|
[1]
|
Chalasani, N., Younossi, Z., Lavine, J.E., et al. (2018) The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology, 1, 328-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Dis-ease. The Lancet, 397, 2212-2224. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhou, F., Zhou, J., Wang, W., et al. (2019) Unexpected Rapid In-crease in the Burden of NAFLD in China from 2008 to 2018: A Systematic Review and Meta-Analysis. Hepatology, 70, 1119-1133. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lindenmeyer, C.C. and McCullough, A.J. (2018) The Natural History of Nonalcoholic Fatty Liver Disease—An Evolving View. Clinics in Liver Disease, 22, 11-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Riazi, K., Azhari, H., Charette, J.H., et al. (2022) The Prevalence and Inci-dence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861. [Google Scholar] [CrossRef]
|
|
[6]
|
Fleming, K.A., Morton, J.A., Barbatis, C., et al. (1981) Mallory Bodies in Alcoholic and Non-Alcoholic Liver Disease Contain a Commonantigenic Determinant. Gut, 22, 341-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Day, C.P. and James, O.F.W. (1998) Steatohepatitis: A Tale of Two “Hits”? Gastroenterology, 114, 842-845. [Google Scholar] [CrossRef]
|
|
[8]
|
Enooku, K., Kondo, M., Fujiwara, N., et al. (2018) Hepatic IRS1 and ß-Catenin Expression Is Associated with Histological Progressionand Overt Diabetes Emergence in NAFLD Patients. Journal of Gastroenterology, 53, 1261-1275. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Softic, S., Boucher, J., Solheim, M.H., et al. (2016) Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD. Diabetes, 65, 2187-2200. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Neuschwander-Tetri, B.A. (2010) Hepatic Lipotoxicity and the Pathogenesis of Nonalcoholic Steatohepatitis: The Central Role of Nontriglyceride Fatty Acid Metabolites. Hepatology, 52, 774-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lambert, J.E., Ramos Roman, M.A., Browning, J.D. and Parks, E.J. (2014) In-creased De Novo Lipogenesis Is a Distinct Characteristic of Individuals with Nonalcoholic Fatty Liver Disease. Gastroenterology, 146, 726-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jin, C.J., Engstler, A.J., Ziegenhardt, D., et al. (2017) Loss of Lipopoly-saccharide-Binding Protein Attenuates the Development of Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. Journal of Gastroenterology and Hepatology, 32, 708-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Carpino, G., Del, B.M., Pastori, D., et al. (2020) Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology, 72, 470-485. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Schuster, S., Cabrera, D., Arrese, M., et al. (2018) Triggering and Resolution of In-flammation in NASH. Nature Reviews Gastroenterology & Hepatology, 15, 349-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Davis, R.P., Surewaard, B.G.J., Turk, M., et al. (2019) Optimization of in vivo Imaging Provides a First Look at Mouse Model of Non-Alcoholic Fatty Liver Disease (NAFLD) Using Intravital Micros-copy. Frontiers in Immunology, 10, Article 2988. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Saviano, A., Henderson, N.C. and Baumert, T.F. (2020) Single-Cell Genomics and Spatial Transcriptomics: Discovery of Novel Cell States and Cellular Interactions in Liver Physiology and Disease Biology. Journal of Hepatology, 73, 1219-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, W., Zhao, J., Gui, W., et al. (2018) Tauroursodeoxycholic Acid In-hibits Intestinal Inflammation and Barrier Disruption in Mice with Non-Alcoholic Fatty Liver Disease. British Journal of Phar-macology, 175, 469-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Buzzetti, E., Pinzani, M. and Tsochatzis, E.A. (2016) The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism, 65, 1038-1048. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Eslam, M., Sanyal, A.J., George, J., et al. (2020) MAFLD: A Consen-sus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Seo, Y.S. and Shah, V.H. (2012) The Role of Gut-Liver Axis in the Pathogenesis of Liver Cirrhosis and Portal Hypertension. Clinical and Molecular Hepatology, 18, 337-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kouichi, M. and Hirohide, O. (2014) Role of Gut Microbiota and Toll-Like Receptors in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 7381-7391. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
蒋贤哲, 张博彦, 罗海玲, 等. 肠肝轴在动物营养代谢和免疫中的作用[J]. 生物技术通报, 2022, 38(7): 128-135.
|
|
[23]
|
Fujisaka, S., Watanabe, Y. and Tobe, K. (2022) The Gut Microbiome: A Core Regulator of Metabolism. Journal of Endocrinology, 256, e220111. [Google Scholar] [CrossRef]
|
|
[24]
|
Donaldson, G.P., Ladinsky, M.S., Yu, K.B., et al. (2018) Gut Microbiota Utilize Immunoglobulin A for Mucosal Colonization. Science, 360, 795-800. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yajima, M., Karaki, S.I., Tsuruta, T., et al. (2016) Diversity of the Intestinal Microbiota Differently Affects Non-Neuronal and Atropine-Sensitive Ileal Contractile Responses to Short-Chain Fatty Acids Inmice. Biomedical Research, 37, 319-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Parada, V.D., De la Fuente, M.K., Landskron, G., et al. (2019) Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 10, Article No. 277. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Agus, A., Planchais, J. and Sokol, H. (2018) Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe, 23, 716-724. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
De Vadder, F., Grasset, E., Manneras, H.L., et al. (2018) Gut Microbiota Regulates Maturation of the Adult Enteric Nervous System via Enteric Serotonin Networks. Proceedings of the National Academy of Sciences of the United States of America, 115, 6458-6463. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Fuchs, C., Claudel, T. and Trauner, M. (2013) Bile Acid-Mediated Control of Liver Triglycerides. Seminars in Liver Disease, 33, 330-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
De Fabiani, E., Mitro, N., Gilardi, F., et al. (2003) Coordinated Control of Cholesterol Catabolism to Bile Acids and of Gluconeogenesis via a Novel Mechanism of Transcription Regulation Linked to the Fasted-to-Fed Cycle. Journal of Biological Chemistry, 278, 39124-39132. [Google Scholar] [CrossRef]
|
|
[31]
|
Jiao, N., Baker, S.S., Chapa-Rodriguez, A., et al. (2018) Suppressed Hepatic Bile Acid Signalling Despite Elevated Production of Primaryand Secondary Bile Acids in NAFLD. Gut, 67, 1881-1891. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Plaza-Díaz, J., Solís-Urra, P., Rodríguez-Rodríguez, F., et al. (2020) The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. International Journal of Molecular Sciences, 21, Article 8351. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Camilleri, M., Madsen, K., Spiller, R., Van Meerveld, B.G. and Vern, G.N. (2012) Intestinal Barrier Function in Health and Gastrointestinal Disease. Neurogastroen-terology & Motility, 24, 503-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Vancamelbeke, M. and Vermeire, S. (2017) The Intestinal Barrier: A Fundamental Role in Health and Disease. Expert Review of Gastroenterology & Hepatology, 11, 821-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Nalle, S.C. and Turner, J.R. (2015) Intestinal Barrier Loss as a Criti-cal Pathogenic Link between Inflammatory Bowel Disease and Graft-versus-Host Disease. Mucosal Immunology, 8, 720-730. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pelaseyed, T., Bergström, J.H., Gustafsson, J.K., et al. (2014) The Mucus and Mucins of the Goblet Cells and Enterocytes Provide the First Defense Line of the Gastrointestinal Tract and Interact with the Im-mune System. Immunological Reviews, 260, 8-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lievin-Le, M.V. and Servin, A.L. (2006) The Front Line of Enteric Host Defense against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides, and Microbiota. Clinical Microbiology Reviews, 19, 315-337. [Google Scholar] [CrossRef]
|
|
[38]
|
Ermund, A., Schütte, A., Johansson, M.E.V., Gustafsson, J.K. and Hansson, G.C. (2013) Studies of Mucus in Mouse Stomach, Small Intestine, and Colon. I. Gastrointestinal Mucus Layers Have Different Properties Depending on Location as well as over the Peyer’s Patches. American Journal of Physiology: Gastrointesti-nal and Liver Physiology, 305, G341-G347. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Gunnar, C. and Hansson, M.E.J. (2010) The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria. Gut Microbes, 1, 51-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Salim, S.Y. and Soderholm, J.D. (2011) Importance of Disrupted Intestinal Barrier in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 17, 362-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Turner, J.R. (2009) Intestinal Mucosal Barrier Function in Health and Disease. Na-ture Reviews Immunology, 9, 799-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kurashima, Y. and Kiyono, H. (2017) Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing. Annual Review of Immunology, 35, 119-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Suzuki, T. (2013) Regulation of Intestinal Epithelial Perme-ability by Tight Junctions. Cellular and Molecular Life Sciences, 70, 631-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Nekrasova, O. and Green, K.J. (2013) Desmosome Assembly and Dy-namics. Trends in Cell Biology, 23, 537-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Groschwitz, K.R. and Hogan, S.P. (2009) Intestinal Barrier Function: Mo-lecular Regulation and Disease Pathogenesis. Journal of Allergy and Clinical Immunology, 124, 3-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K. and Tsukita, S. (1998) Clau-din-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin. Journal of Cell Biology, 141, 1539-1550. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Berkes, J., Viswanathan, V.K., Savkovic, S.D. and Hecht, G. (2003) Intestinal Epithelial Responses to Enteric Pathogens: Effects on the Tight Junction Barrier, Ion Transport, and Inflammation. Gut, 52, 439-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Furuse, M., Hirase, T., Itoh, M., et al. (1993) Occludin: A Novel Integral Mem-brane Protein Localizing at Tight Junctions. The Journal of Cell Biology, 123, 1777-1788. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Cereijido, M., Contreras, R.G., Flores-Benítez, D., et al. (2007) New Diseases Derived or Associated with the Tight Junction. Archives of Medical Research, 38, 465-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Lynn, K.S., Peterson, R.J. and Koval, M. (2020) Ruffles and Spikes: Control of Tight Junction Morphology and Permeability by Claudins. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1862, Article ID: 183339. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Hermiston, M.L. and Gordon, J.I. (1995) In vivo Analysis of Cadherin Function in the Mouse Intestinal Epithelium: Essential Roles in Adhesion, Maintenance of Differentiation, and Regulation of Pro-grammed Cell Death. The Journal of Cell Biology, 129, 489-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Chieppa, M., Rescigno, M., Huang. A.Y. and Germain, R.N. (2006) Dynamic Imaging of Dendritic Cell Extension into the Small Bowel Lu-men Inresponse to Epithelial Cell TLR Engagement. Journal of Experimental Medicine, 203, 2841-2852. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Rescigno, M., Urbano, M., Valzasina, B., et al. (2001) Dendritic Cells Express Tight Junction Proteins and Penetrate Gut Epithelial Monolayers to Sample Bacteria. Nature Immunology, 2, 361-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
McDonald, B.D., Jabri, B. and Bendelac, A. (2018) Diverse Developmental Pathways of Intestinal Intraepithelial Lymphocytes. Nature Reviews Immunology, 18, 514-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Burcelin, R. (2016) Gut Microbiota and Immune Crosstalk in Metabolic Disease. Molecular Metabolism, 5, 771-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Mazzini, E., Massimiliano, L., Penna, G. and Rescigno, M. (2014) Oral Tolerance Can Be Established via Gap Junction Transfer of Fed Antigens from CX3CR1+ Macrophages to CD103+ Dendritic Cells. Immunity, 40, 248-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Niess, J.H., Brand, S., Gu, X., et al. (2005) CX3CR1-Mediated Den-dritic Cell Access to the Intestinal Lumen and Bacterial Clearance. Science, 307, 254-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Corbett, A.J., Eckle, S.B., Birkinshaw, R.W., et al. (2014) T-Cell Activation by Transitory Neo-Antigens Derived from Distinct Microbial Pathways. Nature, 509, 361-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Gomes, A.C., Hoffmann, C. and Mota, J.F. (2018) The Human Gut Microbiota: Metabolism and Perspective in Obesity. Gut Microbes, 9, 308-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Qin, J., Li, R., Raes, J., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Lee, M. and Chang, E.B. (2021) Inflammatory Bowel Diseases (IBD) and the Microbiome-Searching the Crime Scenefor Clues. Gastro-enterology, 160, 524-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Luis, A.S., Jin, C., Pereira, G.V., et al. (2021) A Single Sulfatase Is Required to Access Colonic Mucin by a Gut Bacterium. Nature, 598, 332-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Ouwerkerk, J.P., de Vos, W.M. and Belzer, C. (2013) Glycobiome: Bac-teria and Mucus at the Epithelial Interface. Best Practice & Research Clinical Gastroenterology, 27, 25-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Birchenough, G., Schroeder, B.O., Backhed, F. and Hansson, G.C. (2019) Dietary Destabilisation of the Balance between the Microbiota and the Colonicmucus Barrier. Gut Microbes, 10, 246-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Schütte, A., Ermund, A., Becker-Pauly, C., et al. (2014) Microbi-al-Induced meprin β Cleavage in MUC2 Mucin and a Functional CFTR Channel Are Required to Release Anchored Small Intes-tinal Mucus. Proceedings of the National Academy of Sciences of the United States of America, 111, 12396-12401. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Rodriguez-Pineiro, A.M. and Johansson, M.E. (2015) The Colonic Mucus Protection Depends on the Microbiota. Gut Microbes, 6, 326-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Jakobsson, H.E., Rodriguez-Pineiro, A.M., Schutte, A., et al. (2015) The Composition of the Gut Microbiota Shapes the Colon Mucus Barrier. EMBO Reports, 16, 164-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Tashiro, M., Iwata, A., Yamauchi, M., et al. (2017) The N-Terminal Region of Serum Amyloid A3 Protein Activates NF-κB and up-Regulates MUC2 Mucin mRNA Expression in Mouse Colonic Epithelial Cells. PLOS ONE, 12, e181796. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Cheng, D. and Xie, M.Z. (2021) A Re-view of a Potential and Promising Probiotic Candidate—Akkermansia muciniphila. Journal of Applied Microbiology, 130, 1813-1822. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Liang, L., Liu, L., Zhou, W., et al. (2022) Gut Microbiota-Derived Bu-tyrate Regulates Gut Mucus Barrier Repair by Activating the Macrophage/WNT/ERK Signaling Pathway. Clinical Science, 136, 291-307. [Google Scholar] [CrossRef]
|
|
[71]
|
Ijssennagger, N., Belzer, C., Hooiveld, G.J., et al. (2015) Gut Microbiota Facili-tates Dietary Heme-Induced Epithelial Hyperproliferation by Opening the Mucus Barrier in Colon. Proceedings of the National Academy of Sciences of the United States of America, 112, 10038-10043. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Rhee, K.J., Wu, S., Wu, X., et al. (2009) Induction of Persistent Colitis by a Human Commensal, Enterotoxigenic Bacteroides Fragilis, in Wild-Type C57BL/6 Mice. Infection and Immunity, 77, 1708-1718. [Google Scholar] [CrossRef]
|
|
[73]
|
Odenwald, M.A. and Turner, J.R. (2017) The Intestinal Epithelial Barrier: A Therapeutic Target? Nature Reviews Gastroenterology & Hepatology, 14, 9-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Martinez-Sanchez, L., Ngo, P.A., Pradhan, R., et al. (2023) Epithelial RAC1-Dependent Cytoskeleton Dynamics Controls Cell Mechanics, Cell Shedding and Barrier Integrity in Intestinal Inflamma-tion. Gut, 72, 275-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Zhou, J., Lin, H., Wang, Z., et al. (2020) Zinc L-Aspartate Enhances Intes-tinal Stem Cell Activity to Protect the Integrity of the Intestinal Mucosa against Deoxynivalenol through Activation of the Wnt/β-Catenin Signaling Pathway. Environmental Pollution, 262, Article ID: 114290. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Hagi, T. and Belzer, C. (2021) The Interaction of Akkermansia mucini-phila with Host-Derived Substances, Bacteria and Diets. Applied Microbiology and Biotechnology, 105, 4833-4841. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Tsai, P., Zhang, B., He, W., et al. (2017) IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host & Microbe, 21, 671-681.E4. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Wang, R.X., Lee, J.S., Campbell, E.L. and Colgan, S.P. (2020) Microbio-ta-Derived Butyrate Dynamically Regulates Intestinal Homeostasis through Regulation of Actin-Associated Protein Synaptopodin. Proceedings of the National Academy of Sciences of the United States of America, 117, 11648-11657. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
D’Alessandro, G., Antonangeli, F., Marrocco, F., et al. (2020) Gut Microbi-ota Alterations Affect Glioma Growth and Innate Immune Cells Involved in Tumor Immunosurveillance in Mice. European Journal of Immunology, 50, 705-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Rubic, T., Lametschwandtner, G., Jost, S., et al. (2008) Triggering the Succinate Receptor GPR91 on Dendritic Cells Enhances Immunity. Nature Immunology, 9, 1261-1269. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Olszak, T., An, D., Zeissig, S., et al. (2012) Microbial Exposure during Early Life Has Persistent Effects on Natural Killer T Cell Function. Science, 336, 489-493. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Robertson, S.J., Goethel, A., Girardin, S.E. and Philpott, D.J. (2018) Innate Immune Influences on the Gut Microbiome: Lessons from Mouse Models. Trends in Immunology, 39, 992-1004. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Ivanov, I.I., Atarashi, K., Manel, N., et al. (2009) Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell, 139, 485-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Sano, T., Huang, W., Hall, J.A., et al. (2015) An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses. Cell, 163, 381-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Levy, M., Kolodziejczyk, A.A., Thaiss, C.A. and Elinav, E. (2017) Dysbiosis and the Immune System. Nature Reviews Immunology, 17, 219-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Pal, S., Saini, A.K., Kaushal, A., et al. (2022) The Colloquy between Microbiota and the Immune System in Colon Cancer: Repercussions on the Cancer Therapy. Current Pharmaceutical Design, 28, 3478-3485. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Atarashi, K., Tanoue, T., Shima, T., et al. (2011) Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science, 331, 337-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Campbell, C., McKenney, P.T., Konstantinovsky, D., et al. (2020) Bacterial Metabolism of Bile Acids Promotes Generation of Peripheral Regulatory T Cells. Nature, 581, 475-479. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Safari, Z. and Gérard, P. (2019) The Links between the Gut Microbiome and Non-Alcoholic Fatty Liver Disease (NAFLD). Cellular and Molecular Life Sciences, 76, 1541-1558. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Hoyles, L., Fernández-Real, J., Federici, M., et al. (2018) Molecular Phenomics and Metagenomics of Hepatic Steatosis in Non-Diabetic Obese Women. Nature Medicine, 24, 1070-1080. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Wang, R., Li, H., Yang, X., et al. (2018) Genetically Obese Human Gut Microbiota Induces Liver Steatosis in Germ-Free MiceFed on Normal Diet. Frontiers in Microbiology, 9, Article 1602. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Del, C.F., Nobili, V., Vernocchi, P., et al. (2017) Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obesepatients Unveiled by an Integrated Meta-Omics-Based Approach. Hepa-tology, 65, 451-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Raman, M., Ahmed, I., Gillevet, P.M., et al. (2013) Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans with Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 11, 868-875. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Zhu, L., Baker, S.S., Gill, C., et al. (2013) Characterization of Gut Micro-biomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and NASH. Hepatology, 57, 601-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Aron-Wisnewsky, J., Vigliotti, C., Witjes, J., et al. (2020) Gut Microbiota and Hu-man NAFLD: Disentangling Microbial Signatures from Metabolic Disorders. Nature Reviews Gastroenterology & Hepatology, 17, 279-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Mouzaki, M., Comelli, E.M., Arendt, B.M., et al. (2013) Intestinal Micro-biota in Patients with Nonalcoholic Fatty Liver Disease. Hepatology, 58, 120-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Chassaing, B., Ley, R.E. and Gewirtz, A.T. (2014) Intestinal Epithelial Cell Toll-like Receptor 5 Regulates the Intestinal Microbiota to Prevent Low-Grade Inflammation and Metabolic Syndrome in Mice. Gastroen-terology, 147, 1363-1377. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Chu, H., Duan, Y., Yang, L. and Schnabl, B. (2019) Small Metabolites, Possible Big Changes: A Microbiota-Centered View of Non-Alcoholic Fatty Liver Disease. Gut, 68, 359-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Zhao, Z., Wang, Z., Zhou, D., et al. (2021) Sodium Butyrate Supplementation Inhibits Hepatic Steatosis by Stimulating Liver Kinase B1 and Insulin-Induced Gene. Cellular and Molecular Gastroenterology and Hepatology, 12, 857-871. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Dangana, E.O., Omolekulo, T.E., Areola, E.D., et al. (2020) Sodium Ac-etate Protects against Nicotine-Induced Excess Hepatic Lipid in Male Rats by Suppressing Xanthine Oxidase Activity. Chemi-co-Biological Interactions, 316, Article ID: 108929. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Liu, L., Fu, C. and Li, F. (2019) Acetate Affects the Process of Lipid Metabolism in Rabbit Liver, Skeletal Muscleand Adipose Tissue. Animals, 9, Article 799. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Li, Y., Xu, S., Mihaylova, M.M., et al. (2011) AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. Cell Metabo-lism, 13, 376-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Skelly, A.N., Sato, Y., Kearney, S. and Honda, K. (2019) Mining the Mi-crobiota for Microbial and Metabolite-Based Immunotherapies. Nature Reviews Immunology, 19, 305-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Yao, H., Fan, C., Lu, Y., et al. (2020) Alteration of Gut Microbiota Af-fects Expression of Adiponectin and Resistin through Modifying DNA Methylation in High-Fat Diet-Induced Obese Mice. Genes & Nutrition, 15, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Ridaura, V.K., Faith, J.J., Rey, F.E., et al. (2013) Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 341, 1069-1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Zhao, S., Jang, C., Liu, J., et al. (2020) Dietary Fructose Feeds Hepatic Lipo-genesis via Microbiota-Derived Acetate. Nature, 579, 586-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Perry, R.J., Peng, L., Barry, N.A., et al. (2016) Acetate Mediates a Microbiome-Brain-β-Cell Axis to Promote Metabolic Syndrome. Nature, 534, 213-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Janeiro, M.H., Ramirez, M.J., Milagro, F.I., Martínez, J.A. and Solas, M. (2018) Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10, Article 1398. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Barrea, L., Muscogiuri, G., Annunziata, G., et al. (2019) A New Light on Vitamin D in Obesity: A Novel Association with Trimethylamine-N-Oxide (TMAO). Nutrients, 11, Article 1310. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Dehghan, P., Farhangi, M.A., Nikniaz, L., Nikniaz, Z. and Asghari-Jafarabadi, M. (2020) Gut Microbiota-Derived Metabolite Trimethylamine N-Oxide (TMAO) Potentially Increases the Risk of Obesity in Adults: An Exploratory Systematic Review and Dose-Response Meta- Analysis. Obesity Reviews, 21, e12993. [Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Schoeler, M. and Caesar, R. (2019) Dietary Lipids, Gut Microbiota and Lipid Me-tabolism. Reviews in Endocrine and Metabolic Disorders, 20, 461-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Gao, X., Liu, X., Xu, J., et al. (2014) Dietary Trimethylamine N-Oxide Exacerbates Impaired Glucose Tolerance in Mice Fed a High Fat Diet. Journal of Bioscience and Bioengineering, 118, 476-481. [Google Scholar] [CrossRef] [PubMed]
|
|
[113]
|
Koeth, R.A., Wang, Z., Levison, B.S., et al. (2013) Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nature Medicine, 19, 576-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[114]
|
Tan, X., Liu, Y., Long, J., et al. (2019) Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Molecular Nutrition & Food Research, 63, e1900257. [Google Scholar] [CrossRef] [PubMed]
|
|
[115]
|
Gottlieb, A. and Canbay, A. (2019) Why Bile Acids Are So Important in Non-Alcoholic Fatty Liver Disease (NAFLD) Progression. Cells, 8, Article No. 1358. [Google Scholar] [CrossRef] [PubMed]
|
|
[116]
|
Trabelsi, M.S., Daoudi, M., Prawitt, J., et al. (2015) Far-nesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L Cells. Nature Communications, 6, Article No. 7629. [Google Scholar] [CrossRef] [PubMed]
|