TLR4多态性与NAFLD易感性的相关性
Association between TLR4 Polymorphism and NAFLD Susceptibility
DOI: 10.12677/ACM.2023.1371508, PDF, HTML, XML, 下载: 164  浏览: 239 
作者: 赵守林, 宣世英*:青岛大学附属青岛市市立医院感染性疾病科,山东 青岛;赵真真:青岛大学附属青岛市市立医院临床研究中心,山东 青岛
关键词: 非酒精性脂肪性肝病Toll样受体4单核苷酸多态性Nonalcoholic Fatty Liver Disease Toll-Like Receptor 4 Single Nucleotide Polymorphism
摘要: 目的:探究中国青岛地区人群Toll样受体4 (Toll-like receptors 4, TLR4) rs1927914位点多态性与非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)易感性的相关性。方法:纳入2020年12月~2022年06月青岛市市立医院收入院的NAFLD患者218例,健康对照者101例。提取受试者血液中的DNA,使用多聚酶链反应(polymerase chain reaction, PCR)的方法扩增DNA,并检测TLR4基因rs1927914位点的基因型。收集并分析患者的与脂质代谢及肝脏代谢状态相关的指标。使用χ2检验分析基因型及等位基因频率。符合正态分布的计量资料采用t检验,不符合正态分布的计量资料采用Wilcoxon秩和检验进行组间比较。结果:NAFLD组和对照组TLR4 rs1927914位点的基因型与等位基因分布差异均无统计学意义。结论:在青岛地区人群中,TLR4 rs1927914位点多态性与NAFLD的无明显相关性。
Abstract: Objective: To explore the polymorphism of Toll-like receptors 4 (TLR4) rs1927914 locus and non- alcoholic fatty liver disease in Qingdao population of China association with susceptibility to NAFLD. Methods: 218 patients with NAFLD and 101 healthy controls admitted to Qingdao Municipal Hospi-tal from December 2020 to June 2022 were included. DNA was extracted from the subjects’ blood, amplified using polymerase chain reaction (PCR), and genotypes at rs1927914 locus of the TLR4 gene were detected. Indicators related to lipid metabolism and liver metabolic status were collect-ed and analyzed. Genotype and allele frequency were analyzed using χ2 test. T-test was used for measurement data conforming to normal distribution, and Wilcoxon rank sum test was used for comparison between groups for measurement data not conforming to normal distribution. Results: There were no significant differences in genotype and allele distribution of TLR4 rs1927914 be-tween NAFLD group and control group. Conclusion: There is no significant correlation between TLR4 rs1927914 polymorphism and NAFLD in Qingdao population.
文章引用:赵守林, 赵真真, 宣世英. TLR4多态性与NAFLD易感性的相关性[J]. 临床医学进展, 2023, 13(7): 10796-10802. https://doi.org/10.12677/ACM.2023.1371508

1. 引言

非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)和非酒精性脂肪性肝炎(nonalcoholic steatohepatitis, NASH)在逐渐成为肝硬化和肝癌的最重要病因,同时也是肝脏相关疾病中发病率增长最快的疾病 [1] [2] 。预计在2016~2030年期间,NAFLD病例总数仍将继续增长,而我国正处于经济发展阶段,将会是NAFLD病例数量增长的重点国家。疾病造成的负担也会进一步增加 [3] 。遗传因素在NAFLD的发生发展中有着重要作用,找出与NAFLD相关的基因位点可以对NAFLD进行预测。因此,对普通人群进行NAFLD预测及预后评估,选出高危人群,进而有针对性的对高危人群进行疾病的一级预防,将会大大减少NAFLD对社会及个人的负担。临床和基础研究已经发的可能与NAFLD发生发展相关的基因包括PNPLA3、TM6SF2,MBOAT7,HSD17B13,MARC1 [4] [5] [6] [7] ,所以进一步寻找促进NAFLD发生及发展基因位点具有重要意义。

Toll样受体(Toll-like receptors, TLR)家族包括13个成员,其中TLR4是研究最广泛的一个 [8] 。主要表达于胎盘,外周血血细胞,脾脏等组织器官,接收来自脂多糖(Lipopolysaccharide, LPS)的信号刺激 [9] ,在炎症反应及免疫反应 [10] 中发挥重要作用。其rs1927914位点的多态性影响着多系统疾病的发生发展,有研究表明,rs1927914位点C等位基因的突变与其在血清中表达水平提高有关,进而导致血管重构及动脉瘤的生成 [11] ;另有研究表明,TLR4 rs1927914位点C等位基因与2型糖尿病存在相关性 [12] 。2型糖尿病与NAFLD同为代谢综合征 [13] 的重要组成部分,为探究TLR4 rs1927914位点与NAFLD的发生的可能影响,本研究对TLR4 rs1927914位点多态性与NAFLD的相关性进行探讨。

2. 资料与方法

2.1. 研究对象

纳入2020年12月~2022年06月就诊于青岛市市立医院消化科及肝病科以及健康查体的,经过超声的影像学手段确诊的NAFLD人群及与患者性别,年龄等其他因素相匹配的对照组人群。NAFLD的定义参考2010年修订版《非酒精性脂肪性肝病诊疗指南》 [14] 。本研究已通过医院伦理委员会审核,且所有纳入的被研究者皆已签署知情同意书。

2.2. 研究方法

受试者肝脏代谢相关指标及基因位点的测定

所有受试者均抽取禁食12h后的全血,然后送血样到检验科,检测指标包括总胆红素(TBiL)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、γ-谷氨酰转移酶(GGT)、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)。采用聚合酶链式反应对目的基因进行扩增,并对TLR4 rs1927914位点多态性分析。PCR引物序列:上游引物:ACGTTGGATGACAGTAGAACTATCTAGGAC;下游引物:ACGTTGGATGGGAAAGTAGCAAGTGCAATG。提取DNA后,由博淼生物科技(北京)有限公司采用基于Massarray技术进行位点核苷酸多态性测序。

2.3. 统计学处理

使用SPSS 20.0软件进行统计学处理。使用平均值±标准差用来表示符合正态分布的数据,使用中位数,(四分位数)用来表示不符合正态分布的数据,两种数据组间比较分别采用t检验及Wilcoxon秩和检验。计数资料组间比较采用χ2检验。P < 0.05为差异有统计学意义。

3. 结果

3.1. 一般资料结果的比较

NAFLD组与对照组相比较,血清BMI、ALT、AST、GGT、ALP、TG水平均较对照组高,血清HDL水平较低,差异均有统计学意义(P < 0.05),其余指标无明显统计学差异(P > 0.05) (表1)。

Table 1. Comparison of general clinical data between the control group and the NAFLD group

表1. 对照组与NAFLD组一般临床资料比较

BMI:身体质量指数;TBIL:总胆红素;ALT:谷丙转氨酶;AST:谷草转氨酶;GGT:γ-谷氨酰转移酶;ALP:碱性磷酸酶;TC:总胆固醇;TG:三酰甘油;LDL:低密度脂蛋白;HDL:高密度脂蛋白。

3.2. TLR4 rs1927914基因型分析

经检验,NAFLD组与对照组的TLR4 rs1927914多态性分布情况均符合Hardy-Weinberg平衡。TLR4 rs1927914携带等位基因C与未携带等位基因C在NAFLD组与对照组无组间差异(P值均>0.05) (表2)。

Table 2. Distribution of TLR4 rs1927914 genotypes and alleles in NAFLD group and control group

表2. NAFLD组和对照组TLR4 rs1927914基因型和等位基因的分布

3.3. 不同基因型组间一般生化指标的比较

对TLR4 rs1927914携带等位基因C与未携带等位基因C组间进行一般生化指标的比较,携带等位基因C组的TG水平低于未携带等位基因C组,差异存在统计学意义(P值 < 0.05),其余指标在两组间未见差异(P值均>0.05) (表3)。

Table 3. Comparison of general biochemical ratios between C alleles and non-C alleles

表3. 携带C等位基因及未携带C等位基因组一般生化比指标的比较

4. 讨论

NAFLD的发生需要遗传因素与后天环境因素共同作用,现已发现多个基因多态性能通过影响肝脏脂质代谢影响NAFLD的发生发展 [15] [16] 。TLR4 rs1927914位点多态性能够影响心血管系统代谢 [17] ,血管瘤 [11] 的生成,糖尿病 [12] 及糖尿病并发症 [18] 的发生发展。本研究首次探究青岛地区人群TLR4 rs1927914位点多态性与NAFLD发生的相关性,进一步完善NAFLD易感性的相关研究。

TLR4 rs1927914位点多态性变化在全身各系统代谢中都起着重要作用,针对其对肺癌 [19] ,食管癌 [20] ,特应性皮炎 [19] ,银屑病 [21] ,动脉瘤 [11] ,脑血管疾病 [22] 等均有研究。特别是近3年来,相关研究倾向于探索TRL4 rs1927914对免疫功能紊乱相关疾病的影响,比如对过敏性鼻炎 [23] ,肾病综合征 [24] 的研究。另外,在在一项来自巴西的研究表明,TLR4 rs1927914的多态性 [24] 可能对麻风结节性红斑治疗反应有影响,试图将该位点多态性应用于治疗效果及疾病发病等的预测上。在近些年针对该位点与代谢综合征的关系研究表明,该位点可能影响代谢综合中的发生发展。在2015年的一项研究显示,TLR4 rs1927914位点多态性与糖尿病存在相关性,其C等位基因组在糖尿病组和对照组有着明显的分布差异(P < 0.01,OR值为1.46) [12] ;这提示我们TLR4 rs1927917位点多态性可能影响全身代谢,糖尿病及NAFLD都是代谢综合征的重要组成部分,是全身代谢紊乱的不同表现形式 [25] [26] 。在针对TLR4 rs1927914位点多态性与肝脏疾病的研究中,有人发现T等位基因携带与肝移植后肝癌复发有相关性 [27] ,而该位点纯合子与更低水平的肝癌发生率有关 [28] ,这些研究提示我们TLR4 rs1927914位点多态性在肝脏代谢中起着一定比作用;然而,我们的研究未发现TLR4 rs1927914与NAFLD存在相关性,这与Xu [12] 等人研究中,该基因C等位基因位点对代谢综合征的影响不完全一致。但在携带等位基因C人群与不携带等位基因C人群的生化相关指标比较中,携带等位基因C的人群有着更低的甘油三酯水平。而在另一项对TRL4 rs1927914位点的研究中,未见C等位基因对血脂代谢紊乱的影响 [17] ,这可能与我们的统计的变量类型不同有关。血清甘油三酯水平的差异提示TLR4 rs1927914位点多态性可能影响了甘油三酯的代谢,而甘油三酯水平的波动往往是包括肝脏在内的多器官共同作用的结果 [29] ,结合既往研究中C等位基因的存在与糖尿病存在相关性,我们推测,TLR4 rs1927914位点C等位基因携带可能减少了肝脏甘油三酯的分泌,进而导致了肝脏的脂质蓄积,这种作用机制同样发生于膜蛋白基因点突变导致的肝脏脂质蓄积 [30] [31] 。另外,既往研究中,TLR4 rs1927914位点多态性在肝移植后肝癌复发中起作用 [27] ,这启示我们TRL4 rs1927914对肝脏器官的代谢有着特异性影响,而NAFLD与HCC又存在于同一疾病谱中 [32] [33] [34] 。因此,尽管此次我们的研究未发现TLR4 rs1927914位点多态性与NAFLD存在相关性,但仍不能忽视该位点对全身代谢的影响。

综上所述,在本次研究,我们未发现TLR4 rs1927914位点多态性与NAFLD有相关性。但是在本次研究中,我们发现,C等位基因携带组甘油三酯水平低于未携带C等位基因组。本研究纳入的人群样本数量少,地区单一,针对TLR4 rs1927914对NAFLD多态性的影响还需要更大样本量,多中心的研究进行研究。

NOTES

*通讯作者。

参考文献

[1] Paik, J.M., Golabi, P., Younossi, Y., Mishra, A. and Younossi, Z.M. (2020) Changes in the Global Burden of Chronic Liver Diseases from 2012 to 2017: The Growing Impact of NAFLD. Hepatology, 72, 1605-1616.
https://doi.org/10.1002/hep.31173
[2] Powell, E.E., Wong, V.W.S. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/S0140-6736(20)32511-3
[3] Estes, C., Anstee, Q.M., Arias-Loste, M.T., et al. (2018) Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom and United States for the Period 2016-2030. Journal of Hepatology, 69, 896-904.
https://doi.org/10.1016/j.jhep.2018.05.036
[4] Bianco, C., Jamialahmadi, O., Pelusi, S., et al. (2021) Non-Invasive Stratification of Hepatocellular Carcinoma Risk in Non-Alcoholic Fatty Liver Using Polygenic Risk Scores. Journal of Hepatology, 74, 775-782.
https://doi.org/10.1016/j.jhep.2020.11.024
[5] Luukkonen, P.K., Qadri, S., Ahlholm, N., et al. (2021) Distinct Contributions of Metabolic Dysfunction and Genetic Risk Factors in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. The Journal of Hepatology, 76, 526-535.
[6] De Vincentis, A., Tavaglione, F., Jamialahmadi, O., et al. (2022) A Polygenic Risk Score to Refine Risk Stratification and Prediction for Severe Liver Disease by Clinical Fibrosis Scores. Clinical Gastroenterology and Hepatology, 20, 658-673.
https://doi.org/10.1016/j.cgh.2021.05.056
[7] Trepo, E. and Valenti, L. (2020) Update on NAFLD Genetics: From New Variants to the Clinic. Journal of Hepatology, 72, 1196-1209.
https://doi.org/10.1016/j.jhep.2020.02.020
[8] Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2021) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molec-ular Life Sciences, 78, 1233-1261.
https://doi.org/10.1007/s00018-020-03656-y
[9] Plociennikowska, A., Hromada-Judycka, A., Borzecka, K. and Kwiatkowska, K. (2015) Co-Operation of TLR4 and Raft Proteins in LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 72, 557-581.
https://doi.org/10.1007/s00018-014-1762-5
[10] Gao, H.H., Li, W., Shou, X.Y. and Mao, J.-H. (2023) Correlation between Toll-Like Receptor Gene Polymorphisms and Idiopathic Nephrotic Syndrome in Chinese Children. Current Medical Science, 43, 585-591.
https://doi.org/10.1007/s11596-023-2728-3
[11] Li, T., Jing, J.J., Dong, N.N., Liu, X. and Ma, C. (2021) TLR4 rs1927914 Polymorphism Contributes to Serum TLR4 Levels in Patients with Aortic Aneurysm. Experimental and Mo-lecular Pathology, 119, Article ID: 104609.
https://doi.org/10.1016/j.yexmp.2021.104609
[12] Xu, Y.X., Jiang, Z.X., Huang, J.H., Meng, Q., Coh, P. and Tao, L. (2015) The Association between Toll-Like Receptor 4 Polymorphisms and Diabetic Retinopathy in Chinese Patients with Type 2 Diabetes. British Journal of Ophthalmology, 99, 1301-1305.
https://doi.org/10.1136/bjophthalmol-2015-306677
[13] Drozdz, K., Nabrdalik, K., Hajzler, W., et al. (2022) Met-abolic-Associated Fatty Liver Disease (MAFLD), Diabetes, and Cardiovascular Disease: Associations with Fructose Metabolism and Gut Microbiota. Nutrients, 14, Article 103.
https://doi.org/10.3390/nu14010103
[14] Cohen, J.C., Horton, J.D. and Hobbs, H.H. (2011) Human Fatty Liver Disease: Old Questions and New Insights. Science, 332, 1519-1523.
https://doi.org/10.1126/science.1204265
[15] Heeren, J. and Scheja, L. (2021) Metabolic-Associated Fatty Liver Disease and Lipoprotein Metabolism. Molecular Metabolism, 50, Article ID: 101238.
https://doi.org/10.1016/j.molmet.2021.101238
[16] Buzzetti, E., Pinzani, M. and Tsochatzis, E.A. (2016) The Mul-tiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism-Clinical and Experimental, 65, 1038-1048.
https://doi.org/10.1016/j.metabol.2015.12.012
[17] Li, T., Jing, J.J., Sun, L.P., et al. (2019) TLR4 and MMP2 Polymorphisms and Their Associations with Cardiovascular Risk Factors in Susceptibility to Aortic Aneurysmal Dis-eases. Bioscience Reports, 39, BSR20181591..
https://doi.org/10.1042/BSR20181591
[18] Singh, K., Singh, V.K., Agrawal, N.K., Gupta, S.K. and Singh, K. (2013) Association of Toll-Like Receptor 4 Polymorphisms with Diabetic Foot Ulcers and Application of Artificial Neu-ral Network in DFU Risk Assessment in Type 2 Diabetes Patients. BioMed Research International, 2013, Article ID: 318686.
https://doi.org/10.1155/2013/318686
[19] Zhang, H.M., Gao, H., Li, A., et al. (2022) TLR4 Regulatory Region Variants Reduce the Susceptibility of Small-Cell Lung Cancer in Chinese Population. European Journal of Can-cer Prevention, 31, 363-368.
https://doi.org/10.1097/CEJ.0000000000000737
[20] Li, J.Y., Wu, H.J., Gao, H., et al. (2021) TLR4 Promoter rs1927914 Variant Contributes to the Susceptibility of Esophageal Squamous Cell Carcinoma in the Chinese Population. PeerJ, 9, e10754.
https://doi.org/10.7717/peerj.10754
[21] Shi, G., Wang, T.T., Li, S.J., et al. (2016) TLR2 and TLR4 Polymorphisms in Southern Chinese Psoriasis Vulgaris patients. Journal of Dermatological Science, 83, 145-147.
https://doi.org/10.1016/j.jdermsci.2016.04.014
[22] Gu, L., Huang, J.Y., Liang, B.Y., et al. (2018) TLR4 Poly-morphisms Affect Stroke Risk and Inflammatory Response in Chinese Ischemic Stroke Patients. Neurological Sciences, 39, 127-133.
https://doi.org/10.1007/s10072-017-3151-y
[23] Chen, R.X., Dai, M.D., Zhang, Q.Z., Lu, M.P., Wang, M.L., Yin, M., Zhu, X.J., Wu, Z.F., Zhang, Z.D. and Cheng, L. (2022) TLR Signaling Pathway Gene Polymor-phisms, Gene-Gene and Gene-Environment Interactions in Allergic Rhinitis. Journal of Inflammation Research, 15, 3613-3630.
https://doi.org/10.2147/JIR.S364877
[24] Maciel-Fiuza, M.F., Costa, P.D.S., Kowalski, T.W., et al. (2022) Evaluation of Polymorphisms in Toll-Like Receptor Genes as Biomarkers of the Response to Treatment of Ery-thema Nodosum Leprosum. Frontiers in Medicine, 8, Article 713143.
https://doi.org/10.3389/fmed.2021.713143
[25] Younossi, Z.M., Koenig, A.B., Abdelatif, D., et al. (2016) Global Epidemiology of Nonalcoholic Fatty Liver Disease- Meta-Analytic Assessment of Prevalence, Incidence and Outcomes. Hepatology, 64, 73-84.
https://doi.org/10.1002/hep.28431
[26] Zhao, X.F., An, X.D., Yang, C.Q., et al. (2023) The Crucial Role and Mechanism of Insulin Resistance in Metabolic Disease. Frontiers in Endocrinology, 14, Article 1143239.
https://doi.org/10.3389/fendo.2023.1149239
[27] Shi, G.J., Wang, C.X., Zhang, P., Ji, L., Xu, S., Tan, X. and Li, H. (2017) Donor Polymorphisms of Toll-like Receptor 4 rs1927914 Associated with the Risk of Hepatocellular Carci-noma Recurrence Following Liver Transplantation. Archives of Medical Research, 48, 553-560.
https://doi.org/10.1016/j.arcmed.2017.11.011
[28] Shi, M.M., Xu, X.Q., Chen, H., et al. (2011) Single Nucleotide Polymorphisms of Toll-Like Receptor 4 Decrease the Risk of Development of Hepatocellular Carcinoma. PLOS ONE, 6, e19466.
https://doi.org/10.1371/journal.pone.0019466
[29] Marchesini, G., Bugianesi, E., Forlani, G., et al. (2003) Nonal-coholic Fatty Liver, Steatohepatitis and the Metabolic Syndrome. Hepatology, 37, 917-923.
https://doi.org/10.1053/jhep.2003.50161
[30] Newberry. E.P., Hall, Z., Xie, Y., et al. (2021) Liver-Specific Dele-tion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer. Hepatology, 74, 1203-1219.
https://doi.org/10.1002/hep.31771
[31] Kozlitina, J., Smagris, E., Stender, S., et al. (2014) Exome-Wide Associa-tion Study Identifies a TM6SF2 Variant that Confers Susceptibility to Nonalcoholic Fatty Liver Disease. Nature Genetics, 46, 352-356.
https://doi.org/10.1038/ng.2901
[32] Loomba, R., Friedman, S.L. and Shulman, G.I. (2021) Mechanisms and Dis-ease Consequences of Nonalcoholic Fatty Liver Disease. Cell, 184, 2537-2564.
https://doi.org/10.1016/j.cell.2021.04.015
[33] Du, D.Y., Liu, C., Qin, M.Y., Zhang,X., Xi, T., Yuan, S., Hao, H. And Xiong, J. (2022) Metabolic Dysregulation and Emerging Therapeutical Targets for Hepatocellular Carcinoma. Acta Pharmaceutica Sinica B, 12, 558-580.
https://doi.org/10.1016/j.apsb.2021.09.019
[34] Mcglynn, K.A., Petrick, J.L. and El-Serag, H.B. (2021) Epidemi-ology of Hepatocellular Carcinoma. Hepatology, 73, 4-13.
https://doi.org/10.1002/hep.31288