分子生物学方法促进肩袖腱–骨愈合机制研究进展
Advances in Molecular Biological Methods to Promote Rotator Cuff Tendine-Bone Healing
DOI: 10.12677/ACM.2023.1361459, PDF, HTML, XML, 下载: 253  浏览: 6,994 
作者: 白帅帅:西安医学院研工部,陕西 西安;强 辉*:陕西省人民医院骨科,陕西 西安
关键词: 肩袖损伤腱–骨愈合腱–骨界面损伤修复Rotator Cuff Injury Tendine-Bone Healing Tendine-Bone Interface Damage Repair
摘要: 肩袖修复术是一种常见的手术。手术中,撕裂的肌腱被重新固定在骨表面。大多数患者都取得了良好的效果。然而,有些患者会再次撕裂。这种现象的最重要的原因是正常肌腱–骨附着点无法重建。至今还没有一种方法或药物能够成功的促进起病点的愈合。在这篇综述中揭示肩袖术后愈合分子生物机制,为更好的治疗肩袖撕裂铺平道路。
Abstract: Rotator cuff repair is a common procedure. During surgery, the torn tendon is reattached to the surface of the bone. Most patients have had good results. However, some patients will tear again. The most important reason for this phenomenon is that the normal sinew-bone attachment site cannot be reconstructed. So far, no single method or drug has successfully promoted healing at the onset of the disease. In this review, we reveal the molecular biological mechanism of rotator cuff healing after surgery, paving the way for better treatment of rotator cuff tears.
文章引用:白帅帅, 强辉. 分子生物学方法促进肩袖腱–骨愈合机制研究进展[J]. 临床医学进展, 2023, 13(6): 10421-10428. https://doi.org/10.12677/ACM.2023.1361459

1. 引言

肩袖是肩关节周围4块肌肉(包括冈上肌、冈下肌、肩胛下肌、小圆肌)和相关肌腱组成的一组重要肌肉,对肩关节的稳定、旋转、运动的产生和控制都起到重要作用。肩袖撕裂会导致肩关节疼痛和肩部运动功能受损 [1] 。肩袖撕裂通常需要重建手术,随着技术的进步,关节镜修补肩袖撕裂成为了金标准。但最近的一项关节镜修复的随机实验(UKUFF实验)显示:无论采取何种手术技术,修复在12个月内再次撕裂率为43% [2] 。术后影响愈合的因素很多包括年龄、炎症增强,脂肪浸润、胶原纤维组织解体、钙化、细胞凋亡和组织坏死等,但腱–骨愈合是肌腱套重建的关键,而腱–骨愈合的过程又是复杂和多因素影响的 [2] [3] 。腱–骨界面称为附着点,由四层组成,即腱、未矿化纤维软骨、矿化纤维软骨和骨,肩袖修复后腱–骨界面未形成附着点,并且生物力学较低的纤维血管组织在界面处积聚,阻碍肌腱边缘和骨骼之间的整合 [4] 。纤维软骨再生困难,由瘢痕组织代替,使其机械性能远低于正常,而更易发生再撕裂。成功的肌腱修复依赖于再生天然的肌腱到骨的安全愈合。本文对肩袖术后愈合机制进行了综述,期待对肩袖损伤的临床治疗提供帮助。

2. 肌腱–骨附着点愈合机制

腱–骨附着点愈合分三个阶段进行:炎症、修复和重塑。炎症期(术后第0到7天)的特征在于释放生长因子和促炎细胞因子,以在损伤部位招募炎症细胞。这些炎症细胞吞噬坏死组织,并进一步诱导生长因子和细胞因子释放,这是细胞修复、招募和增殖必须要经历的。血管生长因子(如VEGF)的诱导能刺激修复中的血管的形成。在修复阶段(第1周至第8周)成纤维细胞活跃增殖,干细胞向相关的组织型细胞(如成骨细胞、软骨细胞和腱细胞)分化 [5] 。在这8周时间内,增殖的成纤维细胞以不同的方式合成I、II、III型胶原和X基质,这提高了组织的机械强度 [5] 。在重塑阶段(8周到6个月),细胞数和基质合成减少。无序的胶原被整齐的取代,损伤部位机械能轻度提高,但组织不能完全再生。但是组织不会发生完全再生,而受损伤后因组织应力差,会产生再次撕裂,导致手术失败。因此,如何增强腱–骨界面之间愈合和机械性能的改善则成为术后愈合的关键。

3. 影响肌腱–骨术后愈合因素

3.1. 生物制剂

重组人甲状旁腺激素(rhPTH)是一种生物制剂,已被证明可通过肌腱的软骨形成途径改善骨折愈合 [6] 。除了具有成骨作用,Han,J [7] 等人研究表明三维纳米纤维补片上浸泡rhPTH可促进慢性RCT肌腱–骨愈合。Kyle R. Duchman [6] 等人使用大鼠肩袖模型显示,在术后每日rhPTH给药后8周内,纤维软骨增加,产生更多的I型前胶原蛋白细胞,以及肩袖插入的血管增加。术后8周,负荷力衰竭与治疗的对照组相比,接受每日rhPTH的组机械刚度增加。然而,同一研究发现,早期给与rhPTH,失效负荷和机械刚度降低。在rhPTH治疗标本中,术后2周的负荷开始增加,此外,对照组和实验组冈上肌插入的血管数量和密度相等。这表明延迟1~2周后使用rhPTH即可以预防前期血管过度增长,也可以改善肩袖的生物力学性能。此研究是在大鼠肩袖撕裂中进行的,由于大鼠通常具有更好的肩袖愈合,因此很难证明在对照组和实验组存在差异。rhPTH在肩袖力学性能改变上可能还受到降钙素、维生素D3等多重影响,具体机制还需进一步研究,但是rhPTH增加肩袖腱–骨愈合率仍然存在。

3.2. 生物活性因子

1) 生长因子。生长因子在肩袖愈合的所有阶段都有表达。肌腱到骨插入的修复涉及未分化细胞从肩峰下囊向骨髓的迁移 [8] 。涉及的生长因子包括骨形态发生蛋白(BMP) 2、4、7;生长分化因子5、7;成纤维细胞生长因子;血小板衍生生长因子(PDGF);转化生长因子(TGF)-β1-3;结缔组织生长因子(CTGF),这些生长因子在损伤16后周恢复到接近生理水平 [9] 。Wurgler Hauri等在16周的时间内研究了BMP-12、13、14 (骨形态发生蛋白12, 13, 14)、b-FGF (成纤维细胞生长因子)、CTGF/PDGF (血小板生长因子/结缔组织生长因子)、TGF-β1 (转化生长因子)在大鼠的冈上肌肌腱止点缺损处腱–骨愈合中表达 [10] 。PDGF-B的表达仅在插入位点的早期时间点可检测到,他和早期I型胶原的合成和其他生长因子如TGF-β1的激活相一致 [11] [12] 。BMP-12在所有的时间点均有中度表达,在重塑期约8周显著增加 [10] 。此前有报道,BMP-12在活跃的成纤维细胞(非终末分化,高生长因子表达)中比在驻留的腱细胞中表达的更多,提示其积极参与组织的重塑 [13] 。生长因子表现出独特时间表达,与肩袖修复过程中的特定阶段有关 [10] 。基于此,我们可以发现这些生长因子在不同程度、不同时间下都促进腱–骨愈合。

2) 骨形态发生蛋白2、3、7为了形成具有机械功能的接点,肌腱胶原纤维必须通过矿化纤维软骨的形成和下层骨骺骨的积极重塑固定到骨中。这一认识导致了骨诱导因子的使用,如BMP-2 (骨形态发生蛋白2)到BMP-7用于肌腱套插入愈合 [14] [15] 。而BMP-2和BMP-7也被报道可诱导软骨细胞分化,并刺激纤维软骨组分、蛋白多糖和II型胶原的合成,且BMP-7更显著改善了接骨基质的生成,从而改善了肌腱到骨的愈合 [16] [17] 。持续给予BMP-7也会导致了肌腱–骨部位的纤维软骨沉积,影响腱–骨愈合 [17] 。

3) 碱性成纤维细胞生长因子(b-FGF)。碱性成纤维细胞生长因子(b-FGF)刺激肌腱成纤维细胞增殖和迁移,并诱导MSC(间充质干细胞)分化为腱细胞 [18] 。Zhang等人应用模型表明,添加b-FGF可能会增加修复的强度,加速肌腱到骨的重塑 [19] FGF在早期增加合成胶原基质的成纤维细胞,来促进肌腱和骨骼之间的间隙闭合。FGF-2因其抗瘢痕特性而被用于肩袖撕裂,其机制是诱导肉芽组织细胞凋亡,与这些特性一致,FGF-2通过明胶水凝胶作为损伤冈上肌肌腱和骨的中间移植物植入后的6周内,纤维血管瘢痕减少,生物力学强度提高 [20] 。

4) 血小板生长因子(PDGF)在早期愈合阶段高度调节,并促进其他生长因子的激活 [12] ,在大鼠的肩袖撕裂后,PDGF-BB (一种从明胶水凝胶片中释放的同源二聚体异构体)显示出更高的细胞增殖、更大的胶原纤维取向,以及插入部位的最终失效载荷 [21] ,但在后期(第28天)其对纤维软骨形成或胶原纤维成熟没有任何影响。

5) 转化生长因子β (TGF-β)是一种具有多种细胞功能的蛋白质,包括控制细胞生长、细胞增殖、细胞分化和凋亡 [22] 。TGF-b1还通过增加胶原和蛋白多糖的合成、抑制基质分解、刺激细胞增殖、增加成纤维细胞活性、和血管生成被认为是肌腱–骨愈合的代表性生长因子之一 [23] 。TGF-b1的半衰期短、体内不稳定性和靶点传递不准确,单次注射,其有效性可能会受到限制,需要各种支架如海藻酸钠、胶原凝胶和海绵,以及胶原–糖胺聚糖共聚物,将TGF-b1持续输送到靶点 [24] 。TGF-β传导通路涉及1和2亚型,在成人肩袖愈合过程中高度上调,这种过度表达伴随着大量撕裂中肩袖肌肉纤维化 [25] 。

总之,生物活性因子对腱–骨愈合是有利的,但是我们在使用的过程中需要关注使用哪些生物因子或组合,用生物因子的剂量和开始使用时间,如何在治疗时间窗内传递这些生长因子,同时保持其生物活性,是我们应该关注的。

6) 富含血小板血浆(PRP) PRP是一种通过全血离心产生的生物活性浓缩物,分4类:纯富血小板血浆(P-PRP)、白细胞和富血小板血浆(L-PRP)、纯富血小板纤维蛋白(P-PRF)和白细胞和富血小板纤维蛋白(L-PRF)。P-PRP和L-PRP以液体或活化凝胶形式存在;而纤维蛋白产品(P-PRF和L-PRF)仅以强纤维蛋白基质存在,为固体材料,而不是液体或凝胶 [26] 。由于这些富含血小板的纤维蛋白产品的聚合技术,稳定的基质允许生长因子持续释放长达28天,这在理论上被认为可以促进肩袖愈合的 [27] 。James Ryan等人对关PRP进行荟萃分析:当按PRP的液体或固体配方进行分层时,发现液体配方(P-PRP和L-PRP)在复发率以及VAS、ASES、UCLA和常量分数方面有显著改善,而固体配方(P-PRF和L-PRF)没有,并且液体制剂的效果似乎归因于P-PRP而不是L-PRP,总的来说P-PRP似乎是最有效的配方 [28] 。Hurley等人之前对关节镜下肩袖修复中的PRP进行的荟萃分析也未发现支持在关节镜下肩袖修复中使用PRF的证据 [29] 。富含血小板的产品中的白细胞参与调节愈合过程,因为它们能够增加生长因子的产生,释放抗疼痛介质,并促进自然抗感染活性 [30] 。其他学者假设白细胞可能会对愈合产生负面影响,因为在受伤部位注射白细胞可能会刺激炎症过程 [31] 。目前,尚不能确定富白细胞或贫白细胞富含血小板的产品在增强肩袖肌腱愈合过程中的疗效是否存在差异,但白细胞浓度较低的浓缩液最适合肩袖愈合 [28] 。富含血小板血浆在骨–肌腱愈合中因其释放了多种生长因子来参与加速肌腱–骨重建、增加肌腱附着强度以及更多新骨、纤维软骨和软组织的形成,在腱–骨愈合方面起到一定效果,但是具体哪些因子起主要作用和具体通过什么机制还需要进一步研究。

3.3. 干细胞

1) 间充质干细胞(Mesenchymal Stem Cells)干细胞在本质上是多能的。间充质干细胞(MSC)能够自我更新和分化成各种各样的细胞表型,包括软骨细胞、腱细胞和成骨细胞;而能促进腱–骨愈合的目前确定的有骨髓间充质干细胞、脂肪源性干细胞、腱性干细胞和脐带血间充质干细胞。此外,骨髓间充质干细胞(MSCs)还具有分泌生长因子诱导软硬组织生长的能力 [32] 。Wenbo Chen等人收集了人骨髓源性干细胞(hBMSC-CM)的条件培养液,并在大鼠的肩袖修复模型中测试,发现hBMSC-CM通过抑制巨噬细胞M1表型和促进M2表型,促进成纤维细胞活化来促进腱–骨愈合,在一定程度上是通过激活Smad2/3信号通路调节巨噬细胞表型的,并且此通路可被SB431542阻断。进一步在大鼠的肩袖内使用氯膦酸脂质体诱导巨噬细胞凋亡,然后测试hBMSC-CM发现大鼠肌腱骨愈合更好。这可能是因为当巨噬细胞被清除时,炎症也得到缓解有关 [33] 。总之,不管hBMSC-CM是诱导巨噬细胞凋亡或是抑制巨噬细胞M1表型向M2表型转化都可以促进肩袖腱–骨愈合。研究发现hBMSC-CM体内和体外都能促进成纤维细胞的活化,但在大鼠体内清除巨噬细胞后,这种效应消失。这表明,hBMSC-CM对成纤维细胞的激活是间接的,依赖于巨噬细胞的存在,而巨噬细胞的极化又受hBMSC-CM的影响 [33] 。Yaying Sun等人发现有肩袖修复术后炎症早期病人血清能够使巨噬细胞极化为M2型并激活CDF (囊源性成纤维细胞),促进巨噬细胞极化和成纤维细胞活化,诱导肩关节纤维化 [34] 。巨噬细胞M2型具有抗炎和潜在纤维化能力,而hBMSC-CM和炎症早期血清都会使巨噬细胞抑制M1型,并向M2型转化这对腱–骨修复是有利的,但是也增加了肩关节纤维化术后并发冻结肩的风险。

骨髓多能干细胞(MSCs)上进行低氧培养的益处和优势已经得到证实 [35] ,长期培养中,缺氧可以抑制衰老,增加增殖率,增强不同MSC的分化潜能。低氧还可以调节骨髓间充质干细胞的旁分泌效应,导致多种分泌上调因子,包括血管内皮生长因子和白细胞介素6 (IL-6),以促进伤口愈合 [36] 。Chen等人在缺氧条件下培养的MSC在2周时的生物力学和组织学结果方面增强了冈上肌腱的愈合,其认为在体内和体外缺氧条件下,骨髓间充质干细胞的多向分化能力都有所提高,缺氧条件也会提高MSC分化为肌腱组织的能力。Bonar量表评估的“胶原”和“基质”分数表明,移植的缺氧MSC植入并合成I型和III型胶原以促进肌腱愈合 [37] 。

2) 外泌体

外泌体是纳米级双层封闭的细胞外颗粒,包含大量核酸分子成分,如DNA、mRNA、microRNA、lncRNA和多种蛋白质,可以跨越细胞边界并影响受体细胞的生理和病理过程,近年来,外泌体因其在细胞间相互作用、信号转导和基本细胞生物学过程中的益处而引起人们的关注 [38] 。研究表明,肌腱细胞分泌的外泌体,可以促进MSC向肌腱分化通过转化生长因子-β依赖的方式启动 [39] 。外泌体也可以由骨髓巨噬细胞分泌,从而激活肌腱细胞的纤维化 [40] 。此外,外泌体被认为具有很强的生物活性,并在跟腱愈合中发挥重要作用 [41] 。多种刺激(包括机械刺激和炎症刺激)可能会导致富含外泌体的微环境的形成,并修复受损的组织或器官 [41] [42] 。王等人 [43] 已经证明,人类脂肪来源的干细胞外泌体可以减少撕裂肩袖肌肉的萎缩和变性,甚至改善肌肉生物力学特性和再生。

a) 血浆的纯化外泌体(PEP)

PEP是从过期的人类供体血液中分离血浆,通过过滤和离心血浆中得到的。PEP作为一种血液衍生产品,具有刺激组织愈合和再生的巨大潜力。Jun Qi等人 [44] 检测了PEP的特性,并观察了对肌腱细胞增殖能力、迁移能力、肌腱相关基因表达、总胶原沉积和细胞凋亡的影响。体外实验表明,PEP具有优越性。Shi G等人证明,20%的TISSEEL (纤维蛋白封闭剂)-PEP可以在犬离体模型中促进肌腱修复 [45] 。Shi A等人表明,20%的TISSEEL-PEP可以在体内外促进缺血伤口愈合 [46] 。此外,Kisby等人发现,在猪网片暴露模型中,PEP注射对阴道伤口愈合有效 [47] 。

Ye Ren [48] 等人发现TISSEEL作为PEP载体的使用促进了RCT的愈合速度。并首次表明,局部注射PEP可以促进RC肌腱–骨愈合,并发现了将PEP持续释放到组织修复部位可能有助于修复过程中纤维软骨过渡区的再生,提高了RC端部的机械特性。TISSEEL-PEP组的生物力学特性表现出明显的优势,将6周的数据与文献进行比较,发现TISSEEL-PEP的强度接近正常强度。通过生物力学和组织学结果证实了基因表达的结果。PEP不仅促进IGF的表达外,还可以促进肌腱相关基因(COL1, COL3, SCX, Tnmd和DCN)的上调,使RC肌腱愈合过程中细胞外基质的胶原和基质成分的重排。而PEP促进腱–骨愈合的机制主要是通过增加腱–骨交界区的腱细胞增殖和迁移实现的。这是第一次在大鼠模型中使用人类循环外泌体进行RCT愈合。

骨髓间充质干细胞增强RC修复已得到充分研究。随着RCT修复基础和临床研究的不断增多,MSC治疗的疗效已经确立。MSC衍生的外泌体具有类似于MSC的功能,为RC再生提供了一种有前景的治疗方法。通过小生物分子,外泌体通过局部或循环调节生物功能。此外,与活干细胞移植相比,外泌体本身具有更少的免疫原性,这使得外泌体在再生应用领域很有前景。

4. 总结与展望

肩袖修补术后的腱–骨界面愈合困难,严重影响治疗效果,再撕裂发生率高,在腱–骨愈合中分子生物学研究广泛,但缺乏对检测指标的全程监控,有时导致研究结论相矛盾,本质上还是对机制通路缺乏认识;但分子生物仍是促进腱–骨愈合的新方向,多种生物分子联合治疗必然成为一种促进腱–骨愈合的新趋势,现腱–骨愈合治疗方法仍处于发展阶段,还需要进一步研究和发现,相信随着研究的不断深入,腱–骨愈合效果会越来越令人满意。

参考文献

NOTES

*通讯作者。

参考文献

[1] Liu, C.T., Ge, H.A., Hu, R., Huang, J.B., Cheng, Y.C., Wang, M., Wu, P. and Cheng, B. (2018) Arthroscopic Knotless Single-Row Repair Preserving Full Footprint versus Tear Completion Repair for Partial Articular-Sided Rotator Cuff Tear. Journal of Orthopaedic Surgery (Hong Kong), 26, 1.
https://doi.org/10.1177/2309499018770897
[2] Rashid, M.S., Cooper, C., Cook, J., Cooper, D., Dakin, S.G., Snelling, S. and Carr, A.J. (2017) Increasing Age and Tear Size Reduce Rotator Cuff Repair Healing Rate at 1 Year. Acta Orthopaedica, 88, 606-611.
https://doi.org/10.1080/17453674.2017.1370844
[3] Huang, Y., He, B., Wang, L., Yuan, B., Shu, H., Zhang, F. and Sun, L. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promote Rotator Cuff Tendon-Bone Healing by Promoting Angiogenesis and Regulating M1 Macrophages in Rats. Stem Cell Research & Therapy, 11, Arti-cle No. 496.
https://doi.org/10.1186/s13287-020-02005-x
[4] Connor, D.E., Paulus, J.A., Dabestani, P.J., Thankam, F.K., Dilisio, M.F., Gross, R.M. and Agrawal, D.K. (2019) Therapeutic Potential of Exosomes in Rotator Cuff Tendon Heal-ing. Journal of Bone and Mineral Metabolism, 37, 759-767.
https://doi.org/10.1007/s00774-019-01013-z
[5] Andarawis-Puri, N., Flatow, E.L. and Soslowsky, L.J. (2015) Tendon Basic Science: Development, Repair, Regeneration, and Healing. Journal of Orthopaedic Research, 33, 780-784.
https://doi.org/10.1002/jor.22869
[6] Duchman, K.R., Goetz, J.E., Uribe, B.U., Amendola, A.M., Barber, J.A., Malandra, A.E., Fredericks, D.C. and Hettrich, C.M. (2016) Delayed Administration of Recombinant Human Parathyroid Hormone Improves Early Biomechanical Strength in a Rat Rotator Cuff Repair Model. Journal of Shoulder and Elbow Surgery, 25, 1280-1287.
https://doi.org/10.1016/j.jse.2015.12.016
[7] Han, J., Rhee, S.M., Kim, Y.W., Park, S.H. and Oh, J.H. (2022) Three-Dimensionally Printed Recombinant Human Parathyroid Hormone-Soaked Nanofiber Sheet Accelerates Ten-don-to-Bone Healing in a Rabbit Model of Chronic Rotator Cuff Tear. Journal of Shoulder and Elbow Surgery, 31, 1628-1639.
https://doi.org/10.1016/j.jse.2022.02.013
[8] Koike, Y., Trudel, G. and Uhthoff, H.K. (2005) For-mation of a New Enthesis after Attachment of the Supraspinatus Tendon: A Quantitative Histologic Study in Rabbits. Journal of Orthopaedic Research, 23, 1433-1440.
https://doi.org/10.1016/j.orthres.2005.02.015.1100230628
[9] Chen, C.H., Cao, Y., Wu, Y.F., Bais, A.J., Gao, J.S. and Tang, J.B. (2008) Tendon Healing in Vivo: Gene Expression and Production of Multiple Growth Factors in Ear-ly Tendon Healing Period. Journal of Hand Surgery (American Volume), 33, 1834-1842.
https://doi.org/10.1016/j.jhsa.2008.07.003
[10] Würgler-Hauri, C.C., Dourte, L.M., Baradet, T.C., Williams, G.R. and Soslowsky, L.J. (2007) Temporal Expression of 8 Growth Factors in Tendon-to-Bone Healing in a Rat Supraspina-tus Model. Journal of Shoulder and Elbow Surgery, 16, S198-S203.
https://doi.org/10.1016/j.jse.2007.04.003
[11] Ojima, Y., Mizuno, M., Kuboki, Y. and Komori, T. (2003) In Vitro Effect of Platelet-Derived Growth Factor-BB on Collagen Synthesis and Proliferation of Human Periodontal Ligament Cells. Oral Diseases, 9, 144-151.
https://doi.org/10.1034/j.1601-0825.2003.02906.x
[12] Porsch, H., Mehić, M., Olofsson, B., Heldin, P. and Heldin, C.H. (2014) Platelet-Derived Growth Factor β-Receptor, Transforming Growth Factor β Type I Receptor, and CD44 Protein Modulate Each Other’s Signaling and Stability. Journal of Biological Chemistry, 289, 19747-19757.
https://doi.org/10.1074/jbc.M114.547273
[13] Fu, S.C., Wong, Y.P., Chan, B.P., Pau, H.M., Cheuk, Y.C., Lee, K.M. and Chan, K.M. (2003) The Roles of Bone Morphogenetic Protein (BMP) 12 in Stimulating the Proliferation and Matrix Production of Human Patellar Tendon Fibroblasts. Life Sciences, 72, 2965-2974.
https://doi.org/10.1016/S0024-3205(03)00169-3
[14] Dyment, N.A., Breidenbach, A.P., Schwartz, A.G., Russell, R.P., Aschbacher-Smith, L., Liu, H., et al. (2015) Gdf5 Progenitors Give Rise to Fibrocartilage Cells That Mineralize via Hedgehog Signaling to Form the Zonal Enthesis. Developmental Biology, 405, 96-107.
https://doi.org/10.1016/j.ydbio.2015.06.020
[15] Rodeo, S.A., Potter, H.G., Kawamura, S., Turner, A.S., Kim, H.J. and Atkinson, B.L. (2007) Biologic Augmentation of Rotator Cuff Tendon-Healing with Use of a Mixture of Osteoin-ductive Growth Factors. The Journal of Bone and Joint Surgery. American Volume, 89, 2485-2497.
https://doi.org/10.2106/00004623-200711000-00021
[16] Dorman, L.J., Tucci, M. and Benghuzzi, H. (2012) In Vitro Effects of bmp-2, bmp-7, and bmp-13 on Proliferation and Differentiation of Mouse Mesenchymal Stem Cells. Biomedical Sciences Instrumentation, 48, 81-87.
[17] Kabuto, Y., Morihara, T., Sukenari, T., Kida, Y., Oda, R., Arai, Y., et al. (2015) Stimulation of Rotator Cuff Repair by Sustained Release of Bone Morphogenetic Protein-7 Using a Gel-atin Hydrogel Sheet. Tissue Engineering Part A, 21, 2025-2033.
https://doi.org/10.1089/ten.tea.2014.0541
[18] Cai, T.Y., Zhu, W., Chen, X.S., Zhou, S.Y., Jia, L.S. and Sun, Y.Q. (2013) Fibroblast Growth Factor 2 Induces Mesenchy-mal Stem Cells to Differentiate into Tenocytes through the MAPK Pathway. Molecular Medicine Reports, 8, 1323-1328.
https://doi.org/10.3892/mmr.2013.1668
[19] Zhang, C., Li, Q., Deng, S., Fu, W., Tang, X., Chen, G., Qin, T. and Li, J. (2016) bFGF- and CaPP-Loaded Fibrin Clots Enhance the Bioactivity of the Tendon-Bone Interface to Augment Healing. The American Journal of Sports Medicine, 44, 1972-1982.
https://doi.org/10.1177/0363546516637603
[20] Tokunaga, T., Shukunami, C., Okamoto, N., Taniwaki, T., Oka, K., Sakamoto, H., Ide, J., Mizuta, H. and Hiraki, Y. (2015) FGF-2 Stimulates the Growth of Tenogenic Progenitor Cells to Facilitate the Generation of Tenomodulin-Positive Tenocytes in a Rat Rotator Cuff Healing Model. The American Journal of Sports Medicine, 43, 2411-2422.
https://doi.org/10.1177/0363546515597488
[21] Tokunaga, T., Ide, J., Arimura, H., Nakamura, T., Uehara, Y., Sakamoto, H. and Mizuta, H. (2015) Local Application of Gelatin Hydrogel Sheets Impregnated with Platelet-Derived Growth Factor BB Promotes Tendon-to-Bone Healing after Rotator Cuff Repair in Rats. Arthroscopy, 31, 1482-1491.
https://doi.org/10.1016/j.arthro.2015.03.008
[22] Bao, H., Jiang, K., Meng, K., Liu, W., Liu, P., Du, Y. and Wang, D. (2018) TGF-β2 Induces Proliferation and Inhibits Apoptosis of Human Tenon Capsule Fibroblast by miR-26 and Its Targeting of CTGF. Biomedicine & Pharmacotherapy, 104, 558-565.
https://doi.org/10.1016/j.biopha.2018.05.059
[23] Arimura, H., Shukunami, C., Tokunaga, T., Karasugi, T., Oka-moto, N., Taniwaki, T., Sakamoto, H., Mizuta, H. and Hiraki, Y. (2017) TGF-β1 Improves Biomechanical Strength by Extracellular Matrix Accumulation without Increasing the Number of Tenogenic Lineage Cells in a Rat Rotator Cuff Re-pair Model. The American Journal of Sports Medicine, 45, 2394-2404.
https://doi.org/10.1177/0363546517707940
[24] Yoon, J.P., Kim, H.M., Choi, J.H., Kang, H.R., Kim, D.H., Choi, Y.S., et al. (2021) Effect of a Porous Suture Containing Transforming Growth Factor Beta 1 on Healing after Rotator Cuff Repair in a Rat Model. The American Journal of Sports Medicine, 49, 3050-3058.
https://doi.org/10.1177/03635465211028547
[25] Liu, X., Joshi, S.K., Ravishankar, B., Laron, D., Kim, H.T. and Feeley, B.T. (2014) Upregulation of Transforming Growth Factor-β Signaling in a Rat Model of Rotator Cuff Tears. Journal of Shoulder and Elbow Surgery, 23, 1709-1716.
https://doi.org/10.1016/j.jse.2014.02.029
[26] Dohan Ehrenfest, D.M. andia, I., Zumstein, M.A., Zhang, C.Q., Pinto, N.R. and Bielecki, T. (2014) Classification of Platelet Concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fi-brin-PRF) for Topical and Infiltrative Use in Orthopedic and Sports Medicine: Current Consensus, Clinical Implications and Perspectives. Muscles, Ligaments and Tendons Journal, 4, 3-9.
https://doi.org/10.32098/mltj.01.2014.02
[27] Zumstein, M.A., Berger, S., Schober, M., Boileau, P., Nyffeler, R.W., Horn, M. and Dahinden, C.A. (2012) Leukocyte- and Platelet-Rich Fibrin (L-PRF) for Long-Term Delivery of Growth Factor in Rotator Cuff Repair: Review, Preliminary Results and Future Directions. Current Pharmaceutical Bio-technology, 13, 1196-1206.
https://doi.org/10.2174/138920112800624337
[28] Ryan, J., Imbergamo, C., Sudah, S., Kirchner, G., Greenberg, P., Monica, J. and Gatt, C. (2021) Platelet-Rich Product Supplementation in Rotator Cuff Repair Reduces Retear Rates and Improves Clinical Outcomes: A Meta-Analysis of Randomized Controlled Trials. Arthroscopy, 37, 2608-2624.
https://doi.org/10.1016/j.arthro.2021.03.010
[29] Hurley, E.T., Lim Fat, D., Moran, C.J. and Mullett, H. (2019) The Efficacy of Platelet-Rich Plasma and Platelet-Rich Fibrin in Arthroscopic Rotator Cuff Repair: A Meta-Analysis of Randomized Controlled Trials. The American Journal of Sports Medicine, 47, 753-761.
https://doi.org/10.1177/0363546517751397
[30] Bielecki, T., Dohan Ehrenfest, D.M., Everts, P.A. and Wiczkow-ski, A. (2012) The Role of Leukocytes from L-PRP/ L-PRF in Wound Healing and Immune Defense: New Perspectives. Current Pharmaceutical Biotechnology, 13, 1153- 1162.
https://doi.org/10.2174/138920112800624373
[31] Anitua, E., Sánchez, M., Orive, G. and Andía, I. (2007) The Potential Impact of the Preparation Rich in Growth Factors (PRGF) in Different Medical Fields. Biomaterials, 28, 4551-4560.
https://doi.org/10.1016/j.biomaterials.2007.06.037
[32] Hernigou, P., Flouzat Lachaniette, C.H., Delambre, J., Zil-ber, S., Duffiet, P., Chevallier, N. and Rouard, H. (2014) Biologic Augmentation of Rotator Cuff Repair with Mesen-chymal Stem Cells during Arthroscopy Improves Healing and Prevents Further Tears: A Case-Controlled Study. Inter-national Orthopaedics, 38, 1811-1818.
https://doi.org/10.1007/s00264-014-2391-1
[33] Chen, W., Sun, Y., Gu, X., Cai, J., Liu, X., Zhang, X., Chen, J., Hao, Y. and Chen, S. (2021) Conditioned Medium of Human Bone Marrow-Derived Stem Cells Promotes Tendon-Bone Healing of the Rotator Cuff in a Rat Model. Biomaterials, 271, Article ID: 120714.
https://doi.org/10.1016/j.biomaterials.2021.120714
[34] Sun, Y., Lin, J., Luo, Z., Zhang, Y. and Chen, J. (2021) The Serum from Patients with Secondary Frozen Shoulder Following Rotator Cuff Repair Induces Shoulder Capsule Fi-brosis and Promotes Macrophage Polarization and Fibroblast Activation. Journal of Inflammation Research, 14, 1055-1068.
https://doi.org/10.2147/JIR.S304555
[35] Chen, G., Zhang, W., Zhang, K., Wang, S., Gao, Y., Gu, J., et al. (2020) Hypoxia-Induced Mesenchymal Stem Cells Exhibit Stronger Tenogenic Differentiation Capacities and Pro-mote Patellar Tendon Repair in Rabbits. Stem Cells International, 2020, Article ID: 8822609.
https://doi.org/10.1155/2020/8822609
[36] Tsai, C.C., Yew, T.L., Yang, D.C., Huang, W.H. and Hung, S.C. (2012) Benefits of Hypoxic Culture on Bone Marrow Multipotent Stromal Cells. American Journal of Blood Research, 2, 148-159.
[37] Chen, H.S., Yau, Y.C., Ko, P.T., Yen, B.L., Ho, C.T. and Hung, S.C. (2022) Mesenchymal Stem Cells from a Hypoxic Culture Can Improve Rotator Cuff Tear Repair. Cell Transplantation, 31, 4-7+9.
https://doi.org/10.1177/09636897221089633
[38] Isola, A.L. and Chen, S. (2017) Exosomes: The Messengers of Health and Disease. Current Neuropharmacology, 15, 157-165.
https://doi.org/10.2174/1570159X14666160825160421
[39] Xu, T., Xu, M., Bai, J., Lin, J., Yu, B., Liu, Y., et al. (2019) Tenocyte-Derived Exosomes Induce the Tenogenic Differentiation of Mesenchymal Stem Cells through TGF-β. Cytotechnology, 71, 57-65.
https://doi.org/10.1007/s10616-018-0264-y
[40] Cui, H., He, Y., Chen, S., Zhang, D., Yu, Y. and Fan, C. (2019) Macrophage-Derived miRNA-Containing Exosomes Induce Peritendinous Fibrosis after Tendon Injury through the miR-21-5p/Smad7 Pathway. Molecular Therapy—Nucleic Acids, 14, 114-130.
https://doi.org/10.1016/j.omtn.2018.11.006
[41] Chamberlain, C.S., Clements, A.E.B., Kink, J.A., Choi, U., Baer, G.S., Halanski, M.A., Hematti, P. and Vanderby, R. (2019) Extracellular Vesicle-Educated Macrophages Promote Early Achilles Tendon Healing. Stem Cells, 37, 652-662.
https://doi.org/10.1002/stem.2988
[42] Zhang, Z.G., Buller, B. and Chopp, M. (2019) Exosomes—Beyond Stem Cells for Restorative Therapy in Stroke and Neurological Injury. Nature Reviews Neurology, 15, 193-203.
https://doi.org/10.1038/s41582-018-0126-4
[43] Wang, C., Song, W., Chen, B., Liu, X. and He, Y. (2019) Exo-somes Isolated from Adipose-Derived Stem Cells: A New Cell-Free Approach to Prevent the Muscle Degeneration As-sociated with Torn Rotator Cuffs. The American Journal of Sports Medicine, 47, 3247-3255.
https://doi.org/10.1177/0363546519876323
[44] Qi, J., Liu, Q., Reisdorf, R.L., Boroumand, S., Behfar, A., Moran, S.L., Amadio, P.C., Gingery, A. and Zhao, C. (2020) Characterization of a Purified Exosome Product and Its Effects on Canine Flexor Tenocyte Biology. Journal of Orthopaedic Research, 38, 1845-1855.
https://doi.org/10.1002/jor.24587
[45] Shi, G., Wang, Y., Wang, Z., Thoreson, A.R., Jacobson, D.S., Amadio, P.C., Behfar, A., Moran, S.L. and Zhao, C. (2021) A Novel Engineered Purified Exosome Product Patch for Tendon Healing: An Explant in an ex Vivo Model. Journal of Orthopaedic Research, 39, 1825-1837.
https://doi.org/10.1002/jor.24859
[46] Shi, A., Li, J., Qiu, X., Sabbah, M., Boroumand, S., Huang, T.C., Zhao, C., Terzic, A., Behfar, A. and Moran, S.L. (2021) TGF-β Loaded Exosome Enhances Ischemic Wound Healing in Vitro and in Vivo. Theranostics, 11, 6616-6631.
https://doi.org/10.7150/thno.57701
[47] Kisby, C.K., Shadrin, I.Y., Peng, L.T., Stalboerger, P.G., Trabuco, E.C., Behfar, A. and Occhino, J. (2021) Impact of Repeat Dosing and Mesh Exposure Chronicity on Exosome-Induced Vagi-nal Tissue Regeneration in a Porcine Mesh Exposure Model. Female Pelvic Medicine and Reconstructive Surgery, 27, 195-201.
https://doi.org/10.1097/SPV.0000000000001017
[48] Ren, Y., Zhang, S., Wang, Y., Jacobson, D.S., Reisdorf, R.L., Kuroiwa, T., Behfar, A., Moran, S.L., Steinmann, S.P. and Zhao, C. (2021) Effects of Purified Exosome Product on Rotator Cuff Tendon-Bone Healing in Vitro and in Vivo. Biomaterials, 276, Article ID: 121019.
https://doi.org/10.1016/j.biomaterials.2021.121019