血液灌流器治疗急性中毒患者的新进展
New Advances in the Treatment of Patients with Acute Poisoning with Hemoperfusion Devices
DOI: 10.12677/ACM.2023.1361457, PDF, HTML, XML, 下载: 835  浏览: 6,354 
作者: 苏浩鹏, 于朝霞*:新疆医科大学第一附属医院重症医学中心,新疆 乌鲁木齐
关键词: 血液灌流急性中毒毒素Hemoperfusion Acute Poisoning Toxins
摘要: 血液净化技术用于清除体内毒素已有50多年的历史,其在治疗急性中毒方面起到了前所未有的重要作用。其中通过血液灌流,提供了治疗疾病及清除体内无法完全清除有毒物质的机会。随着血液灌流技术进步,血液灌流器的不断改进提高了清除药物和其他毒素的效果,并拓展了对中毒患者体外支持的作用。对临床医生而言,采用血液灌流技术治疗急性中毒时需考虑到可被体外清除毒素的特性(例如,分子量、分布体积和蛋白质的结合)、所选血液灌流器和可应对相应风险的手段。本文对近年来血液灌流技术治疗急性中毒研究进展作一综述,以期对今后提高治疗急性中毒患者的生存率有所帮助。
Abstract: Blood purification techniques have been used to remove toxins from the body for more than 50 years and have played an unprecedented and important role in the treatment of acute poisoning. Among other things, blood perfusion provides the opportunity to treat disease and remove toxic substances from the body that cannot be completely removed. With advances in hemoperfusion technology, continuous improvements in hemoperfusion devices have increased the effectiveness of removing drugs and other toxins and expanded the role of extracorporeal support for poisoned pa-tients. For clinicians, the use of hemoperfusion techniques for the treatment of acute poisoning re-quires consideration of the properties of the toxins that can be removed in vitro (e.g., molecular weight, volume of distribution, and protein binding), the hemoperfusion device selected, and the means available to address the corresponding risks. This article reviews recent advances in hemoperfusion techniques for the treatment of acute poisoning with the aim of improving the sur-vival rate of patients treated for acute poisoning in the future.
文章引用:苏浩鹏, 于朝霞. 血液灌流器治疗急性中毒患者的新进展[J]. 临床医学进展, 2023, 13(6): 10407-10412. https://doi.org/10.12677/ACM.2023.1361457

1. 引言

从历史上看,血液灌流亦或是血液透析等体外治疗技术的临床应用最初只针对中毒患者。随着时间的推移,尽管临床效益不确切,但该技术还是被不分青红皂白地用于促进各种毒物的消除。使得该技术在中毒患者管理中的应用仍然是一个有争议、不确定的话题。为了确定血液灌流在中毒情况下的准确作用,需要考虑多种变量,包括详细的风险评估、毒物的特性(包括毒代动力学)、替代治疗、患者的临床状况以及可用血液灌流器的临床处方 [1] 。

2. 血液灌流技术的原理

血液灌流技术的发展集中在吸附剂的改进。最初,无机硅铝酸盐(沸石)和木炭是最早被用做吸附剂的材料 [2] 。近年来,有机聚合物离子交换树脂和最终合成的多孔聚合物(苯乙烯或丙烯酸基)等新型材料以在临床中投入使用 [3] 。因此,最初由吸附剂材料引起的不良反应,随着更多的生物相容性吸附剂材料安全地用于各种临床环境中的血液吸附技术而被解决 [4] 。

吸附剂一般被制备成珠状、颗粒状、薄片状、纤维状、球状、圆筒状、粒状等,其直径从50 μm到1.2 cm不等 [5] 。它们的特点是具有较高的表面积和质量比,从300到1200 m2/g,这有助于扩大它们的吸附能力。珠子包含在一个塑料盒中,该塑料盒具有用于血浆和血液流入和流出的端口和特定的筛网,以避免吸附剂颗粒滞留到循环中。

在多孔材料上吸附溶质的过程中,可以确定不同的步骤和机制 [6] :

1) 溶质的外部(相间)质量转移:通过对流从散装液体,然后通过薄膜或边界层扩散到吸收剂的外表面;

2) 溶质的内部(相内)质量转移:主要是通过扩散从吸收剂的外表面进入内部多孔结构;

3) 沿着内部孔隙的表面扩散,以及内部孔隙的表面扩散;

4) 溶质在多孔表面的吸附。

一旦结合完成,这部分吸附剂就饱和了,不再用于血液净化,这就是为什么吸附剂的寿命有限,一旦完全饱和就应该更换 [7] 。吸附剂的饱和相可描述为吸附和解吸(即吸附化合物的释放)之间的动态平衡。 然而,解吸只是动态平衡的一小部分。当范德华力和离子键参与时,这个过程就会发生 [8] 。由于这些作用力不如疏水作用力强,所以其过程是可逆的,如果扩散平衡和化学梯度有利于解吸 [9] ,部分被吸附的溶质可以返回流体相。然而,动态翻转(吸附/解吸)在大多数情况下占总质量去除量的5%~7% [10] 。

3. 吸附剂的技术问题

早期的吸附剂技术存在主要的生物相容性问题(如血小板减少、白细胞减少、低钙血症等) [11] ,这阻碍了血液灌流的发展和临床应用。J H Rommes [12] 等人的报道中,红细胞压积从稳态期的0.42 ± 0.06下降到灌注结束时的0.35 ± 0.05、而Ca2+浓度则由前30 mins的1.30 ± 0.05 mmol/L。下降至灌注结束时的1.21 ± 0.04 mmol/L、白细胞浓度由5.5 ± 2.2 × 109/L下降至灌注治疗15 mins后的2.7 ± 0.3 × 109/L、血小板浓度由273 ± 67 × 109/L下降至灌流治疗30 mins后的71 ± 24 × 109/L,此后血小板浓度缓慢增加至190 ± 104 × 109/L。然而,吸附剂生物相容性的改善引发了血液灌流在临床实践中的新兴趣、研究和应用。

对理想吸附剂材料的要求 [13] :

吸附剂材料:1) 具有高选择性/亲和力以实现快速分离;

2) 高容量以最小化所需的吸附剂量;

3) 良好的动力学和输运性质以实现快速吸附;

4) 具有化学和热稳定性,接触流体时溶解度低;

5) 硬度和机械强度,防止破碎和侵蚀;

6) 无流动倾向,易于填充和排空填料珠;

7) 高抗结垢性,寿命长,溶质干扰小;

8) 无促进不良化学反应或副作用的趋势,成本较低。

吸附剂药筒:1) 长度和直径设计适当;

2)内部容积适当,以避免过多的血液预充量;

3) 避免易发生凝血的死角区域;

4) 适当的吸附剂颗粒的填充密度;

5) 填充床的血液流动阻力小;

6) 适当的保持筛孔,以避免吸附剂颗粒的扩散;

7) 质量传递区小于单位长度。

4. 适用于血液净化去除毒物的特征

毒物的物理化学和毒物动力学特性预测了它是否是“可被吸附的”,或者是否能够被血液净化设备从血浆中清除 [14] 。其次,这些特性预测了血液灌流能够提高毒物总清除率的程度。血液净化清除毒物的主要决定因素是分子量(MW)、分布体积(VD)、亲水和亲脂性、蛋白质和组织结合以及内源性清除 [15] 。

现代高效、高通量的扩散式透析器能够清除分子量范围小于15,000 Da的毒物 [16] 。血液滤过和血液透析滤过等对流方式可以清除分子量接近25,000 Da的毒物,而高截流和中截流膜可以去除分子量高达50,000 Da的毒物 [17] 。

分布体积将体内的毒物量与血浆或血液中的浓度联系起来。因为血液净化只清除血管内腔的毒物,所以VD较小(<1 L/kg)的毒物更容易被清除 [18] 。而VD越大,位于血管外组织的毒物比例越大,因此不暴露于体外装置。如果毒物表现出较大的VD (>2 L/kg),则血液净化的总清除率将较低。然而,有专家推测,在毒物进入体内早期先发制人地启动血液净化可能会促进大量VD大的毒物的清除,尽管这种情况治疗程度尚不明确 [19] 。亲水性毒物主要分布在全身水环境中,表现出较小的VD,并更容易被吸附,而亲脂性毒物分布在血管外组织,尤其是脂肪组织,导致较大的VD [20] 。

毒物的血浆、蛋白质和组织结合程度与其体外清除率成反比,因为血液灌流只清除未结合的毒物(游离部分) [21] 。一般来说,蛋白质结合率 > 80%的毒物通过血液透析很难清除。重要的是要注意,对于某些药物(特别是水杨酸和丙戊酸),蛋白质结合在治疗浓度时“很高”,但在高浓度血浆时饱和,增加了游离浓度,使它们更容易被血液灌流去除 [22] 。

最后一个重要的考虑是患者潜在的内源性(全身)毒物清除,这是肾脏和非肾脏清除的总和 [23] 。如果内源性清除率很高,那么血液灌流不太可能显著增加总清除率 [24] 。因此,除非肾功能受损,通常不建议用血液灌流来加强消除;然而,在急性肾损伤的情况下,即使用血液灌流也有潜在的益处 [25] 。

血液净化的选择 [26] :

蛋白结合率 > 95%的毒物:治疗性血浆置换;

蛋白结合率80%~95%的毒物:血液灌流;

毒物的蛋白结合率 < 80%情况下:

且分子量 < 15,000 Da:高通量血液透析;

且分子量在15,000 Da~20,000 DA之间:血液滤过;

且分子量 > 15,000 Da:高截断/中截断血液透析或血液滤过;

且分子量 > 50,000 Da:治疗性血浆置换。

大多数出现在急诊科的中毒患者在支持性下得到成功治疗,并无任何并发症。ECTR通常适用于少数患者,这些患者可能遭受危及生命的毒性,在昏迷和机械通气的情况下长期住院重症监护室 [27] ,永久性残疾的可能性很高,或尽管采取了标准的支持措施但仍收效甚微。除了可以防止、限制或逆转毒性的解毒剂外 [28] ,还有几种疗法可以阻止吸收(胃排空、活性炭或全肠冲洗)或促进消除(多剂量活性炭或尿液碱化) [29] 。当这些替代治疗不可行或不太可能足够时,如果毒物被认为是“可被清除的”,则应及时考虑血液净化。

5. 讨论

最后,对目标溶质吸附的选择性是该项技术最基础的方面。所有这些方面(即聚合物类型、设计、吸附剂的包装、流量、饱和度)都可以变化并组合成不同的产品,显著影响吸附式体外血液净化的临床效果及其适应证 [30] 。

我们建议研究首先应侧重于更好地理解吸附过程的基本方面、每种吸附剂的性质、吸附机制及其潜在的副作用。其次,我们建议针对多种相关溶质(如细胞因子、氨、可能的尿毒症毒素、毒性药物、抗生素)进行离体研究,以确定它们的离体通过改变血流量和灌注时间来确定最佳操作条件。第三,我们建议将研究重点放在识别有意义的目标分子和测量它们的体内和体外动力学上。第四,我们建议在大型动物中进行类似的多目标研究,以评估长时间暴露对器官功能的生物学和生理学影响。

新的吸附剂材料现在已经为血液灌流临床应用研究的复苏铺平了道路,血液灌流和具有定制目标溶质、实施安全和选择性治疗潜力的生物相容性药筒的设计目前正在推动最新一代血液净化装置的发展。

NOTES

*通讯作者。

参考文献

[1] Foster, J.D. (2020) Extracorporeal Therapies in the Emergency Room and Intensive Care Unit. Veterinary Clinics of North America: Small Animal Practice, 50, 1215-1236.
https://doi.org/10.1016/j.cvsm.2020.07.014
[2] Ghannoum, M., Hoffman, R.S., Gosselin, S., et al. (2018) Use of Extracorporeal Treatments in the Management of Poisonings. Kidney International, 94, 682-688.
https://doi.org/10.1016/j.kint.2018.03.026
[3] Harm, S., Schildböck, C. and Hartmann, J. (2020) Cytokine Re-moval in Extracorporeal Blood Purification: An in Vitro Study. Blood Purification, 49, 33-43.
https://doi.org/10.1159/000502680
[4] Copelli, S., Lorenzin, A. and Ronco, C. (2023) Chemical-Physical Mecha-nisms of Adsorption for Blood Purification. Contributions to Nephrology, 200, 1-9.
[5] Kaçar, C.K., Uzundere, O., Kandemir, D. and Yektaş, A. (2020) Efficacy of HA330 Hemoperfusion Adsorbent in Patients Followed in the Intensive Care Unit for Septic Shock and Acute Kidney Injury and Treated with Continuous Venovenous Hemodiafiltration as Re-nal Replacement Therapy. Blood Purification, 49, 448-456.
https://doi.org/10.1159/000505565
[6] Ankawi, G., Fan, W., Pomarè Montin, D., et al. (2019) A New Series of Sorbent Devices for Multiple Clinical Purposes: Current Evidence and Future Directions. Blood Purification, 47, 94-100.
https://doi.org/10.1159/000493523
[7] Li, S. and Liang, Y. (2023) Effects of Hemoperfusion First Aid Process Reengineering on Electrolyte Disturbance, Liver Function and Prognosis in Patients with Acute Poisoning. Biotechnology and Genetic Engineering Reviews.
https://doi.org/10.1080/02648725.2023.2200326
[8] Ronco, C. and Bellomo, R. (2022) Hemoperfusion: Tech-nical Aspects and State of the Art. Critical Care, 26, Article No. 135.
https://doi.org/10.1186/s13054-022-04009-w
[9] Shi, L., Yu, G., Li, Y., Zhao, L., Wen, Z., Tao, Y., Wang, W. and Jian, X. (2022) The Toxicokinetics of Acute Paraquat Poisoning in Specific Patients: A Case Series. Journal of In-ternational Medical Research, 50, Article ID: 3000605221122745.
https://doi.org/10.1177/03000605221122745
[10] Wolley, M., Jardine, M. and Hutchison, C.A. (2018) Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules. Clinical Journal of the American So-ciety of Nephrology, 13, 805-814.
https://doi.org/10.2215/CJN.10110917
[11] Pomarè Montin, D., Ankawi, G., Lorenzin, A., et al. (2018) Biocom-patibility and Cytotoxic Evaluation of New Sorbent Cartridges for Blood Hemoperfusion. Blood Purification, 46, 187-195.
https://doi.org/10.1159/000489921
[12] Rommes, J.H., Sangster, B., Berrens, L., Borst, C. and van Heijst, A.N. (1986) Biocompatibility of Haemoperfusion. Archives of Toxicology, 58, 187-195.
https://doi.org/10.1007/BF00340980
[13] Jha, V.K. and Padmaprakash, K.V. (2018) Extracorporeal Treatment in the Management of Acute Poisoning: What an Intensivist Should Know? Indian Journal of Critical Care Medicine, 22, 862-869.
https://doi.org/10.4103/ijccm.IJCCM_425_18
[14] Jansen, T., Hoegberg, L.C.G., Eriksen, T., et al. (2019) Ami-triptyline Accumulation in Tissues after Coated Activated Charcoal Hemoperfusion—A Randomized Controlled Animal Poisoning Model. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392, 1285-1292.
https://doi.org/10.1007/s00210-019-01669-4
[15] Yeh, Y.-T., Chen, C.-K., Lin, C.-C., et al. (2020) Does Hemoperfusion Increase Survival in Acute Paraquat Poisoning? A Retrospective Multicenter Study. Toxics, 8, Article No. 84.
https://doi.org/10.3390/toxics8040084
[16] Liu, Y., Wang, Z.-K., Liu, C.-Z., Liu, Y.-Y., Li, Q., Wang, H., Cui, F., Zhang, D.-W. and Li, Z.-T. (2022) Supramolecular Organic Frameworks as Adsorbents for Efficient Removal of Ex-cess Bilirubin in Hemoperfusion. ACS Applied Materials & Interfaces, 14, 47397-47408.
https://doi.org/10.1021/acsami.2c11458
[17] Zhao, D., Wang, Y., Wang, Y., et al. (2022) Randomized Control Study on Hemoperfusion Combined with Hemodialysis versus Standard Hemodialysis: Effects on Mid-dle-Molecular-Weight Toxins and Uremic Pruritus. Blood Purification, 11, 1-11.
[18] King, J.D., Kern, M.H. and Jaar, B.G. (2019) Extracorporeal Removal of Poisons and Toxins. Clinical Journal of the American Society of Nephrology, 14, 1408-1415.
https://doi.org/10.2215/CJN.02560319
[19] Hahn, R.G. (2020) Understanding Volume Kinetics. Acta Anaesthesiologica Scandinavica, 64, 570-578.
https://doi.org/10.1111/aas.13533
[20] Alves, R.N., Rambla-Alegre, M., Braga, A.C., et al. (2019) Bioaccessibility of Lipophilic and Hydrophilic Marine Biotoxins in Seafood: An in Vitro Digestion Approach. Food and Chemical Toxi-cology, 129, 153-161.
https://doi.org/10.1016/j.fct.2019.04.041
[21] Rey, S., Kulabukhov, V.M., Popov, A., Nikitina, O., Berdnikov, G., Magomedov, M., Kim, T., Masolitin, S., Ignatenko, O., Krotenko, N., Marysheva, A., Chaus, N., Ohinko, L., Mendibaev, M., Chumachenko, A. and Pisarev, V. (2023) Hemoperfusion Using the LPS-Selective Mesoporous Poly-meric Adsorbent in Septic Shock: A Multicenter Randomized Clinical Trial. Shock, 59, 846-854.
https://doi.org/10.1097/SHK.0000000000002121
[22] Florens, N., Yi, D., Juillard, L. and Soulage, C.O. (2018) Using Binding Competitors of Albumin to Promote the Removal of Protein-Bound Uremic Toxins in Hemodialysis: Hope or Pipe Dream? Biochimie, 144, 1-8.
https://doi.org/10.1016/j.biochi.2017.09.018
[23] Dargent, A., Pais de Barros, J.-P., Saheb, S., et al. (2020) LDLApheresis as an Alternate Method for Plasma LPS Purification in Healthy Volunteers and Dyslipidemic and Septic Patients. Journal of Lipid Research, 61, 1776-1783.
https://doi.org/10.1194/jlr.RA120001132
[24] Wen, Z., Li, X., Zhang, Y., Shi, J., Zhang, J., Zheng, Y., Lin, Y., Jian, T., Jian, X., Kan, B. and Luan, X. (2022) Comparing the Application of Three Thrombosis Risk Assessment Mod-els in Patients with Acute Poisoning: A Cross-Sectional Survey. Frontiers in Medicine, 9, Article 1072467.
https://doi.org/10.3389/fmed.2022.1072467
[25] Wang, G., Li, Z., Zhang, Y., Pan, Y. and Chen, L. (2021) Com-parison of Combined Hemodialysis and Hemoperfusion with Hemoperfusion Alone in 106 Patients with Diabetic Ke-toacidosis and Acute Renal Failure: A Retrospective Study from a Single Center in China. Medical Science Monitor, 27, e922753.
https://doi.org/10.12659/MSM.922753
[26] Ghannoum, M., Lavergne, V., Gosselin, S., et al. (2016) Practice Trends in the Use of Extracorporeal Treatments for Poisoning in Four Countries. Seminars in Dialysis, 29, 71-80.
https://doi.org/10.1111/sdi.12448
[27] Ronco, C., Chawla, L., Husain-Syed, F. and Kellum, J.A. (2023) Ra-tionale for Sequential Extracorporeal Therapy (SET) in Sepsis. Critical Care, 27, Article No. 50.
https://doi.org/10.1186/s13054-023-04310-2
[28] Yu, Y. and Ou, L. (2023) The Development of Immunosorbents for the Treatment of Systemic Lupus Erythematosus via Hemoperfusion. Frontiers in Medicine, 9, Article 1035150.
https://doi.org/10.3389/fmed.2022.1035150
[29] Fick, M.E., Messenger, K.M. and Vigani, A. (2020) Efficacy of a Single Session in-Series Hemoperfusion and Hemodialysis in the Management of Carprofen Overdose in Two Dogs. Journal of Veterinary Emergency and Critical Care, 30, 226-231.
https://doi.org/10.1111/vec.12931
[30] Li, J., Li, H., Deng, W., Meng, L., Gong, W. and Yao, H. (2022) The Effect of Combination Use of Hemodialysis and Hemoperfusion on Microinflammation in Elderly Patients with Maintenance Hemodialysis. Blood Purification, 51, 739-746.
https://doi.org/10.1159/000518857