑,其中用于慢性创面的费用约为56亿英镑 [3] 。

BBF是指附着在物体表面的细菌包裹于胞外聚合物(ESP)中所形成的、具有独特三维立体结构的细菌结构化群落,主要由细菌及其分泌的EPS构成 [4] [5] 。典型的EPS基质包含多糖,蛋白质,脂质和细胞外DNA (eDNA) [6] ,其在BBF形成过程及其耐干燥、耐抗生素、延缓伤口愈合等特性中起重要作用 [7] [8] ,是BBF重要的组成部分。BBF存在与慢性创面愈合的延迟相关 [9] 。因此,为促进慢性创面治疗与控制,本文将对现有BBF诊断及治疗措施进行总结和梳理。

2. 细菌生物膜概述

2.1. 形成与特性

BBF的形成与发展按照细菌粘附、BBF成熟与维持、解离(即BBF播散,转换为浮游细菌状态)的过程进行循环,当环境发生变化时,细菌可在浮游状态和生物膜状态间动态转换 [10] 。

BBF组成复杂 [11] ,不同部位氧、营养物质、代谢产物等浓度的变化能影响并改变细菌的遗传和代谢活动 [12] [13] ,使不同部位的细菌生理活性存在差异,具有异质性。

生物膜还具有群体感应系统(QS系统),即细菌可通过释放信号分子及邻近细胞的感应进行细胞间通讯,诱导特定基因的协调表达,控制种群或群落水平表型,影响细菌的生物行为、种群大小及生物膜的形成 [14] 与分散。

BBF能产生可量化的生物标志物 [15] ,如基质金属蛋白酶(MMP),可消化细胞外物质;金属蛋白酶组织抑制剂(TIMP),可帮助MMP准确发挥作用。当MMP和TIMP之间的平衡被改变——MMP过度释放时,可提示炎症存在和伤口愈合不良 [16] [17] ,是潜在的诊断生物膜存在标志物,可用于实时评估疾病进展或对治疗的反应。

慢性伤口pH值为碱性,与急性和健康皮肤的pH值存在很大分布差异 [18] ,即创面环境条件的改变也可提示生物膜的形成。

2.2. 延缓伤口愈合机制

BBF延缓伤口愈合机制复杂,可通过调节宿主免疫反应、维持炎症反应持续存在来延缓愈合进程,且具有较高的抗菌素耐药性 [19] ,使慢性伤口的治疗变得十分困难。一方面,BBF不断释放的细菌及细菌代谢产物会持续刺激患者产生炎性反应,使创面长期停滞于炎性反应期而愈合延迟 [20] ,另一方面,BBF还能干预白细胞的聚集和吞噬作用 [21] ,使机体免疫功能下降。QS系统信号分子,如铜绿假单胞菌的高丝氨酸内酯信号分子,可影响巨噬细胞体积及形态、影响其功能和炎症反应的发展 [22] ;信号分子与细菌受体结合形成的复合物可激活毒素基因启动子,使其转录表达(如外毒素A、碱性蛋白酶等) [23] ,从而调控细菌毒素的产生与分泌 [24] ,使细菌长期存在于伤口中而延迟愈合。

BBF对抗生素具有较高的耐受性 [25] ,机制包括:EPS的作用,Daddi等提出,EPS通过扩散–反应抑制来降低生物膜中扩散的抗菌物质的生物利用率 [26] ,使细菌膜中细菌能在低于致死剂量的抗生素浓度下存活;细菌的低代谢状态,生物膜包含大量处于静止期、休眠状态、不复制的细胞,这些细胞对很多依赖细菌细胞代谢获得活性的抗生素敏感性低 [27] ;外排泵 [28] ,即将包括抗生素在内的细胞内毒素推回细胞外间隙的蛋白,表达较游离细菌上调;耐药基因,生物膜中细菌可通过水平基因转移摄取耐药基因 [29] ,Savage等发现在生物膜中,金黄色葡萄球菌可通过偶联/动员以增加质粒携带的耐药基因水平转移,从而提升其耐药性 [30] 。

3. 慢性伤口BBF的诊断

及早识别和管理伤口生物膜感染有助于伤口愈合 [31] ,但由于生物膜的微观性,其临床诊断标准仍存在争议。目前慢性伤口BBF的有效诊断包括临床识别、定位与标本采集、检测技术三部分 [10] 。

3.1. 临床识别

在2017年慢性伤口生物膜识别和治疗共识指南中提出,伤口具有以下指征可能存在生物膜:对抗生素、抗菌剂具有抵抗性;选用适当的抗生素、抗菌剂但治疗失败;伤口愈合延迟;创面出现大量渗液;轻度慢性炎症、红肿;反复感染或感染恶化 [32] 。

3.2. 定位与标本采集

生物膜既可存在于伤口表面,又可存在于较深组织中 [33] ,难以准确定位,因此采样方法的选择也将影响到BBF的诊断,包括组织活检、拭子技术。Haalboom等为比较拭子和活检在临床实践中的应用,对180名患者伤口分别采用Levine拭子技术与组织活检对同一部位进行取样,发现两者培养结果及培养的微生物对抗生素的敏感性相似 [34] ,表明组织活检对于慢性伤口BBF的诊断与治疗是非必要的。

3.3. 检测技术

微生物培养是细菌感染诊断的金标准,但常规培养技术无法准确识别生物膜的存在 [35] ,因此近年还发展了许多新的检测手段,包括BBF成像技术、BBF染色技术、分子生物技术、传感器检测等。

4. 慢性伤口BBF的治疗

未完全清除的细菌可在生物膜破坏后24小时内重组并再次形成成熟的生物膜 [36] ,因此生物膜形成预防与治疗同样重要,主要包括清创、负压疗法、局部抗菌剂(抗生物膜剂)和各种创新敷料的应用;机制为抑制细菌可逆性附着、抑制EPS的形成、破坏生物膜结构或成分、促进生物膜成熟后播散等。需要注意的是,生物膜播散会释放大量浮游细菌,应当与其他抗细菌及抗细菌毒素治疗措施相结合以达到更好的治疗效果。

4.1. 清创术

清创术是一种去除伤口边缘无活力组织和碎片的疗法,连续清创术具有去除坏死组织、减轻生物负荷、清除生物膜、破坏细菌定植环境等作用,可促进伤口愈合 [37] ,包括机械、自溶、生化、生物等 [38] 。大部分研究者认为清创是降低生物负担和生物膜水平的金标准,尽管清创不能彻底清除BBF,但清创24 h内未成熟的生物膜对局部抗菌剂更加敏感 [39] ,因此,笔者认为联合治疗才是BBF治疗研究的正确方向,这也正是目前许多研究者所探讨的热点。

4.1.1. 机械清创

机械清创包括锐器清创(手术清创)、水动力清创系统(水刀)和超声治疗等。

手术清创是指使用组织剪、手术刀、刮匙或其他手术器械去除失活组织。手术清创在临床中应用非常广泛,其可去除阻碍正常伤口愈合的感染组织、生物膜和衰老细胞 [40] ,但具有痛感、出血量和非选择性清除健康组织风险较高等不足。

水刀是一种利用高压高速水射流的切割作用和文丘里效应来清除坏死组织的清创方法,易操控、精确性高,不仅能彻底清除坏死组织、减少细菌负荷,且对活性组织的损伤较小 [41] [42] 。杨嘉骏等对细菌感染创面采用不同方法清创,对比发现水刀清创组较传统清创组及单纯脉冲冲洗组清创后的组织细菌含量少 [43] ,因此可以认为水刀清除感染、促进创面愈合的作用优于锐器清创。水刀存在渗血较多、清创时易出现喷溅雾化污染手术环境、手术费用较高等不足。

低频率(接触式)超声已经被证明是一种可以减少BBF、促进伤口愈合的机械清创方法 [44] [45] ,其治疗机制包括空化效应,上调细胞活性,促进生长因子合成、纤维蛋白溶解和破坏生物膜 [46] 。超声清创不仅具有疼痛小、侵入性小等优点,还能作为药物递送系统与抗生物膜药物联用以提升后者作用 [47] [48] ,如超声微泡可增加万古霉素对生物膜内细菌的杀菌作用 [49] 。Gopalakrishnan等对超声和抗菌聚合物纳米颗粒(PNP)的组合进行研究,发现超声治疗可迅速破坏生物膜,增加抗菌PNPs的渗透,从而增强其抗菌活性,形成更强的生物膜毒性 [50] ,使更低的PNPs浓度和超声持续时间即能发挥抗生物膜作用,降低了单独使用两种治疗方式的副作用。

4.1.2. 自溶清创与酶清创

自溶性清创是利用封闭或半封闭敷料如水凝胶、亲水胶体和透明薄膜等保持伤口湿润,让自身伤口渗液产生的内源性酶来溶解创面内失活组织、降解EPS、破坏BBF基质,其操作简单、对正常组织几乎无损伤,但过程较慢,且因无法及时准确评估创面变化,不适用于严重感染的创面。

目前临床中自溶性清创多与其他治疗方式联用 [51] ,如通过调节水凝胶的聚合物组成来维持局部药物浓度 [52] ;在水凝胶中掺入其他递送系统来递送药物等。去亚精胺可通过调节铜绿假单胞菌的QS系统来抑制生物膜的形成和毒力的产生,Hu等开发出由去亚精胺、氨基糖苷和氧化多糖组成的智能水凝胶,细菌感染时引起的酸度增加可触发去亚精胺和氨基糖苷类药物的释放 [53] ,从而治疗铜绿假单胞菌生物膜感染。

酶清创与自溶性清创机制及优缺点相似,唯一区别在于酶清创是通过“外源性”酶类来发挥作用,包括褐藻胶裂解酶、脱氧核糖核酸酶I、多磷酸酯激酶 [54] 等等。

4.1.3. 生物清创

利用蛆虫进行的生物清创可去除腐肉、生物膜,促进组织生长 [55] 。但对于病人来说可能在心理上和美学上难以接受,国内研究较少。

清创方法有很多种,不同清创术各有利弊,行清创术前医生应当先对伤口和患者进行彻底评估,以确定最适合患者的方法。目前针对慢性创面,临床在使用清创术与其他治疗方式相联合时,还会联用多种清创术以提升治疗效果 [56] 。

4.2. 负压疗法

对创面进行连续或间断地负压吸引,可充分引流伤口渗液,改善局部循环、减轻间质水肿,改变创面微环境,减少细菌数量,促进肉芽组织的生长,促进创口愈合 [57] ,其早期应用可预防BBF形成 [58] 。目前机械清创、封闭负压引流技术联用是临床中治疗BBF的常用疗法。

4.3. 抗生素的合理选择及应用

全身性使用抗生素缺乏证据支持,合适的局部药物选择十分重要。理想的抗菌剂应具有广谱性,可迅速到达并持久存在于创面床,细菌耐药性低,在渗出液中仍有活性及无全身吸收等特征 [59] 。抗生素与其他治疗措施相联用可降低抗生素防止生物膜形成、根除生物膜所需的最低浓度。

4.4. 抗生物膜剂

抗生素在生物膜的治疗中很难有效发挥作用,因此非抗生素类抗生物膜剂则是近些年来研究的又一热点 [60] ,包括:

群体感应抑制剂(QSI) [61] ,如香豆素、芳烃受体配体硫醇和维生素K类似物,可抑制毒力因子的产生及生物膜的形成 [62] 。

细胞外聚合物(EPS)降解酶(生物膜分散酶) [63] ,如分散蛋白B [64] 、脱氧核糖核酸酶和糖苷水解酶 [65] ,可水解的生物膜成分、分散生物膜,无法杀灭细菌,多与其他抗菌成分联用;表面活性剂,如泊洛沙姆、地衣素、鼠李糖脂等,可预调节表面或赋予表面疏水性,从而有助于抑制细菌的附着与生物膜的形成。此外,Saadati等发现鼠李糖脂不仅对生物膜形成有抑制作用,还能使耐甲氧西林金黄色葡萄球菌的群体感应途径相关基因表达发生改变、影响细菌细胞膜的通透性及细菌活性 [66] 。

其他抗生物膜剂如脂肪酸,可作用于QS系统从而抑制生物膜的形成 [67] ;金属螯合剂,可通过抑制金属阳离子在生物膜形成和细菌生长过程中促进细菌聚集、相互作用等的作用来破坏细菌粘附、抑制生物膜的产生 [68] ;一氧化氮,作为一种信号分子可触发生物膜扩散,将细菌由生物膜状态转变为浮游状态,与抗生素联用时可提高抗生素疗效 [69] ;抗菌肽,如乳链菌肽、人类宿主防御肽、人β防御素3等,具有抗菌、抗生物膜和抗炎的作用 [70] ,可干扰生物膜形成各个阶段,防止细菌定植,影响QS系统,杀死生物膜中的细菌并破坏生物膜结构与完整性 [71] 。Laulund等通过小鼠慢性伤口建立铜绿假单胞菌生物膜模型,发现乳铁蛋白启发的抗菌肽AMC-109可增强环丙沙星对生物膜的抗菌作用 [72] ,表明抗菌肽作为抗生素的辅助治疗手段的潜力。

4.5. 抗生物膜剂及抗生素输送系统

局部给药药物递送策略是目前BBF治疗研究的另一热点,主要包括超声介导的微泡治疗、水凝胶、纳米纤维和纳米颗粒 [73] 。纳米材料可以敷料的形式在慢性创面BBF的治疗中发挥作用 [74] 。

纳米纤维是使用各种技术制备的纳米级纤维,具有高表面积与体积比和多孔性,利于生物化学物质的释放、吸附伤口渗出物、提供营养物质交换 [75] 。Ciecholewska-Juśko等研究发现,浸渍于杀菌剂的细菌纤维素材料通过化学交联改性后,可持续吸收渗出物和释放杀菌剂 [76] ,该材料成本低廉、性能优良,其未来在BBF临床应用中或可拥有广阔前景。

纳米颗粒(NPs)可以单独使用,也可与其他抗生物膜剂联合应用 [77] 。过氧化氢具有杀菌、促进血管内皮生长因子的释放及改善血流、介导白细胞募集促进伤口愈合的作用。Shi等发现以中空介孔二氧化硅纳米颗粒为载体递送阿奇霉素和葡萄糖氧化酶,可降低局部葡萄糖、促进过氧化氢的产生和阿奇霉素的释放,减少细菌感染,在一定程度上消除BBF、促进伤口愈合 [78] 。

4.6. 其他技术

噬菌体是一种天然存在的、不感染真核细胞的细菌病毒,可识别、感染并在细菌细胞内复制,导致细菌裂解,能够靶向生物膜内的细菌而不会诱导耐药性,与生物膜基质降解酶相配备可有效感染膜内细菌 [79] [80] 。

光动力疗法(PDT),即应用光敏剂来增强抗生素通过生物膜的活性和转运 [81] 等。其他如海洋菌株地衣芽孢杆菌的胞外多糖 [82] 、环氧–替格列烷 [83] 、阳离子葡聚糖 [84] 等各种新的非抗生素抗生物膜方法在不断更新。上述研究可以看出非抗生素疗法对于慢性创面BBF的治疗效果及前景,但还缺乏用于真正创面、上皮细胞的研究来证实这些结果。国内关于这类的研究还较少,未来可研制适合临床使用的联合疗法,实施大样本随机对照试验,为临床疑难慢性难愈性创面BBF的治疗与诊断提供可靠依据和可用方法。

5. 结语

慢性难愈合性创面BBF具有对抗菌剂的高耐药性和感染持久性,生物膜延缓创面愈合的机制复杂、致病微生物种类繁多。目前BBF治疗手段众多,包括清创、负压疗法、抗生物膜剂和各种创新敷料的应用等,但仍缺乏有力的临床证据证明其有效性,结合文中现阶段研究,控制生物膜感染需从多方面进行综合干预,联合治疗是最佳选择。

致谢

感谢重庆医科大学附属第二医院感染病学实验室提供的研究平台,感谢重庆医科大学附属第二医院中药冲洗联合NPWT对糖尿病足创面细菌生物膜的清除效果研究课题组的老师与同学在本文撰写方面提供的宝贵意见和帮助。

基金项目

重庆市卫生计生委中医药科技项目(ZY201802020)。

NOTES

*通讯作者。

参考文献

[1] Frykberg, R.G. and Banks, J. (2015) Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4, 560-582.
https://doi.org/10.1089/wound.2015.0635
[2] 丁炎明, 于卫华, 郑春美, 等. 伤口护理学[M]. 北京: 人民卫生出版社, 2017: 8-9, 172-173.
[3] Guest, J.F., Fuller, G.W. and Vowden, P. (2020) Cohort Study Evaluating the Burden of Wounds to the UK’s National Health Service in 2017/2018: Update from 2012/2013. BMJ Open, 10, e45253.
https://doi.org/10.1136/bmjopen-2020-045253
[4] 张珊珊, 宋静, 王家俊, 单安山. 细菌生物膜的形成及抗菌肽抗生物膜活性的研究进展[J]. 动物营养学报, 2021, 33(12): 6631-6640.
[5] Yin, W., Wang, Y., Liu, L., and He, J. (2019) Biofilms: The Microbial “Protective Clothing” in Extreme Environments. International Journal of Molecular Sciences, 20, Article No. 3423.
https://doi.org/10.3390/ijms20143423
[6] Donlan, R.M. (2002) Biofilms: Micro-bial Life on Surfaces. Emerging Infectious Diseases, 8, 881-890.
https://doi.org/10.3201/eid0809.020063
[7] Wolcott, R.D., Rhoads, D.D., Bennett, M.E., et al. (2010) Chronic Wounds and the Medical Biofilm Paradigm. Journal of Wound Care, 19, 45-46, 48-50, 52-53.
https://doi.org/10.12968/jowc.2010.19.2.46966
[8] Weaver, L., Webber, J.B., Hickson, A.C., Abraham, P.M. and Close, M.E. (2015) Biofilm Resilience to Desiccation in Groundwater Aquifers: A Laboratory and Field Study. Science of the Total Environment, 514, 281-289.
https://doi.org/10.1016/j.scitotenv.2014.10.031
[9] Haesler, E., Swanson, T., Ousey, K. and Carville, K. (2019) Clinical Indicators of Wound Infection and Biofilm: Reaching International Consensus. Journal of Wound Care, 28, s4-s12.
https://doi.org/10.12968/jowc.2019.28.Sup3b.S4
[10] 刘江, 刘毅. 慢性创面细菌生物膜形成机制及其诊断的研究进展[J]. 中华烧伤杂志, 2021, 37(7): 692-696.
[11] Han, A., Zenilman, J.M., Melendez, J.H., et al. (2011) The Importance of a Multifaceted Approach to Characterizing the Microbial Flora of Chronic Wounds. Wound Repair and Regeneration, 19, 532-541.
https://doi.org/10.1111/j.1524-475X.2011.00720.x
[12] Flemming, H.-C., Wingender, J., Szewzyk, U., et al. (2016) Biofilms: An Emergent form of Bacterial Life. Nature Reviews Microbiology, 14, 563-575.
https://doi.org/10.1038/nrmicro.2016.94
[13] 曹晋桂, 刘鹏. 细菌生物膜、滞留菌及其相关感染防控研究进展[J]. 中国感染控制杂志, 2019, 18(5): 369-374.
[14] Alayande, A.B., Aung, M.M. and Kim, I.S. (2018) Correlation between Quorum Sensing Signal Molecules and Pseudomonas aeruginosa’s Biofilm Development and Virulency. Cur-rent Microbiology, 75, 787-793.
https://doi.org/10.1007/s00284-018-1449-5
[15] Lindley, L.E., Stojadinovic, O., Pastar, I. and Tomic-Canic, M. (2016) Biology and Biomarkers for Wound Healing. Plastic and Reconstructive Surgery, 138, 18S-28S.
https://doi.org/10.1097/PRS.0000000000002682
[16] Liu, Y., Min, D., Bolton, T., et al. (2009) Increased Matrix Metalloproteinase-9 Predicts Poor Wound Healing in Diabetic Foot Ulcers. Diabetes Care, 32, 117-119.
https://doi.org/10.2337/dc08-0763
[17] Karim, R.B., Brito, B.L., Dutrieux, R.P., et al. (2006) MMP-2 Assessment as an Indicator of Wound Healing: A Feasibility Study. Advances in Skin & Wound Care, 19, 324-327.
https://doi.org/10.1097/00129334-200607000-00011
[18] Jones, E.M., Cochrane, C.A. and Percival, S.L. (2015) The Effect of pH on the Extracellular Matrix and Biofilms. Advances in Wound Care, 4, 431-439.
https://doi.org/10.1089/wound.2014.0538
[19] Cooper, R.A., Bjarnsholt, T. and Alhede, M. (2014) Biofilms in Wounds: A Review of Present Knowledge. Journal of Wound Care, 23, 570, 572-574, 576-580.
https://doi.org/10.12968/jowc.2014.23.11.570
[20] Wolcott, R.D. and Cox, S. (2013) More Effective Cell-Based Therapy through Biofilm Suppression. Journal of Wound Care, 22, 26-31.
https://doi.org/10.12968/jowc.2013.22.1.26
[21] Versey, Z., da Cruz Nizer, W.S., Russell, E., et al. (2021) Bio-film-Innate Immune Interface: Contribution to Chronic Wound Formation. Frontiers in Immunology, 12, Article 648554.
https://doi.org/10.3389/fimmu.2021.648554
[22] Holm, A., Magnusson, K.E. and Vikström, E. (2016) Pseudo-monas aeruginosa N-3-Oxo-Dodecanoyl-Homoserine Lactone Elicits Changes in Cell Volume, Morphology, and AQP9 Characteristics in Macrophages. Frontiers in Cellular and Infection Microbiology, 6, Article 32.
https://doi.org/10.3389/fcimb.2016.00032
[23] Lee, J. and Zhang, L. (2015) The Hierarchy Quorum Sensing Net-work in Pseudomonas aeruginosa. Protein & Cell, 6, 26-41.
https://doi.org/10.1007/s13238-014-0100-x
[24] Papenfort, K. and Bassler, B.L. (2016) Quorum Sensing Sig-nal-Response Systems in Gram-Negative Bacteria. Nature Reviews Microbiology, 14, 576-588.
https://doi.org/10.1038/nrmicro.2016.89
[25] Del Pozo, J.L. (2018) Biofilm-Related Disease. Expert Review of An-ti-Infective Therapy, 16, 51-65.
https://doi.org/10.1080/14787210.2018.1417036
[26] Daddi Oubekka, S., Briandet, R., Fontaine-Aupart, M.-P. and Steenkeste, K. (2012) Correlative Time-Resolved Fluorescence Microscopy to Assess Antibiotic Diffusion-Reaction in Biofilms. Antimicrobial Agents and Chemotherapy, 56, 3349-3358.
https://doi.org/10.1128/AAC.00216-12
[27] Amato, S.M., Fazen, C.H., Henry, T.C., et al. (2014) The Role of Metabolism in Bacterial Persistence. Frontiers in Microbiology, 5, Article 70.
https://doi.org/10.3389/fmicb.2014.00070
[28] Rather, M.A., Gupta, K. and Mandal, M. (2021) Microbial Biofilm: Formation, Architecture, Antibiotic Resistance, and Control Strategies. Brazilian Journal of Microbiology, 52, 1701-1718.
https://doi.org/10.1007/s42770-021-00624-x
[29] Mah, T.-F. (2012) Biofilm-Specific Antibiotic Resistance. Future Microbiology, 7, 1061-1072.
https://doi.org/10.2217/fmb.12.76
[30] Savage, V.J., Chopra, I. and O’Neill, A.J. (2013) Staphylococcus aureus Biofilms Promote Horizontal Transfer of Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 57, 1968-1970.
https://doi.org/10.1128/AAC.02008-12
[31] Sandoz, H. (2022) An Overview of the Prevention and Management of Wound Infection. Nursing Standard, 37, 75-82.
https://doi.org/10.7748/ns.2022.e11889
[32] Schultz, G., Bjarnsholt, T., James, G.A., et al. (2017) Consensus Guidelines for the Identification and Treatment of Biofilms in Chronic Nonhealing Wounds. Wound Repair and Regener-ation, 25, 744-757.
https://doi.org/10.1111/wrr.12590
[33] Schaber, J.A., Triffo, W.J., Suh, S.J., et al. (2007) Pseudomonas aeru-ginosa Forms Biofilms in Acute Infection Independent of Cell-to-Cell Signaling. Infection and Immunity, 75, 3715-3721.
https://doi.org/10.1128/IAI.00586-07
[34] Haalboom, M., Blokhuis-Arkes, M., Beuk, R.J., et al. (2018) Wound Swab and Wound Biopsy Yield Similar Culture Results. Wound Repair and Regeneration, 26, 192-199.
https://doi.org/10.1111/wrr.12629
[35] Li, L., Mendis, N., Trigui, H., Oliver, J.D. and Faucher, S.P. (2014) The Importance of the Viable but Non-Culturable State in Human Bacterial Pathogens. Frontiers in Microbiology, 5, Article 258.
https://doi.org/10.3389/fmicb.2014.00258
[36] Jensen, P.Ø., Kolpen, M., Kragh, K.N. and Kühl, M. (2017) Mi-croenvironmental Characteristics and Physiology of Biofilms in Chronic Infections of CF Patients Are Strongly Affected by the Host Immune Response. APMIS, 125, 276-288.
https://doi.org/10.1111/apm.12668
[37] Durand, B.A.R.N., Pouget, C., Magnan, C., et al. (2022) Bacterial Interactions in the Context of Chronic Wound Biofilm: A Review. Micro-organisms, 10, Article No. 1500.
https://doi.org/10.3390/microorganisms10081500
[38] 路遥, 杨润功, 朱加亮. 慢性创面清创技术的研究进展[J]. 中国修复重建外科杂志, 2018, 32(8): 1096-1101.
[39] Swanson, T., Wolcott, R.D., Wallis, H. and Woodmansey, E.J. (2017) Understanding Biofilm in Practice: A Global Survey of Health Profes-sionals. Journal of Wound Care, 26, 426-440.
https://doi.org/10.12968/jowc.2017.26.8.426
[40] Anghel, E.L., Defazio, M.V., Barker, J.C., et al. (2016) Current Concepts in Debridement: Science and Strategies. Plastic and Recon-structive Surgery, 138, 82S-93S.
https://doi.org/10.1097/PRS.0000000000002651
[41] 朱传正, 张力鹏, 陈祝锋, 等. 水动力清创系统在临床中的应用进展[J]. 创伤外科杂志, 2019, 21(12): 952-955.
[42] 阚朝辉, 刘功成, 朱世辉. 水动力清创系统在烧伤创面清创中的应用概况[J]. 第二军医大学学报, 2017, 38(4): 501-505.
[43] 杨嘉骏, 姜楠, 马云飞, 余斌. 水刀技术用于感染性创面清创效果的实验研究[J]. 中国矫形外科杂志, 2017, 25(20): 1886-1891.
[44] Kataoka, Y., Kunimitsu, M., Nakagami, G., et al. (2021) Effectiveness of Ultrasonic Debridement on Reduction of Bacteria and Biofilm in Patients with Chronic Wounds: A Scoping Review. International Wound Journal, 18, 176-186.
https://doi.org/10.1111/iwj.13509
[45] Secker, T.J., Harling, C.C., Hand, C., et al. (2022) A Proof-of-Concept Study of the Removal of Early and Late Phase Biofilm from Skin Wound Models Using a Liquid Acoustic Stream. In-ternational Wound Journal, 19, 2124-2135.
https://doi.org/10.1111/iwj.13818
[46] Chang, Y.R., Perry, J. and Cross, K. (2017) Low-Frequency Ultrasound Debridement in Chronic Wound Healing: A Systematic Review of Current Evidence. Plastic Surgery, 25, 21-26.
https://doi.org/10.1177/2292550317693813
[47] Hu, J., Zhang, N., Li, L., et al. (2018) The Synergistic Bactericidal Effect of Vancomycin on UTMD Treated Biofilm Involves Damage to Bacterial Cells and Enhancement of Metabolic Activities. Scientific Reports, 8, Article No. 192.
https://doi.org/10.1038/s41598-017-18496-3
[48] LuTheryn, G., Hind, C., Campbell, C., et al. (2022) Bactericidal and Anti-Biofilm Effects of Uncharged and Cationic Ultrasound-Responsive Nitric Oxide Microbubbles on Pseudo-monas aeruginosa Biofilms. Frontiers in Cellular and Infection Microbiology, 12, Article 956808.
https://doi.org/10.3389/fcimb.2022.956808
[49] Dong, Y., Li, J., Li, P. and Yu, J. (2018) Ultrasound Microbub-bles Enhance the Activity of Vancomycin against Staphylococcus epidermidis Biofilms in Vivo. Journal of Ultrasound in Medicine, 37, 1379-1387.
https://doi.org/10.1002/jum.14475
[50] Gopalakrishnan, S., Gupta, A., Makabenta, J.M.V., et al. (2022) Ultra-sound-Enhanced Antibacterial Activity of Polymeric Nanoparticles for Eradicating Bacterial Biofilms. Advanced Healthcare Materials, 11, e2201060.
https://doi.org/10.1002/adhm.202201060
[51] Haidari, H., Bright, R., Garg, S., et al. (2021) Eradication of Mature Bacterial Biofilms with Concurrent Improvement in Chronic Wound Healing Using Silver Nanoparticle Hydrogel Treat-ment. Biomedicines, 9, Article No. 1182.
https://doi.org/10.3390/biomedicines9091182
[52] Chhibber, T., Gondil, V.S. and Sinha, V.R. (2020) Develop-ment of Chitosan-Based Hydrogel Containing Antibiofilm Agents for the Treatment of Staphylococcus aureus-Infected Burn Wound in Mice. AAPS PharmSciTech, 21, Article No. 43.
https://doi.org/10.1208/s12249-019-1537-2
[53] Hu, J., Chen, S., Yang, Y., et al. (2022) A Smart Hydrogel with Anti-Biofilm and Anti-Virulence Activities to Treat Pseudomonas aeruginosa Infections. Advanced Healthcare Materi-als, 11, e2200299.
https://doi.org/10.1002/adhm.202200299
[54] 徐元玲, 蒋琪霞, 王建东. 慢性伤口细菌生物膜处理方法的研究进展[J]. 中华护理杂志, 2014, 49(11): 1382-1386.
[55] Turkmen, A., Graham, K. and McGrouther, D.A. (2010) Therapeutic Applications of the Larvae for Wound Debridement. Journal of Plastic, Reconstructive & Aesthetic Surgery, 63, 184-188.
https://doi.org/10.1016/j.bjps.2008.08.070
[56] Liu, W.-L., Jiang, Y.-L., Wang, Y.-Q., Li, Y.-X. and Liu, Y.-X. (2017) Combined Debridement in Chronic Wounds: A Literature Review. Chinese Nursing Research, 4, 5-8.
https://doi.org/10.1016/j.cnre.2017.03.003
[57] 程海涛, 黄桂玲. 慢性伤口细菌生物膜的研究进展[J]. 护理研究, 2020, 34(10): 1754-1758.
[58] Li, T., Zhang, L., Han, L.I., et al. (2016) Early Application of Negative Pressure Wound Therapy to Acute Wounds contaminated with Staphylococcus aureus: An Effective Approach to Preventing Bio-film Formation. Experimental and Therapeutic Medicine, 11, 769-776.
https://doi.org/10.3892/etm.2016.3008
[59] 钟果玉, 谭惠仪, 叶雪梅. 慢性伤口细菌生物膜管理的研究进展[J]. 护理实践与研究, 2021, 18(12): 1790-1794.
[60] Razdan, K., Garcia-Lara, J., Sinha, V.R. and Singh, K.K. (2022) Pharmaceutical Strategies for the Treatment of Bacterial Biofilms in Chronic Wounds. Drug Discovery Today, 27, 2137-2150.
https://doi.org/10.1016/j.drudis.2022.04.020
[61] O’Loughlin, C.T., Miller, L.C., Siryaporn, A., et al. (2013) A Quorum-Sensing Inhibitor Blocks Pseudomonas aeruginosa Virulence and Biofilm Formation. Proceedings of the Na-tional Academy of Sciences of the United States of America, 110, 17981-17986.
https://doi.org/10.1073/pnas.1316981110
[62] Paluch, E., Rewak-Soroczyńska, J., Jędrusik, I., Mazurkiewicz, E. and Jermakow, K. (2020) Prevention of Biofilm Formation by Quorum Quenching. Applied Microbiology and Biotech-nology, 104, 1871-1881.
https://doi.org/10.1007/s00253-020-10349-w
[63] Kaplan, J.B. (2009) Therapeutic Potential of Biofilm-Dispersing Enzymes. The International Journal of Artificial Organs, 32, 545-554.
https://doi.org/10.1177/039139880903200903
[64] Chen, K.-J. and Lee, C.-K. (2018) Twofold Enhanced Disper-sin B Activity by N-Terminal Fusion to Silver-Binding Peptide for Biofilm Eradication. International Journal of Biolog-ical Macromolecules, 118, 419-426.
https://doi.org/10.1016/j.ijbiomac.2018.06.066
[65] Fleming, D. and Rumbaugh, K.P. (2017) Approaches to Dis-persing Medical Biofilms. Microorganisms, 5, Article No. 15.
https://doi.org/10.3390/microorganisms5020015
[66] Saadati, F., Shahryari, S., Sani, N.M., et al. (2022) Effect of MA01 Rhamnolipid on Cell Viability and Expression of Quorum-Sensing (QS) Genes Involved in Biofilm Formation by Methicillin-Resistant Staphylococcus aureus. Scientific Reports, 12, Article No. 14833.
https://doi.org/10.1038/s41598-022-19103-w
[67] Nicol, M., Alexandre, S., Luizet, J.B., et al. (2018) Unsaturated Fatty Acids Affect Quorum Sensing Communication System and Inhibit Motility and Biofilm Formation of Acinetobacter baumannii. International Journal of Molecular Sciences, 19, Article No. 214.
https://doi.org/10.3390/ijms19010214
[68] Suresh, M.K., Biswas, R. and Biswas, L. (2019) An Update on Recent Developments in the Prevention and Treatment of Staphylococcus aureus Biofilms. International Journal of Medical Mi-crobiology, 309, 1-12.
https://doi.org/10.1016/j.ijmm.2018.11.002
[69] Howlin, R.P., Cathie, K., Hall-Stoodley, L., et al. (2017) Low-Dose Nitric Oxide as Targeted Anti-Biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infec-tion in Cystic Fibrosis. Molecular Therapy, 25, 2104-2116.
https://doi.org/10.1016/j.ymthe.2017.06.021
[70] Luo, Y. and Song, Y. (2021) Mechanism of Antimicrobial Pep-tides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. International Journal of Molecular Sciences, 22, Ar-ticle No. 1401.
https://doi.org/10.3390/ijms222111401
[71] Yasir, M., Willcox, M. and Dutta, D. (2018) Action of Antimicrobial Peptides against Bacterial Biofilms. Materials, 11, Article No. 2468.
https://doi.org/10.3390/ma11122468
[72] Laulund, A.S., Schwartz, F.A., Christophersen, L., et al. (2022) Lac-toferricin-Inspired Peptide AMC-109 Augments the Effect of Ciprofloxacin against Pseudomonas aeruginosa Biofilm in Chronic Murine Wounds. Journal of Global Antimicrobial Resistance, 29, 185-193.
https://doi.org/10.1016/j.jgar.2021.12.015
[73] Rai, S., Singh, N. and Bhattacharya, S. (2022) Concepts on Smart Nano-Based Drug Delivery System. Recent Patents on Nanotechnology, 16, 67-89.
https://doi.org/10.2174/1872210515666210120113738
[74] Rasool, N., Srivastava, R. and Singh, Y. (2022) Cati-onized Silica Ceria Nanocomposites to Target Biofilms in Chronic Wounds. Biomaterials Advances, 138, Article ID: 212939.
https://doi.org/10.1016/j.bioadv.2022.212939
[75] Chen, D.W.-C. and Liu, S.-J. (2015) Nanofibers Used for Delivery of Antimicrobial Agents. Nanomedicine, 10, 1959-1971.
https://doi.org/10.2217/nnm.15.28
[76] Ciecholewska-Juśko, D., Junka, A. and Fijałkowski, K. (2022) The Cross-Linked Bacterial Cellulose Impregnated with Octenidine Dihydrochloride-Based Antiseptic as an Antibacterial Dressing Material for Highly-Exuding, Infected Wounds. Microbiological Research, 263, Article ID: 127125.
https://doi.org/10.1016/j.micres.2022.127125
[77] Dos Santos, R.M., Da Silva, P., Spósito, L., et al. (2018) Nano-technology-Based Drug Delivery Systems for Control of Microbial Biofilms: A Review. International Journal of Nano-medicine, 13, 1179-1213.
https://doi.org/10.2147/IJN.S146195
[78] Shi, M., Du, Z., Qi, Y., et al. (2022) Wound Microenviron-ment-Responsive Glucose Consumption and Hydrogen Peroxide Generation Synergistic with Azithromycin for Diabetic Wounds Healing. Theranostics, 16, 2658-2673.
https://doi.org/10.7150/thno.64244
[79] Drulis-Kawa, Z. and Maciejewska, B. (2021) Special Issue: “Bacterio-phages and Biofilms”. Viruses, 13, Article No. 257.
https://doi.org/10.3390/v13020257
[80] Latka, A., Maciejew-ska, B., Majkowska-Skrobek, G., et al. (2017) Bacteriophage-Encoded Virion-Associated Enzymes to Overcome the Carbohydrate Barriers during the Infection Process. Applied Microbiology and Biotechnology, 101, 3103-3119.
https://doi.org/10.1007/s00253-017-8224-6
[81] Taraszkiewicz, A., Fila, G., Grinholc, M. and Nakonieczna, J. (2013) Innovative Strategies to Overcome Biofilm Resistance. BioMed Research International, 2013, Article ID: 150653.
https://doi.org/10.1155/2013/150653
[82] Di Perri, G. and Ferlazzo, G. (2022) Biofilm Development and Ap-proaches to Biofilm Inhibition by Exopolysaccharides. New Microbiologica, 45, 227-236.
https://pubmed.ncbi.nlm.nih.gov/36190373/
[83] Powell, L.C., Cullen, J.K., Boyle, G.M., et al. (2022) Topical, Immunomodulatory Epoxy-Tiglianes Induce Biofilm Disruption and Healing in Acute and Chronic Skin Wounds. Sci-ence Translational Medicine, 14, eabn3758.
https://doi.org/10.1126/scitranslmed.abn3758
[84] Li, Y., Wang, S., Xing, Z., et al. (2022) Destructing Biofilms by Cationic Dextran through Phase Transition. Carbohydrate Polymers, 279, Article ID: 118778.
https://doi.org/10.1016/j.carbpol.2021.118778