近年来转移性结直肠癌靶向治疗研究进展
Recent Research Progress in Targeted Ther-apy of Metastatic Colorectal Cancer
DOI: 10.12677/ACM.2023.1361445, PDF, HTML, XML, 下载: 179  浏览: 307 
作者: 张婷婷, 郭建强*:山东大学第二医院消化内科,山东 济南
关键词: 转移性结直肠癌靶向治疗免疫检查点抑制Metastatic Colorectal Cancer Targeted Therapy Immune Checkpoint Blockade
摘要: 结直肠癌(colorectal cancer, CRC)是常见消化系统肿瘤,发病具有隐匿性,转移是导致结直肠癌患者死亡的一个主要原因,在整个疾病进程中几乎一半的患者会发生转移,约25%患者确诊时已处于晚期阶段,出现病灶转移。转移性结直肠癌(mCRC)通常无手术机会且传统化疗效果欠佳,病死率高。目前临床治疗mCRC主要依靠放疗、化疗及分子靶向治疗综合治疗,近年来分子靶向治疗成为mCRC治疗新方向,尤其是近年来分子靶向药物贝伐珠单抗及西妥昔单抗问世并广泛应用于临床,mCRC预后显著改善。本文就目前mCRC靶向治疗的研究进展进行综述,以期为临床诊疗提供依据。
Abstract: Colorectal cancer (CRC) is a common digestive system tumor with occult onset, and metastasis is a major cause of death in colorectal cancer patients. In the entire course of the disease, almost half of patients have metastases, and about 25% of patients are diagnosed with colorectal cancer in the advanced stage, focus metastasis. Metastatic colorectal cancer (mCRC) usually has no surgical op-portunity and is less effective with conventional chemotherapy, with high mortality. Currently, the clinical treatment of mCRC mainly relies on the combination of radiotherapy, chemotherapy and molecular targeted therapy. In recent years, molecular targeted therapy has become a new direc-tion of mCRC treatment, especially in recent years, molecular targeted drugs bevacizumab and ce-tuximab have been developed and widely used in clinic, and the prognosis of mCRC has been signif-icantly improved. This article reviews the current research progress of mCRC targeted therapy, in order to provide evidence for clinical diagnosis and treatment.
文章引用:张婷婷, 郭建强. 近年来转移性结直肠癌靶向治疗研究进展[J]. 临床医学进展, 2023, 13(6): 10321-10328. https://doi.org/10.12677/ACM.2023.1361445

1. 引言

结直肠癌是常见的消化道恶性肿瘤。世界卫生组织(WHO)国际癌症研究机构(IARC)的最新统计数据显示,结直肠癌每年新增病例185万;占恶性肿瘤总数的10.2%,是世界上第三种常见的恶性疾病,仅次于肺癌和乳腺癌 [1] 。在我国,其发病率处于逐年上升趋势,并且多数结直肠癌患者在确诊时已属于中晚期 [2] 。目前临床治疗mCRC主要依靠放疗、化疗及分子靶向治疗综合治疗,近年来分子靶向治疗成为mCRC治疗新方向,尤其是近年来分子靶向药物贝伐珠单抗及西妥昔单抗问世并广泛应用于临床,mCRC预后显著改善,延长PFS及OS达4~5个月左右 [3] [4] ,分子靶向药物作为一种新型治疗药物,与传统化疗药物相比具有更强的针对性,可以增强对肿瘤的杀伤力,并减少对正常细胞的毒副作用,耐受性良好 [5] 。目前mCRC治疗中常用靶点包括表皮生长因子受体(epidermal growth factor receptor, EGFR)、血管内皮生长因子(vascular endothelial growth factor,VEGF)、人表皮生长因子受体2 (human epidermal growth factor receptor 2, HER2),神经营养性酪氨酸激酶受体(neurotrophic receptor tyrosine kinase, NTRK),鼠类肉瘤病毒癌基因同源物B (v-raf murine sarcoma viral oncogene homolog B, BRAF)等。本文对近年来分子靶向疗法在mCRC中的应用进行综述,以期为mCRC的诊疗提供临床指导。

2. 靶向EGFR

表皮生长因子受体(epidermal growth factor receptor, EGFR)为酪氨酸激酶受体ErbB家族,在接收到外界信号后,会激活RAS蛋白,进而激活多条下游通路,促进细胞增殖和迁移,从而促进肿瘤的发生发展 [6] 。EGFR受体酪氨酸激酶(RTK)在CRC中通过丝裂原活化蛋白激酶(MAPK),磷酸肌醇3激酶(PI3K)/AKT和JAK (Janus激酶)/STAT (转录激活剂)途径的下游信号传导,EGFR促进癌细胞存活和增殖,并被认为是转移性结直肠癌的可操作靶标 [7] 。对于靶向治疗,最大的障碍就是基因突变,尤其在EGFR治疗时,靶向药物应用是仅用于全野生型,出现KRAS、NRAS、BARF等基因突变则需要换药 [8] 。在RAS和EGFR相关突变等位基因频率呈指数衰减(RAS r2 = 0.93; EGFR r2 = 0.94) [9] ,BRAF基因的改变会导致MAPK通路的组成性激活,并可能预测EGFR抑制剂无法获益 [10] 。在对接受基于EGFRi的化疗的患者进行的回顾性分析中,无进展生存期(PFS) (中位数为8周,与26周相比,BRAF突变肿瘤患者比BRAF野生型患者短) [11] 。靶向EGFR较成熟代表药物有西妥昔单抗、帕尼单抗等。

西妥昔单抗是一种重组人嵌合小鼠免疫球蛋白G (immunoglobulin G, IgG) 1单抗,可以靶向EGFR胞外结构域,竞争性抑制EGFR受体,阻断其下游信号通路的传导,从而促进细胞周期停滞、细胞凋亡、抑制结直肠癌细胞DNA修复和增殖,减少肿瘤新生血管形成,发挥抗肿瘤作用 [12] 。帕尼单抗,该抗体是一种人IgG2单抗,可结合到EGFR的细胞外结构域。与西妥昔单抗不同,它不激活抗体依赖的细胞介导的细胞毒性 [13] 。

在RAS-wt mCRC患者的一线治疗中,与单独化疗相比,加用西妥昔单抗或帕尼单抗可改善无进展生存期(PFS)、中位生存率(OS)和客观缓解率(ORR)。如在FOLFOX4中添加帕尼单抗使中位OS从19.7个月增加到23.9个月(p = 0.072) [14] [15] [16] 。EGFR单抗与含有5-氟尿嘧啶(5-FU)、亚叶酸钙、奥沙利铂和/或伊立替康的双联或三联方案联合使用,其安全性和有效性可控,最近报道的结果显示,与三药方案相比,四药方案没有改善PFS和ORR,且3~4级不良事件(AE)发生率明显更高 [14] [17] 。

在随着分子靶向研究的深入,发现部分患者对EGFR靶向药物治疗反应效果欠佳,从而进一步发现了大鼠肉瘤癌基因(rat sarcoma oncogene, RAS),该基因在结直肠癌的发生发展中具有重要意义。

MAPK通路的下游激活分子,包括EGFR、KRAS、NRAS和BRAF的改变,是转移性结直肠癌中对EGFR单抗的先天性和获得性耐药的主要原因 [8] 。EGFR靶向治疗的益处仅限于RAS和BRAF野生型肿瘤患者,因为这些基因突变的患者对抗EGFR治疗有耐药性,因此,支持在诊断为转移性结直肠癌时进行扩展的RAS和BRAF突变检测 [18] 。

且值得注意的是,与右侧肿瘤相比,左侧肿瘤往往具有丰富的EGFR表达。这种“偏向性”导致接受抗EGFR治疗的不同临床结果。几项研究表明,左侧肿瘤患者使用抗EGFR药物的临床效果更好,而右侧肿瘤患者使用抗VEGF药物的效果更好,这表明肿瘤定位对于有效治疗方案的重要性 [19] 。

除单抗外,小分子抑制剂也是EGFR靶向治疗中重要的一类药物。小分子抑制剂通过直接干扰EGFR的活性,从而阻止癌细胞的增殖和转移。依托唑仑(Icotinib)和厄洛替尼(Erlotinib)等小分子抑制剂也被成功应用于结直肠癌的治疗。这些药物对患者的生存率和生活质量均有重要的促进作用 [20] 。

总体而言,EGFR抑制剂已经成为结直肠癌靶向治疗领域中的一类重要药物,并取得了一定的研究进展。然而,需要进一步深入研究其在临床治疗中的应用效果以及潜在的不良反应。

3. 靶向VEGF

血管生成,即血管网络的形成,在mCRC和大多数其他癌症中,血管生成有助于肿瘤细胞的发展。它是由促血管生成和抗血管生成因子和受体(包括血管内皮生长因子(VEGF)、血小板源性生长因子和成纤维细胞生长因子)之间的平衡介导的。

Bev是一种针对血管内皮生长因子的靶向药,其生物学本质是一种人源化单克隆抗体 [21] 。它通过作用于血管内皮,即肿瘤循环系统的血管内皮,抑制肿瘤血管系统,这一过程增加了其他化疗药物的作用 [22] 。

VEGF家族蛋白和VEGFRs是肿瘤生长和转移的关键因子,调节正常和病理性肿瘤血管生成,导致几种信号通路的激活 [23] 。VEGF引起VEGFR二聚化,激活内在酪氨酸激酶,导致信号通路的激活,如RAS/Raf/MEK/ERK、PI1K/Akt和PLC-γ/PKC,以增强肿瘤血管生成和增殖。其中,VEGFR-2和VEGFR-85是VEGF-A的常见受体,被认为是临床上抗癌的有希望的靶点 [24] 。

贝伐珠单抗是一种人源化抗VEGF-A单克隆IgG1抑制VEGF-A与VEGFR-1和VEGFR-2结合的抗体,早在AVF2107g实验中,被FDA批准用于治疗转移性结直肠癌:AVF2107g是世界上首个关于贝伐珠单抗与化疗方案联合应用的Ⅲ期临床试验:初治mCRC患者随机接受伊立替康 + 氟尿嘧啶 + 亚叶酸钙(IFL方案)或贝伐珠单抗联合IFL治疗,结果表明,相比单纯化疗,贝伐珠单抗的联合应用可显著延长总生存期(overall survival, OS) (20.3个月vs 15.6个月)及无进展生存期(progression-free survival, PFS) (10.6 个月vs 6.2个月) [25] 。

一项随机III期试验(TRIBE试验)中,Cremolini等人表明,贝伐珠单抗与FOLFOXIRI的联合治疗方案显示出比FOLFIRI更好的疗效(OS:31.0 vs 25.8个月,p = 0.125; PFS:12.1 vs 9.7个月,p = 0.006) [26] 。

2012年,小分子多激酶抑制剂瑞戈非尼获FDA批准用于mCRC。它靶向血管生成[VEGF受体(VEGFR) 1~3、内皮细胞激酶2 (TIE2)]、基质细胞生长因子[血小板衍生生长因子受体β (PDGFR-β)、成纤维细胞生长因子受体(FGFR)],以及致癌受体酪氨酸激酶(KIT, RET, RAF) [27] 。

虽然VEGF/VEGFR靶向策略已用于伴或不伴RAS突变的结直肠癌患者,但左侧转移性结直肠癌和右侧转移性结直肠癌伴KRAS/NRAS/BRAF突变的患者应考虑使用含VEGF/VEGFR靶向药物的化疗方案 [28] 。

雷莫卢单抗(Cyramza;该产品是一种全人IgG1单抗,靶向血管内皮生长因子受体2细胞外结构域。在第三期随机化RAISE 50试验中,雷莫卢单抗被批准用于二线药物,与FOLFIRI或伊立替康联合使用。没有数据支持使用雷莫卢单抗单药治疗mCRC。虽然贝伐珠单抗和雷莫卢单抗均已证明有效,并已被批准用于二线(与FOLFIRI或伊立替康联合),但贝伐珠单抗仍被广泛使用,并成为首选药物,主要原因是雷莫卢单抗药物相关的较高成本和毒性 [29] 。

随着研究的不断深入,发现每种VEGF抑制剂具有不同的药理作用和治疗策略。例如,AEE788不仅可以靶向抑制VEGF receptors (VEGFR)和Ephrin-2表达,同时还可以抑制EGFR [30] 。

未来,我们期待更多的研究可以探索有效的联合治疗策略,以最大化利用这类药物的疗效同时减少其副作用和耐药性问题。

4. 靶向HER2

HER2是一种表皮生长因子受体,是许多实体瘤的靶向药物治疗的研究方向之一。抗HER2靶向治疗是乳腺癌和胃癌治疗流程中的一个里程碑。在mCRC中,临床前和临床试验评估了肿瘤携带HER2扩增的患者的不同治疗方法,在这一分子选择的人群中显示出有希望的结果。HER2阳性转移性结直肠癌约占10%~20%,其高表达在转移性结直肠癌中具有独特的流行病学特征 [31] 。

目前,一些HER2单抗的临床试验已逐渐得到了实验证据的支持。后续可作为后线治疗转移性结直肠癌的HER2阳性患者的选择。

Yonesaka 等人 [32] 和Bertotti [33] 等人的临床前研究表明,HER2扩增的肿瘤对HER2阻断敏感。据观察,使用抗HER2抗体(曲妥珠单抗、帕妥珠单抗)或可逆酪氨酸激酶抑制剂拉帕替尼的单一疗法对HER2的有效性较低–扩增的CRC异种移植物,而曲妥珠单抗和拉帕替尼或帕妥珠单抗和拉帕替尼的组合显示出更强的抗肿瘤活性,各种药物在其疗效、副作用等方面均具有优势和限制。

然而,由于HER2阳性转移性结直肠癌不属于常见亚型,HER2靶向治疗仅适用于HER2扩增的肿瘤伴野生型RAS/RAF的患者 [31] ,其临床试验数据相较于HER2阳性乳腺癌等其他患者的数据较为稀缺。因此,在HER2抑制剂的进一步研究中,合理的设计临床试验和寻找更多靶点的共同作用将是重要的研究方向。

5. 靶向BRAF

RAF激酶家族(ARAF、BRAF和CRAF (也称为RAF1))构成了RAS-RAF-MEK-ERK信号级联(ERK信号)的核心成分,这是一种介导信号从细胞表面受体到细胞核的通路调节细胞生长、分化和存活。激活后,RAF激酶磷酸化并激活激酶MEK1和MEK2,后者又磷酸化并激活ERK1和ERK2。激活的ERK通过磷酸化胞质溶胶和细胞核中的多种底物来促进细胞增殖和存活 [34] 。v-Raf鼠肉瘤病毒癌基因同系物B1 (BRAF)属于称为RAF的蛋白质家族,在EGFR介导的MAPK通路中发挥作用以调节细胞生长、分化和增殖。在大约10%的患者中发现了BRAF V600E突变,并且在接受标准化疗时与不良预后相关 [35] 。

尽管它在黑色素瘤中有效,单药BRAF抑制剂在BRAF V600E突变型CRC患者中没有表现出临床活性 [36] 。临床前研究表明,这是由于EGFR介导的MAPK信号传导的适应性反馈激活,为了避免MAPK信号重新激活,进行了多项评估BRAF抑制剂与EGFR和/或MEK抑制剂的疗效和安全性的临床试验 [37] [38] [39] 。虽然许多组合显示出前景,但目前仅使用encorafenib (一种BRAF抑制剂)和西妥昔单抗组合,因为根据BEACON试验的结果,其具有良好的疗效和耐受性组合 [39] 。鉴于以上结果,FDA及日本、欧盟批准encorafenib联合西妥昔单抗二联疗法,为经治疾病进展的mCRC患者提供了新的标准疗法。

6. mCRC免疫治疗

一些肿瘤细胞表达抑制性分子,例如PD-L1,它与T细胞上的PD-1受体结合并抑制T细胞,这一过程被称为“免疫检查点” [40] 。CTLA-4还通过与两个表面蛋白B7家族成员(CD80和CD86)结合并抑制免疫细胞发挥免疫检查点的作用。在过去的几十年里,针对CTLA-4、PD-1和PD-L1的免疫检查点阻断的成功导致了癌症治疗的突破。

2015年,一项2期研究评估了pembrolizumab (一种抗PD-1抑制剂)在伴或不伴MMR缺陷(dMMR)的进行性转移癌患者中的临床活性。他们的数据证明了派姆单抗对所有dMMR患者(包括mCRC患者)的疗效 [41] 。

近年来,PD-1抑制剂(派姆单抗及纳武利尤单抗) [41] 、PD-L1抑制剂(阿替利珠单抗) [42] 、CT-LA4抑制剂(伊匹单抗) [43] 在mCRC中的有效性相继被证实,遗憾的是获益仅限于dMMR患者或高度微卫星不稳定(microsatellite instability-high, MSI-H)患者。结直肠癌中dMMR/MSI-H型仅占3%~7% [44] ,大部分患者为低度微卫星不稳定(microsatellite instability-low, MSI-L)、微卫星稳定(microsatellite stability,MSS)或错配修复正常(proficient mismatch repair, pMMR)。

免疫检查点抑制剂的发现是mCRC治疗的重要进展。然而,一部分MSI高肿瘤对初始免疫疗法仍然具有抵抗力。削弱免疫反应的突变,例如β2微球蛋白(B2M)的截短突变,会导致抗原呈递失败和随后的T细胞反应,从而使免疫疗法无效。此外,由免疫细胞和癌细胞之间不断相互作用而产生的免疫编辑会导致选择缺乏新抗原表达的肿瘤细胞,从而对免疫疗法产生耐药性。总体而言,CRC的免疫治疗耐药性可能与肿瘤抗原呈递不足、T细胞排斥和TME中的免疫抑制信号传导有关 [45] [46] 。

7. 治疗mCRC创新技术

尽管近年来取得了这些进展,但许多患者仍然用尽了可行的治疗选择。迄今为止,很大一部分CRC患者没有可操作的突变或dMMR状态;因此,他们不会受益于上述靶向疗法和免疫疗法。用于免疫疗法的细胞操作技术、使用细菌的药物输送系统和纳米技术正在兴起,并有望为无法从当前治疗模式中受益的患者提供可行的治选择。

8. 总结与展望

转移性结直肠癌是一种严重的疾病,导致许多患者的死亡。现在,靶向治疗被广泛认为是治疗转移性结直肠癌的重要手段之一。但是,目前还有许多挑战和限制需要被克服。

首先,尽管有许多靶向治疗药物已经在临床实践中获得了成功,但是,其有效性常常是有限的。因此,需要进一步寻找新的靶向治疗方法,以更好地对抗转移性结直肠癌。

其次,由于转移性结直肠癌是一种高度异质性的疾病,不同患者的治疗反应也往往不同。因此,需要深入研究转移性结直肠癌的分子机制,以便更好地了解患者的病理特征并确定最佳治疗方案。

另外,虽然现有的靶向治疗药物已经能够在很大程度上延长患者的生存期,但是,许多患者仍然需要长期地接受治疗。因此,需要研发更加有效的药物,不仅能够延长患者的生存期,而且也能够减轻治疗的副作用。

最后,除了药物治疗外,还需要更加全面的治疗方案,包括手术治疗、辅助放疗等,以更好地对抗转移性结直肠癌。因此,需要更深入地研究多种治疗手段的组合使用,以便为患者提供更好的治疗方案。

综上所述,尽管转移性结直肠癌靶向治疗已经取得了一些进展,但是,我们需要更加努力地去突破当前的困难和限制,以更好地对抗转移性结直肠癌。我们应该相信,在不久的未来,我们将能够找到更加有效的治疗方法,使更多的患者得到治疗,并取得更加理想的治疗效果。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Arnold, M., Sierra, M.S., Laversanne, M., et al. (2017) Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut, 66, 683-691.
https://doi.org/10.1136/gutjnl-2015-310912
[3] Garcia, J., Hurwitz, H.I., Sandler, A.B., et al. (2020) Bevaci-zumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treatment Reviews, 86, Article ID: 102017.
https://doi.org/10.1016/j.ctrv.2020.102017
[4] Alfonso, P.G. (2018) Chemotherapy plus Bevacizumab as Neoad-juvant or Conversion Treatment in Patients with Colorectal Liver Metastases. Anticancer Research, 38, 3069-3077.
https://doi.org/10.21873/anticanres.12564
[5] 钱健, 秦超, 殷长军. 肿瘤靶向药物疗效及毒性与基因多态性间相关性的研究进展[J]. 中国肿瘤外科杂志, 2012, 4(3): 161-163.
[6] Simanshu, D.K., Nissley, D.V. and McCor-mick, F. (2017) RAS Proteins and Their Regulators in Human Disease. Cell, 170, 17-33.
https://doi.org/10.1016/j.cell.2017.06.009
[7] Salomon, D.S., Brandt, R., Ciardiello, F., et al. (1995) Epidermal Growth Factor-Related Peptides and Their Receptors in Human Malignancies. Critical Reviews in Oncology/Hematology, 19, 183-232.
https://doi.org/10.1016/1040-8428(94)00144-I
[8] Parseghian, C.M., Napolitano, S., Loree, J.M., et al. (2019) Mechanisms of Innate and Acquired Resistance to Anti-EGFR Therapy: A Review of Current Knowledge with a Focus on Rechallenge Therapies. Clinical Cancer Research, 25, 6899-6908.
https://doi.org/10.1158/1078-0432.CCR-19-0823
[9] Parseghian, C.M., Loree, J.M., Morris, V.K., et al. (2019) Anti-EGFR-Resistant Clones Decay Exponentially after Progression: Implications for Anti-EGFR Re-Challenge. Annals of Oncology, 30, 243-249.
https://doi.org/10.1093/annonc/mdy509
[10] Rowland, A., Dias, M.M., Wiese, M.D., et al. (2015) Meta-Analysis of BRAF Mutation as a Predictive Biomarker of Benefit from Anti-EGFR Monoclonal Antibody Therapy for RAS Wild-Type Metastatic Colorectal Cancer. British Journal of Cancer, 112, 1888-1894.
https://doi.org/10.1038/bjc.2015.173
[11] De Roock, W., Claes, B., Bernasconi, D., et al. (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA Mutations on the Efficacy of Cetuximab plus Chemotherapy in Chemotherapy-Refractory Metastatic Colorectal Cancer: A Retrospective Consortium Analysis. The Lancet Oncology, 11, 753-762.
https://doi.org/10.1016/S1470-2045(10)70130-3
[12] Sakata, S. and Larson, D.W. (2022) Targeted Therapy for Colorectal Cancer. Surgical Oncology Clinics of North America, 31, 255-264.
https://doi.org/10.1016/j.soc.2021.11.006
[13] Bhattacharya, S. (2023) An Empirical Review on the Resistance Mechanisms of Epidermal Growth Factor Receptor Inhibitors and Predictive Molecular Biomarkers in Colorectal Cancer. Critical Reviews in Oncology/Hematology, 183, Article ID: 103916.
https://doi.org/10.1016/j.critrevonc.2023.103916
[14] Kawai, S., Takeshima, N., Hayasaka, Y., et al. (2021) Com-parison of Irinotecan and Oxaliplatin as the First-Line Therapies for Metastatic Colorectal Cancer: A Meta-Analysis. BMC Cancer, 21, Article No. 116.
https://doi.org/10.1186/s12885-021-07823-7
[15] Cremolini, C., Antoniotti, C., Lonardi, S., et al. (2018) Activity and Safety of Cetuximab plus Modified FOLFOXIRI Followed by Maintenance with Cetuximab or Bevacizumab for RAS and BRAF Wild-Type Metastatic Colorectal Cancer: A Randomized Phase 2 Clinical Trial. JAMA Oncology, 4, 529-536.
https://doi.org/10.1001/jamaoncol.2017.5314
[16] Modest, D.P., Martens, U.M., Riera-Knorrenschild, J., et al. (2019) FOLFOXIRI plus Panitumumab as First-Line Treatment of RAS Wild-Type Metastatic Colorectal Cancer: The Randomized, Open-Label, Phase II VOLFI Study (AIO KRK0109). Journal of Clinical Oncology, 37, 3401-3411.
https://doi.org/10.1200/JCO.19.01340
[17] Amodio, V., Yaeger, R., Arcella, P., et al. (2020) EGFR Blockade Re-verts Resistance to KRAS(G12C) Inhibition in Colorectal Cancer. Cancer Discovery, 10, 1129-1139.
https://doi.org/10.1158/2159-8290.CD-20-0187
[18] Karapetis, C.S., Khambata-Ford, S., Jonker, D.J., et al. (2008) K-ras Mutations and Benefit from Cetuximab in Advanced Colorectal Cancer. The New England Journal of Medicine, 359, 1757-1765.
https://doi.org/10.1056/NEJMoa0804385
[19] Shin, A.E., Giancotti, F.G. and Rustgi, A.K. (2023) Metastatic Col-orectal Cancer: Mechanisms and Emerging Therapeutics. Trends in Pharmacological Sciences, 44, 222-236.
https://doi.org/10.1016/j.tips.2023.01.003
[20] Tan, L., Tran, B., Tie, J., et al. (2023) A Phase Ib/II Trial of Com-bined BRAF and EGFR Inhibition in BRAF V600E Positive Metastatic Colorectal Cancer and Other Cancers: The EVICT (Erlotinib and Vemurafenib in Combination Trial) Study. Clinical Cancer Research, 29, 1017-1030.
https://doi.org/10.1158/1078-0432.CCR-22-3094
[21] Dinu, I.M., Mihăilă, M., Diculescu, M.M., et al. (2023) Bevacizumab Treatment for Metastatic Colorectal Cancer in Real-World Clinical Practice. Medicina (Kaunas), 59, Article No. 350.
https://doi.org/10.3390/medicina59020350
[22] Rosen, L.S., Jacobs, I.A. and Burkes, R.L. (2017) Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars. Targeted Oncology, 12, 599-610.
https://doi.org/10.1007/s11523-017-0518-1
[23] Carmeliet, P. and Jain, R.K. (2011) Principles and Mechanisms of Vessel Normalization for Cancer and Other Angiogenic Diseases. Nature Reviews Drug Discovery, 10, 417-427.
https://doi.org/10.1038/nrd3455
[24] Mariotti, V., Fiorotto, R., Cadamuro, M., et al. (2021) New Insights on the Role of Vascular Endothelial Growth Factor in Biliary Pathophysiology. JHEP Reports, 3, Article ID: 100251.
https://doi.org/10.1016/j.jhepr.2021.100251
[25] Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. (2004) Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. The New England Journal of Medicine, 350, 2335-2342.
https://doi.org/10.1056/NEJMoa032691
[26] Cremolini, C., Antoniotti, C., Rossini, D., et al. (2020) Upfront FOLFOXIRI plus Bevacizumab and Reintroduction after Progression versus mFOLFOX6 plus Bevacizumab Followed by FOLFIRI plus Bevacizumab in the Treatment of Patients with Metastatic Colorectal Cancer (TRIBE2): A Multicentre, Open-Label, Phase 3, Randomised, Controlled Trial. The Lancet Oncology, 21, 497-507.
https://doi.org/10.1016/S1470-2045(19)30862-9
[27] Grothey, A., Van Cutsem, E., Sobrero, A., et al. (2013) Regorafenib Monotherapy for Previously Treated Metastatic Colorectal Cancer (CORRECT): An International, Multicen-tre, Randomised, Placebo-Controlled, Phase 3 Trial. The Lancet, 381, 303-312.
https://doi.org/10.1016/S0140-6736(12)61900-X
[28] Creasy, J.M., Sadot, E., Koerkamp, B.G., et al. (2018) The Impact of Primary Tumor Location on Long-Term Survival in Patients Undergoing Hepatic Resection for Metastatic Co-lon Cancer. Annals of Surgical Oncology, 25, 431-438.
https://doi.org/10.1245/s10434-017-6264-x
[29] Tabernero, J., Yoshino, T., Cohn, A.L., et al. (2015) Ramu-cirumab versus Placebo in Combination with Second-Line FOLFIRI in Patients with Metastatic Colorectal Carcinoma That Progressed during or after First-Line Therapy with Bevacizumab, Oxaliplatin, and a Fluoropyrimidine (RAISE): A Randomised, Double-Blind, Multicentre, Phase 3 Study. The Lancet Oncology, 16, 499-508.
https://doi.org/10.1016/S1470-2045(15)70127-0
[30] Valverde, A., Peñarando, J., Cañas, A., et al. (2015) Simul-taneous Inhibition of EGFR/VEGFR and Cyclooxygenase-2 Targets Stemness-Related Pathways in Colorectal Cancer Cells. PLOS ONE, 10, e131363.
https://doi.org/10.1371/journal.pone.0131363
[31] Ahcene, D.S., Daniel, F., Milani, A., et al. (2022) HER2 in Colorectal Cancer: The Long and Winding Road from Negative Predictive Factor to Positive Actionable Target. American Society of Clinical Oncology Educational Book, 42, 1-14.
[32] Yonesaka, K., Zejnullahu, K., Okamoto, I., et al. (2011) Activation of ERBB2 Signaling Causes Resistance to the EGFR-Directed Therapeutic Antibody Cetuximab. Science Translational Medicine, 3, 86r-99r.
https://doi.org/10.1126/scitranslmed.3002442
[33] Bertotti, A., Migliardi, G., Galimi, F., et al. (2011) A Molecu-larly Annotated Platform of Patient-Derived Xenografts (“Xenopatients”) Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer. Cancer Discovery, 1, 508-523.
https://doi.org/10.1158/2159-8290.CD-11-0109
[34] Matallanas, D., Birtwistle, M., Romano, D., et al. (2011) Raf Family Kinases: Old Dogs Have Learned New Tricks. Genes Cancer, 2, 232-260.
https://doi.org/10.1177/1947601911407323
[35] Davies, H., Bignell, G.R., Cox, C., et al. (2002) Mutations of the BRAF Gene in Human Cancer. Nature, 417, 949-954.
https://doi.org/10.1038/nature00766
[36] Kopetz, S., Desai, J., Chan, E., et al. (2015) Phase II Pilot Study of Vemurafenib in Patients with Metastatic BRAF-Mutated Colorectal Cancer. Journal of Clinical Oncology, 33, 4032-4038.
https://doi.org/10.1200/JCO.2015.63.2497
[37] Kopetz, S., Guthrie, K.A., Morris, V.K., et al. (2021) Randomized Trial of Irinotecan and Cetuximab with or without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). Journal of Clinical Oncology, 39, 285-294.
https://doi.org/10.1200/JCO.20.01994
[38] Wang, Z., Qin, B.D., Ye, C.Y., et al. (2022) Cetuximab and Vemurafenib plus FOLFIRI (5-Fluorouracil/Leucovorin/ Irinotecan) for BRAF V600E-Mutated Advanced Colorectal Cancer (Improvement): An Open-Label, Single-Arm, Phase II Trial. Euro-pean Journal of Cancer, 163, 152-162.
https://doi.org/10.1016/j.ejca.2021.12.028
[39] Corcoran, R.B., Atreya, C.E., Falchook, G.S., et al. (2015) Combined BRAF and MEK Inhibition with Dabrafenib and Trametinib in BRAF V600-Mutant Colorectal Cancer. Journal of Clinical Oncology, 33, 4023-4031.
https://doi.org/10.1200/JCO.2015.63.2471
[40] Chen, L. (2004) Co-Inhibitory Molecules of the B7-CD28 Family in the Control of T-Cell Immunity. Nature Reviews Immunology, 4, 336-347.
https://doi.org/10.1038/nri1349
[41] Le, D.T., Uram, J.N., Wang, H., et al. (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. The New England Journal of Medicine, 372, 2509-2520.
https://doi.org/10.1056/NEJMoa1500596
[42] Sherman, E., Lee, J.L., Debruyne, P.R., et al. (2023) Safety and Ef-ficacy of Cobimetinib plus Atezolizumab in Patients with Solid Tumors: A Phase II, Open-Label, Multicenter, Multico-hort Study. ESMO Open, 8, Article ID: 100877.
https://doi.org/10.1016/j.esmoop.2023.100877
[43] Overman, M.J., Lonardi, S., Wong, K., et al. (2018) Durable Clinical Benefit with Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. Journal of Clinical Oncology, 36, 773-779.
https://doi.org/10.1200/JCO.2017.76.9901
[44] Sawayama, H., Miyamoto, Y., Ogawa, K., et al. (2020) Investiga-tion of Colorectal Cancer in Accordance with Consensus Molecular Subtype Classification. Annals of Gastroenterologi-cal Surgery, 4, 528-539.
https://doi.org/10.1002/ags3.12362
[45] Motta, R., Cabezas-Camarero, S., Torres-Mattos, C., et al. (2021) Immu-notherapy in Microsatellite Instability Metastatic Colorectal Cancer: Current Status and Future Perspectives. Journal of Clinical and Translational Research, 7, 511-522.
[46] Weng, J., Li, S., Zhu, Z., et al. (2022) Exploring Immunotherapy in Colorectal Cancer. Journal of Hematology & Oncology, 15, Article No. 95.
https://doi.org/10.1186/s13045-022-01294-4