燃料乙醇生产研究进展
Progress of Fermentation Technology for Bioethanol Production
DOI: 10.12677/bp.2012.22014, PDF, HTML, XML, 下载: 4,112  浏览: 16,144  国家自然科学基金支持
作者: 袁文杰:大连理工大学生命科学与技术学院,大连 ;大连赛姆生物工程技术有限公司博士后科研流动站,大连 ;陈丽杰, 李楠楠, 白凤武:大连理工大学生命科学与技术学院,大连 ;李淑英 :大连赛姆生物工程技术有限公司博士后科研流动站,大连
关键词: 燃料乙醇节能技术途径工程替代原料Bioethanol; Energy-Saving Fermentation Technology; Pathway Engineering; Alternative Materials
摘要: 燃料乙醇是发展最为成熟的生物质能源,能够解决能源短缺及环境污染等问题,在人类的新能源布局中占据重要地位。但燃料乙醇产业仍存在生产成本高、原料短缺等问题。本文对燃料乙醇发酵节能技术、途径工程改造生产菌种及非粮原料利用方面的研究进展进行了综述,分析了燃料乙醇发酵技术中存在的问题,并对今后进一步研究提出了建议。
Abstract: Bioethanol is the most mature biomass energy, which can solve energy shortage and pollution problems, oc-cupying the important position in the human new energy layout. But bioethanol industry had many problems such as high production costs and raw material shortages. In this paper, the new technologies including energy-saving fermenta-tion technology, pathway engineering to construct engineered strains and alternative materials were summarized. The developing direction for further investigation was discussed.
文章引用:袁文杰, 陈丽杰, 李楠楠, 白凤武, 李淑英. 燃料乙醇生产研究进展[J]. 生物过程, 2012, 2(2): 81-88. http://dx.doi.org/10.12677/bp.2012.22014

参考文献

[1] 梁倩. 生物质能源的成本分析[D]. 南京林业大学, 2008.
[2] 阮彩彪, 何建, 李文华等. 生料发酵技术应用概述[J]. 中国酿造, 2010, 214(1): 4-8.
[3] 汪江波, 薛海燕, 邹玉玲等. 酶制剂的添加对早籼稻谷生料发酵生产酒精的影响[J]. 中国酿造, 2005, 145(4): 15-17.
[4] 覃红梅, 韦仕岩, 张家伟. 酶制剂在玉米生料发酵酒精生产中的应用研究[J]. 酿酒科技, 2002, 113(5): 46-47.
[5] 段钢, 许宏贤. 大米生料发酵酒精生产的研究[J]. 食品与生物技术学报, 2008, 27(1): 95-102.
[6] H. Shigechi, J.J. Koh, Y. Fujita, et al. Direct production of etha- nol from raw corn starch via fermentation by use of a novel sur- face-engineered yeast strain codisplaying glucoamylase and α-amylase. Applied and Environmental Microbiology, 2004, 70(8): 5037-5040.
[7] D. P. Bayrock, W. M. Ingledew. Application of multistage con- tinuous fermentation for production of fuel alcohol by very- high-gravity fermentation technology. Journal of Industrial Mi- crobiology Biotechnology, 2001, 27(2): 87-93.
[8] K. C. Thomas, S. H. Hynes, A. M. Jones, et al. Production of fuel alcohol from wheat by VHG technology-effect of sugar concentration and fermentation temperature. Applied Biochem- istry and Biotechnology, 1993, 43(3): 211-226.
[9] B. G. Patil, D. V. Gokhale, K. B. Bastawde, et al. The use of tamarind waste to improve ethanol production from cane molas- ses. Journal of Industrial Microbiology and Biotechnology, 1998, 21(6): 307-310.
[10] F. W. Bai, L. J. Chen, W. A. Anderson, et al. Parameter oscilla- tions in very high gravity medium continuous ethanol fermenta- tion and their attenuation on multi-stage packed column biore- actor system. Biotechnology and Bioengineering, 2004, 88(5): 558-566.
[11] F. W. Bai, L. J. Chen, Z. Zhang, et al. Continuous ethanol pro- duction and evaluation of yeast cell lysis and viability under very high gravity medium conditions. Journal of Biotechnology, 2004, 110: 287-293.
[12] I. M. Banat, P. Nigam, D. Singh, et al. Ethanol production at elevated temperatures and alcohol concentrations I: Yeasts in general. World Journal of Microbiology and Biotechnology, 1998, 14(6): 809-821.
[13] 庞会利, 李景原, 秦广雍. 耐高温乙醇酵母的研究现状及进展[J]. 酿酒科技, 2008, 164(2): 99-102.
[14] D. A. Tony, C. Guy and R. Inge. Selection and optimization of yeast suitable for ethanol production at 40℃. Enzyme and Mi- crobial Technology, 1989, 11(7): 411-416.
[15] Y. Kourkoutas, S. Dimitropoulou, M. Kanellaki, et al. High- temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresource Technology, 2002, 82(2): 177-181.
[16] I. Ballesteros, M. Ballesteros, A. Cabanas, et al. Selection of thermotolerant yeasts for simultaneous saccharification and fer- mentation (SSF) of cellulose to ethanol. Applied Biochemistry and Biotechnology, 1991, 28(1): 307-315.
[17] D. B. Hughes, N. J. Tudrosaen and C. J. Moye. The effect of temperature on the kinectics of ethanol production by a thermo- tolerant strain of Kluyveromyces marxianus. Biotechnology Let- ters, 1984, 6(1): 1-6.
[18] I. M. Banat, P. Nigam and R. Marchant. Isolation of thermotol- erant, fermentative yeasts growing at 52℃ and producing ethanol at 45℃ and 50℃. World Journal of Microbiology and Bio- technology, 1992, 8(3): 259-263.
[19] P. J. Anderson, K. McNeil and K. Watson. High-efficiency car- boidrate fermentation to ethanol at temperatures above 40℃ by Kluyveromyces marxianus var marxianus isolated from sugar mills. Applied Environmental Microbiology, 1986, 51(6): 1314- 1320.
[20] S. C. Hisayori, K. Jun, F. Yasuya, et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Applied Environmental Microbiology, 2004, 70(8): 5037-5040.
[21] Y. S. Jeong, W. R. Vieth. Fermentation of lactose to ethanol with recombinant yeast in an immobilized yeast membrane bioreactor. Biotechnology and Bioengineering, 1991, 37(6): 587-590.
[22] F. Farahnak, T. Seki, D. Y. Ryu, et al. Construction of lac- tose-assimilating and high ethanol producing yeasts by proto- plast fussion. Applied Environmental Microbiology, 1986, 51(2): 362-367.
[23] L. Dominques, M. M. Dantas, N. Lima, et al. Continuous etha- nol fermentation of lactose by a recombinant flocculating Sac- charomyces cerevisiae strain. Biotechnology and Bioengineering, 1999, 64(6): 692-697.
[24] M. Beccerra, S. DiazPrado, E. Rodrguez-Belmonte, et al. Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae. Biotechnology Letters, 2002, 24(17): 1391-1396.
[25] B. Ronnow, L. Olsson, J. Nielsen, et al. Derepression of galactose metabolism in melibiase producing bakers’ and distillers’ yeast. Journal of Biotechnology, 1999, 72(3): 213-228.
[26] P. Y. Wang, C. Shopsis and H. Schneider. Fermentation of a pentose by yeasts. Bioresource Technology, 1980, 94(1): 248- 254.
[27] C. J. Moes, I. S. Pretorius and W. H. Zyl. Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnology Letters, 1996, 18(3): 269-274.
[28] P. Kotter, M. Ciriacy. Xylose fermentation by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1993, 38(6): 776-783.
[29] M. Walfridsson, M. Anderlund, X. Bao, et al. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilization. Applied Microbiol- ogy and Biotechnology, 1997, 48(2): 218-224.
[30] 鲍晓明, 高东, 曲音波等. 木糖代谢基因表达水平对酿酒酵母重组菌株产物形成的影响[J]. 生物工程学报, 1997, 13(4): 355-361.
[31] 鲍晓明, 高东, 王祖农. 嗜热细菌木糖异构酶基因xylA在酿酒酵母中的高效表达[J]. 微生物学报, 1999, 39(1): 49-54.
[32] L. Andre, A. Hemming and L. Adler. Osmoregulation in Sac- charomyces cerevisiae studies on the osmotic induction of glyc- erol production and glycerol 3-phosphate dehydrogenase (NAD+). FEBS Letters, 1991, 292(2): 13-17.
[33] S. Bjorkqvist, R. Ansell, L. Adler, et al. Physiological response to anaerobicity of glycerol 3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Applied Environmental Microbi- ology, 1997, 63(1): 128-132.
[34] H. Valadi, C. Larsson and L. Gustafsson. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutant of Saccharomyces cerevisiae. Applied Microbiology and Biotech- nology, 1998, 50(4): 434-439.
[35] T. L. Nissen, M. C. Kielland-Brandt, J. Nielsen, et al. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metabolic Engineering, 2000, 2(l): 69-77.
[36] Q. X. Kong, J. G. Gu, L. M. Cao, et al. Improved production of ethanol by deleting FPS1and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnology Letters, 2006, 28(24): 2033-2038.
[37] H. Alexandre, I. Rousseaux and C. Charpentier. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiology Letters, 1994, 124(1): 17-22.
[38] S. Kajiwara, K. Suga, H. Sone, et al. Improved ethanol tolerance and fermentation of Saccharomyces cerevisiae by alteration of fatty Acid content in membrane lipids via metabolic engineering. Biotechnology Letters, 2000, 22(23): 1839-1843.
[39] W. Chen, D. E. Hughes and J. E. Bailey. Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Sac- charomyces cerevisiae. Biotechnology Progress, 1994, 10(3): 308-313.
[40] S. Larsson, P. Cassland and L. J. Jonsson. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expres-sion of laccase. Applied Environmental Microbiology, 2001, 67(3): 1163-1170.
[41] H. Takagi, K. Sakai, K. Morida, et al. Proline accumulation by mutation or disruption of the proline oxidase gene improves re- sistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2000, 184(1): 103-108.
[42] 陈洪章, 邱卫华. 秸秆发酵燃料乙醇关键问题及其进展[J]. 化学进展, 2007, 19(7-8): 1116-1121.
[43] 陈洪章, 王岚. 生物质能源转化技术与应用[J]. 生物质化学工程, 2008, 42(4): 67-72.
[44] W. J. Yuan, X. Q. Zhao, X. M. Ge, et al. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. Journal of Applied Microbiology, 2008, 105(6): 2076-2083.
[45] X. Y. Ge, W. G.. Zhang. A shortcut to the production of high ethanol concentration from Jerusalm artichoke tubers. Food Technology and Biotechnology, 2005, 43(3): 241-246.
[46] 袁文杰, 任剑刚, 赵心清等. 一步法发酵菊芋生产乙醇[J]. 生物工程学报, 2008, 24(11): 1-6.
[47] 黎贞崇, 黄志民, 杨登峰等. 影响木薯燃料乙醇产业发展的不利因素及对策[J]. 可再生能源, 2008, 26(3): 106-110.
[48] E. Gnansounou, A. Daurint and C. E. Wyman. Refining sweet sorghum to ethanol and sugar: Economic tradeoffs in the context of North China. Bioresource Technology, 2005, 96(9): 985- 1002.