|
[1]
|
梁倩. 生物质能源的成本分析[D]. 南京林业大学, 2008.
|
|
[2]
|
阮彩彪, 何建, 李文华等. 生料发酵技术应用概述[J]. 中国酿造, 2010, 214(1): 4-8.
|
|
[3]
|
汪江波, 薛海燕, 邹玉玲等. 酶制剂的添加对早籼稻谷生料发酵生产酒精的影响[J]. 中国酿造, 2005, 145(4): 15-17.
|
|
[4]
|
覃红梅, 韦仕岩, 张家伟. 酶制剂在玉米生料发酵酒精生产中的应用研究[J]. 酿酒科技, 2002, 113(5): 46-47.
|
|
[5]
|
段钢, 许宏贤. 大米生料发酵酒精生产的研究[J]. 食品与生物技术学报, 2008, 27(1): 95-102.
|
|
[6]
|
H. Shigechi, J.J. Koh, Y. Fujita, et al. Direct production of etha- nol from raw corn starch via fermentation by use of a novel sur- face-engineered yeast strain codisplaying glucoamylase and α-amylase. Applied and Environmental Microbiology, 2004, 70(8): 5037-5040.
|
|
[7]
|
D. P. Bayrock, W. M. Ingledew. Application of multistage con- tinuous fermentation for production of fuel alcohol by very- high-gravity fermentation technology. Journal of Industrial Mi- crobiology Biotechnology, 2001, 27(2): 87-93.
|
|
[8]
|
K. C. Thomas, S. H. Hynes, A. M. Jones, et al. Production of fuel alcohol from wheat by VHG technology-effect of sugar concentration and fermentation temperature. Applied Biochem- istry and Biotechnology, 1993, 43(3): 211-226.
|
|
[9]
|
B. G. Patil, D. V. Gokhale, K. B. Bastawde, et al. The use of tamarind waste to improve ethanol production from cane molas- ses. Journal of Industrial Microbiology and Biotechnology, 1998, 21(6): 307-310.
|
|
[10]
|
F. W. Bai, L. J. Chen, W. A. Anderson, et al. Parameter oscilla- tions in very high gravity medium continuous ethanol fermenta- tion and their attenuation on multi-stage packed column biore- actor system. Biotechnology and Bioengineering, 2004, 88(5): 558-566.
|
|
[11]
|
F. W. Bai, L. J. Chen, Z. Zhang, et al. Continuous ethanol pro- duction and evaluation of yeast cell lysis and viability under very high gravity medium conditions. Journal of Biotechnology, 2004, 110: 287-293.
|
|
[12]
|
I. M. Banat, P. Nigam, D. Singh, et al. Ethanol production at elevated temperatures and alcohol concentrations I: Yeasts in general. World Journal of Microbiology and Biotechnology, 1998, 14(6): 809-821.
|
|
[13]
|
庞会利, 李景原, 秦广雍. 耐高温乙醇酵母的研究现状及进展[J]. 酿酒科技, 2008, 164(2): 99-102.
|
|
[14]
|
D. A. Tony, C. Guy and R. Inge. Selection and optimization of yeast suitable for ethanol production at 40℃. Enzyme and Mi- crobial Technology, 1989, 11(7): 411-416.
|
|
[15]
|
Y. Kourkoutas, S. Dimitropoulou, M. Kanellaki, et al. High- temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresource Technology, 2002, 82(2): 177-181.
|
|
[16]
|
I. Ballesteros, M. Ballesteros, A. Cabanas, et al. Selection of thermotolerant yeasts for simultaneous saccharification and fer- mentation (SSF) of cellulose to ethanol. Applied Biochemistry and Biotechnology, 1991, 28(1): 307-315.
|
|
[17]
|
D. B. Hughes, N. J. Tudrosaen and C. J. Moye. The effect of temperature on the kinectics of ethanol production by a thermo- tolerant strain of Kluyveromyces marxianus. Biotechnology Let- ters, 1984, 6(1): 1-6.
|
|
[18]
|
I. M. Banat, P. Nigam and R. Marchant. Isolation of thermotol- erant, fermentative yeasts growing at 52℃ and producing ethanol at 45℃ and 50℃. World Journal of Microbiology and Bio- technology, 1992, 8(3): 259-263.
|
|
[19]
|
P. J. Anderson, K. McNeil and K. Watson. High-efficiency car- boidrate fermentation to ethanol at temperatures above 40℃ by Kluyveromyces marxianus var marxianus isolated from sugar mills. Applied Environmental Microbiology, 1986, 51(6): 1314- 1320.
|
|
[20]
|
S. C. Hisayori, K. Jun, F. Yasuya, et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Applied Environmental Microbiology, 2004, 70(8): 5037-5040.
|
|
[21]
|
Y. S. Jeong, W. R. Vieth. Fermentation of lactose to ethanol with recombinant yeast in an immobilized yeast membrane bioreactor. Biotechnology and Bioengineering, 1991, 37(6): 587-590.
|
|
[22]
|
F. Farahnak, T. Seki, D. Y. Ryu, et al. Construction of lac- tose-assimilating and high ethanol producing yeasts by proto- plast fussion. Applied Environmental Microbiology, 1986, 51(2): 362-367.
|
|
[23]
|
L. Dominques, M. M. Dantas, N. Lima, et al. Continuous etha- nol fermentation of lactose by a recombinant flocculating Sac- charomyces cerevisiae strain. Biotechnology and Bioengineering, 1999, 64(6): 692-697.
|
|
[24]
|
M. Beccerra, S. DiazPrado, E. Rodrguez-Belmonte, et al. Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae. Biotechnology Letters, 2002, 24(17): 1391-1396.
|
|
[25]
|
B. Ronnow, L. Olsson, J. Nielsen, et al. Derepression of galactose metabolism in melibiase producing bakers’ and distillers’ yeast. Journal of Biotechnology, 1999, 72(3): 213-228.
|
|
[26]
|
P. Y. Wang, C. Shopsis and H. Schneider. Fermentation of a pentose by yeasts. Bioresource Technology, 1980, 94(1): 248- 254.
|
|
[27]
|
C. J. Moes, I. S. Pretorius and W. H. Zyl. Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnology Letters, 1996, 18(3): 269-274.
|
|
[28]
|
P. Kotter, M. Ciriacy. Xylose fermentation by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1993, 38(6): 776-783.
|
|
[29]
|
M. Walfridsson, M. Anderlund, X. Bao, et al. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilization. Applied Microbiol- ogy and Biotechnology, 1997, 48(2): 218-224.
|
|
[30]
|
鲍晓明, 高东, 曲音波等. 木糖代谢基因表达水平对酿酒酵母重组菌株产物形成的影响[J]. 生物工程学报, 1997, 13(4): 355-361.
|
|
[31]
|
鲍晓明, 高东, 王祖农. 嗜热细菌木糖异构酶基因xylA在酿酒酵母中的高效表达[J]. 微生物学报, 1999, 39(1): 49-54.
|
|
[32]
|
L. Andre, A. Hemming and L. Adler. Osmoregulation in Sac- charomyces cerevisiae studies on the osmotic induction of glyc- erol production and glycerol 3-phosphate dehydrogenase (NAD+). FEBS Letters, 1991, 292(2): 13-17.
|
|
[33]
|
S. Bjorkqvist, R. Ansell, L. Adler, et al. Physiological response to anaerobicity of glycerol 3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Applied Environmental Microbi- ology, 1997, 63(1): 128-132.
|
|
[34]
|
H. Valadi, C. Larsson and L. Gustafsson. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutant of Saccharomyces cerevisiae. Applied Microbiology and Biotech- nology, 1998, 50(4): 434-439.
|
|
[35]
|
T. L. Nissen, M. C. Kielland-Brandt, J. Nielsen, et al. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metabolic Engineering, 2000, 2(l): 69-77.
|
|
[36]
|
Q. X. Kong, J. G. Gu, L. M. Cao, et al. Improved production of ethanol by deleting FPS1and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnology Letters, 2006, 28(24): 2033-2038.
|
|
[37]
|
H. Alexandre, I. Rousseaux and C. Charpentier. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiology Letters, 1994, 124(1): 17-22.
|
|
[38]
|
S. Kajiwara, K. Suga, H. Sone, et al. Improved ethanol tolerance and fermentation of Saccharomyces cerevisiae by alteration of fatty Acid content in membrane lipids via metabolic engineering. Biotechnology Letters, 2000, 22(23): 1839-1843.
|
|
[39]
|
W. Chen, D. E. Hughes and J. E. Bailey. Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Sac- charomyces cerevisiae. Biotechnology Progress, 1994, 10(3): 308-313.
|
|
[40]
|
S. Larsson, P. Cassland and L. J. Jonsson. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expres-sion of laccase. Applied Environmental Microbiology, 2001, 67(3): 1163-1170.
|
|
[41]
|
H. Takagi, K. Sakai, K. Morida, et al. Proline accumulation by mutation or disruption of the proline oxidase gene improves re- sistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2000, 184(1): 103-108.
|
|
[42]
|
陈洪章, 邱卫华. 秸秆发酵燃料乙醇关键问题及其进展[J]. 化学进展, 2007, 19(7-8): 1116-1121.
|
|
[43]
|
陈洪章, 王岚. 生物质能源转化技术与应用[J]. 生物质化学工程, 2008, 42(4): 67-72.
|
|
[44]
|
W. J. Yuan, X. Q. Zhao, X. M. Ge, et al. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. Journal of Applied Microbiology, 2008, 105(6): 2076-2083.
|
|
[45]
|
X. Y. Ge, W. G.. Zhang. A shortcut to the production of high ethanol concentration from Jerusalm artichoke tubers. Food Technology and Biotechnology, 2005, 43(3): 241-246.
|
|
[46]
|
袁文杰, 任剑刚, 赵心清等. 一步法发酵菊芋生产乙醇[J]. 生物工程学报, 2008, 24(11): 1-6.
|
|
[47]
|
黎贞崇, 黄志民, 杨登峰等. 影响木薯燃料乙醇产业发展的不利因素及对策[J]. 可再生能源, 2008, 26(3): 106-110.
|
|
[48]
|
E. Gnansounou, A. Daurint and C. E. Wyman. Refining sweet sorghum to ethanol and sugar: Economic tradeoffs in the context of North China. Bioresource Technology, 2005, 96(9): 985- 1002.
|