放疗与免疫治疗在恶性肿瘤治疗中的相互作用
The Interaction between Radiotherapy and Immunotherapy in the Treatment of Ma-lignant Tumors
DOI: 10.12677/ACM.2023.1371575, PDF, HTML, XML, 下载: 237  浏览: 440 
作者: 陈 悦, 赵 红*:延安大学附属医院肿瘤科,陕西 延安
关键词: 恶性肿瘤放射治疗免疫检查点抑制剂联合治疗Malignant Tumor Radiotherapy Immunocheckpoint Inhibitor Combined Therapy
摘要: 大部分被诊断为恶性肿瘤的患者将在病程中接受放疗,在以治疗或缓解病痛为目的的传统上,以往放射治疗的有效性仅被解释为治疗体积内针对肿瘤细胞DNA的不可修复性损伤,导致细胞死亡或丧失复制潜能。在过去的几年里,免疫检查点抑制剂的出现,改变了很多恶性肿瘤的治疗现状,为抗肿瘤治疗提供了新的努力方向和希望。然而,越来越多的数据表明,免疫系统也是放疗反应的关键性决定因素,放射和免疫联合治疗可能是协同作用。这种联合可能提供一种非药理学、低毒性和较经济的方法来增加全身反应和最大限度地增加肿瘤细胞的死亡。该综述主要基于免疫时代的到来改变了恶性肿瘤治疗模式、放疗与免疫治疗联合的理论机制,及在联合治疗过程中需要关注的问题展开,并提出了对联合方案的优化,并对未来将面临的挑战和发展方向提出总结与展望。
Abstract: Most patients diagnosed with malignant tumors will receive radiation therapy during the course of the disease. Traditionally, the effectiveness of radiation therapy was only explained as irreparable damage to tumor cell DNA within the treatment volume, leading to cell death or loss of replication potential, with the aim of treating or alleviating pain. In the past few years, the emergence of im-mune checkpoint inhibitors has changed the current treatment status of many malignant tumors, providing new directions and hope for anti-tumor treatment. However, an increasing amount of da-ta suggests that the immune system is also a key determinant of radiation response, and the com-bination of radiation and immune therapy may be a synergistic effect. This combination may pro-vide a non pharmacological, low toxicity, and more economical method to increase systemic reac-tions and maximize tumor cell death. This review is mainly based on the arrival of the immune era, which has changed the treatment mode of malignant tumors, the theoretical mechanism of the combination of radiotherapy and immunotherapy, and the issues that need to be paid attention to during the combined treatment process. It also proposes the optimization of the combined plan, and summarizes and prospects the challenges and development directions that will be faced in the future.
文章引用:陈悦, 赵红. 放疗与免疫治疗在恶性肿瘤治疗中的相互作用[J]. 临床医学进展, 2023, 13(7): 11272-11279. https://doi.org/10.12677/ACM.2023.1371575

1. 引言

随着免疫检查点抑制剂(ICIs)在恶性肿瘤治疗中表现出不容忽视的疗效,使得ICIs (简称免疫治疗)已成为当前肿瘤治疗的一个研究热点。免疫治疗作用于免疫反应的不同步骤,以增强身体识别、靶向和摧毁癌细胞的自然能力。免疫疗法和其他方式的联合治疗旨在激活免疫反应,降低免疫抑制,并改变靶向信号通路和耐药途径 [1] 。与其他治疗方法的联合,已经成为免疫治疗一个重要的发展方向,与放疗结合更是被予以厚望 [2] [3] 。放疗联合免疫治疗可显著提升疗效,ORR可达50%甚至更高,其中部分接受治疗的患者可出现远隔应,被称为革命性时代的到来 [4] 。然而,仍有患者不能从放疗联合免疫治疗中获益,即使已有获益患者仍存在较为常见的免疫耐药现象。采用先放疗后免疫亦或是先免疫后放疗的治疗模式,如何采取最优分割方式,如何确定最佳放疗剂量,哪种免疫治疗方案是最优的,都是现阶段肿瘤联合治疗领域的重要研究方向。

2. 免疫治疗时代的到来

恶性肿瘤是威胁人类生命健康的最主要疾病之一,幸运的是,近年来,使用ICIs进行癌症治疗的免疫学方法已经彻底改变了一系列恶性肿瘤的治疗,如非小细胞肺癌(NSCLC)、胃癌、转移性黑色素瘤、肾细胞癌、默克尔细胞癌、霍奇金淋巴瘤、头颈部肿瘤和膀胱癌等。这些ICIs以抗体蛋白的形式参与癌症自我监管的免疫反应,如细胞毒性T-淋巴细胞相关蛋白4 (CTLA-4),程序性细胞死亡蛋白1 (PD-1)或其主要配体PD-L1为恶性肿瘤的治疗提供了前所未有的临床益处 [5] 。

3. 放疗与免疫治疗的理论机制

许多显著的证据表明放疗在全身抗肿瘤反应中的免疫调节作用 [6] [7] 。更令人注意的是,在许多临床病例报告中观察到一种现象,发现在射线辐照范围之外的肿瘤发生消退,称为辐射依赖性远隔效应 [8] [9] 。不幸的是,即使远隔效应目前已经被广泛认知,但其发生的罕见性似乎表明其应用价值比较局限 [10] 。ICIs的使用增加也为与放疗联合使用以产生远隔效应提供了机会,其中放射到转移性疾病的一个部位,可能会在遥远的非照射部位的肿瘤也产生消退 [11] [12] [13] 。然而,远隔效应的机制尚未明确,且目前仅报告了有限的远隔效应病例 [14] 。

3.1. 放疗增加肿瘤抗原的释放

作为传统的肿瘤疗法之一,放疗应用于超过60%的诊断为肿瘤的患者 [15] 。目前已经被广泛接受了的一种概念,即放疗不仅可以控制原位病变,还可以触发称为免疫原性细胞死亡(ICD)的全身免疫反应 [16] 。越来越多的关于放疗免疫调节功能的研究表明,它主要包含其对促炎介质和促进免疫细胞释放肿瘤抗原的影响 [17] 。通过这种机制,放疗不仅可以增强照射场内的肿瘤免疫原性,而且刺激并增强了照射场外的免疫原性 [18] 。触发ICD后,多种损伤相关分子模式(DAMP)被释放并被树突状细胞(DC)识别 [19] 。DC可以进一步将这些抗原呈递给细胞毒性T细胞 [20] ,还可以激活自然杀伤(NK)细胞,从而诱导原位免疫调节 [21] 。

3.2. 放疗调节肿瘤微环境

放射线除了可以直接杀死肿瘤细胞外,还可以调节并改变肿瘤微环境 [11] 。在接受射线照射后,肿瘤细胞发生损伤,导致充满坏死和凋亡的肿瘤细胞和碎片的微环境,随后释放出大量肿瘤相关抗原(TAAs),TAAs的出现会刺激DC的活化,活化后的DC参与了CD8+T细胞的启动、增殖和转运 [5] 。放射治疗促进趋化因子的释放,吸引活化的T细胞,并增强抗肿瘤免疫效应细胞向肿瘤部位的运输 [22] 。放射治疗通过激活DC和刺激主要组织相容性复合体-1 (MHC-1) [23] 来促进抗原识别,导致CD8+ T细胞改善肿瘤定向细胞杀伤;放射治疗还增加了肿瘤引流淋巴结内携带肿瘤来源多肽的活化抗原呈递细胞(主要是DC)的数量。除此之外,放射线对肿瘤微环境也会产生负性调节,如诱导免疫抑制细胞因子的分泌,转化生长因子-β在辐射后很短时间内就会上调,其抑制CD8+T细胞的杀伤功能,并促进调节T细胞(Treg)聚集,同时促肿瘤巨噬细胞的积累 [5] 。从而导致肿瘤微环境免疫功能受到抑制 [24] 。

3.3. 放疗作为“原位”疫苗的潜力

有临床前研究表明,大剂量放疗可增加T细胞启动,CD8+介导对远处疾病以及局部治疗部位有影响 [25] 。此外,还有研究发现消融剂量的辐射可导致I型干扰素(IFN)和抗肿瘤作用增加 [26] 。首先,放疗诱导肿瘤细胞凋亡和坏死,使其将肿瘤抗原尤其是新抗原释放到血液中,这可能有助于免疫识别 [27] 。由于肿瘤抗原在正常组织中表达,这些突变更可能诱导免疫耐受,并且不太可能引发有效的抗肿瘤免疫应答 [28] [29] 。然而,由于基因组突变改变了蛋白质序列,新抗原还会在癌细胞中表达。这种类型的抗原具有肿瘤特异性,在激活时可引发足以清除肿瘤细胞的免疫应答 [30] [31] 。除了释放肿瘤新抗原外,辐射还介导某些内质网蛋白在细胞凋亡前易位到细胞膜,包括钙网蛋白 [32] 。DAMPs作为一种危险信号,如高迁移率族蛋白组框1 (HMGB1)和三磷酸腺苷,从受射线照射后的肿瘤细胞的细胞质释放到细胞外环境中,使DC能够识别垂死的细胞并吞噬它们 [32] [33] [34] 。HMGB1诱导DC成熟,使DC更有效地向T细胞呈递抗原 [32] 。该过程由I型IFN介导,并通过检测癌细胞来源的DNA起作用 [35] [36] 。活化的DC迁移到局部淋巴结,幼稚T细胞被肿瘤细胞特异性抗原呈递和刺激,导致它们成为效应T细胞并返回肿瘤组织,被照射反应产生的趋化因子吸引 [37] 。

因此,照射的肿瘤可以描述为在原位自动疫苗接种的过程中成为肿瘤抗原的来源。此外,在辐射肿瘤细胞上表达的细胞间粘附分子-1 (ICAM-1)、Fas死亡受体和MHC-1类抗原呈递分子允许活化的抗肿瘤效应T细胞(尤其是CD8+T细胞)轻松识别肿瘤细胞,从而杀死它们 [38] 。据推测,辐射通过这些过程可以激活下游免疫反应并刺激免疫监视的细胞死亡,这种特征成为免疫原性,这导致了“原位”疫苗接种效应 [39] 。

4. 免疫时代肿瘤放疗需关注并解决的几个问题

4.1. 最佳排序

放疗与免疫治疗同步,先放疗后免疫治疗,亦或是先免疫治疗后放疗,三种治疗模式都可以产生较好的远隔效应。最近的一项一期临床试验对转移性尿路上皮癌的最佳排序进行了研究,评估了派姆单抗联合放疗,发现在两个周期的派姆单抗治疗后进行放疗(有效率44%)比第一个周期的派姆单抗治疗前(有效率0%)反应更好 [40] 。2016年的一项研究中发现,在88例接受伊匹单抗治疗的黑色素瘤患者中,放疗前接受伊匹单抗的患者与放疗后接受伊匹单抗的患者相比,放射肿瘤反应时间更长,(12个月时长为74.7% vs 44.8%, P = 0.01) [41] 。2014年的一项研究表明,在放疗的同时使用抗PD-L1抗体优于连续放疗后使用抗PD-L1抗体 [42] 。此外,在一名黑色素瘤患者中,Stamell等人还观察到伊匹单抗与立体定向放疗同时使用后存在远隔效应 [43] 。可见,三种治疗模式都有一定的临床证据和理论支持。

4.2. 放疗剂量

放疗有三种主要方案:常规分割方案、大分割方案和超分割方案。虽然一些临床前研究表明,在多种肿瘤类型中,联合放疗和免疫治疗具有协同反应,但是关于辐射的最佳剂量尚未达成共识 [44] 。放疗的剂量和分级会影响其对免疫系统的调节作用,但值得注意的是,不同方案的免疫作用是不可预测的。鉴于每天重复进行照射可以杀死迁移的免疫淋巴细胞,Siva等人认为RT的常规分割方案对辐射诱导的抗肿瘤免疫反应是阴性的。他们的小组还确定,单次高剂量(140 Gy)放疗不会消耗已建立的免疫效应细胞,如CD5+T细胞和NK细胞,并且与免疫疗法联合使用时杀死肿瘤细胞可能更有效 [45] 。有研究结果显示,相比于20 Gy的单次照射,多次的大分割治疗方案(5 × 6 Gy或3 × 8 Gy)联合CTLA-4抑制剂的远隔效益更明显 [46] 。事实上,与传统方法相比,每次分割高剂量消融的放疗被认为是增强抗肿瘤免疫应答的更好治疗方案。SBRT的大分割方式能明显诱发抗原特异性T细胞和B细胞介导的免疫反应,当联合免疫治疗时,重新编程肿瘤微环境,增强免疫刺激效应,促进肿瘤抗原呈递,增加抗原特异性CD8+T细胞进入肿瘤。尽管大多数临床数据表明,较大分割剂量可能会增强远隔反应,但其他临床研究并未取得良好的结局,这意味着远隔效应受到多种因素的影响。根据放疗的剂量和分割,可能存在最佳阈值或剂量范围。因此,临床中应仔细考虑这些不同的方案与其不同的治疗结果,以便在放射免疫联合治疗的背景下开发放疗的最佳剂量和分割方案,以更有效地诱导抗肿瘤的远隔作用。

4.3. 放疗方式

不同放疗方式的选择可能会产生不同的免疫激活。全身性阿替利珠单抗和贝伐珠单抗治疗不可切除肝细胞癌(HCC)患者的有效性和安全性已被证实,但最近的一项研究结果显示阿替利珠单抗和贝伐珠单抗联合调强放疗治疗HCC患者,整个队列的ORR为76.6%,中位OS和PFS分别为9.8个月和8.0个月 [47] 。有研究人员观察了调强放疗(IMRT)和帕博利珠单抗的远隔效应,胰腺转移放疗后肺转移消失。患者的肿瘤症状随着生存期的延长而得到缓解 [48] 。目前看来,调强适形放疗联合免疫治疗更容易增强远隔反应。但是对于其他放疗方式的反应缺乏临床数据的支持,这提示我们在临床工作中应该根据不同肿瘤、不同患者机体状况来制定最适合患者的个体化联合治疗方案。

4.4. 联合治疗的毒副反应

目前可用的放射治疗和ICIs联合的多机构经验报告了每种治疗的独立毒性,根据其作用机制,ICIs的不良反应与炎症和/或免疫相关事件相关,包括肺炎、肝炎、结肠炎、胰腺炎、糖尿病、甲状腺功能减退或甲亢、肾上腺功能不全和垂体炎等。然而放射治疗的毒性是可变的,因为它们完全取决于剂量、体积和治疗位置。但是具体联合治疗方案会不会带来更大的毒性并不明确。有研究结果西放疗与西妥昔单抗或贝伐珠单抗联合治疗似乎是可行的,但报告的副作用更高 [49] 。此外,放疗联合ICIs似乎比放疗联合靶向或化疗药物更耐受性好 [50] 。因此,在临床工作中面对不同类型的肿瘤,在制定联合方案的同时,应根据不同ICIs的作用机制,更好的避免患者发生严重不良反应。

4.5. 指导放疗对免疫功能评估的生物标志物

虽然免疫治疗联合放疗在多种实体瘤中取得了良好的疗效,但并非所有患者都有可观的效果。因此,有必要在接受免疫治疗和放疗联合治疗方案的患者中鉴定出能够预测体外反应的高效的生物标志物。此外,经过验证的生物标志物将有助于选择合适的患者,确定最佳的治疗策略,预测治疗反应。在Grimaldi等人关于晚期黑色素瘤的报道中,在11例接受伊匹单抗治疗后再进行放疗的患者中观察到异位效应。重要的是,他们研究发现所有获得免疫相关异位效应的患者都对放疗表现出局部反应。因此,有理由推测放疗的局部反应可能用于预测异位效应。此外,有体外效应的患者在放疗前的中位绝对淋巴细胞计数(ALC)明显高于没有体外效应的患者,这意味着放疗前的淋巴细胞计数可能是另一个可以预测体外效应发生的患者参数 [51] 。然而,鉴于该回顾性研究的患者数量有限,需要更多的临床调查来评估放疗的局部反应和ALC对全身异位效应的预测作用。

迄今为止,免疫检查点治疗的重点是通过PD-1、PD-L1和CTLA-4抑制来逆转T细胞的衰竭状态。然而,目前只有一小部分患者受益于ICIs。因此,针对其他免疫检查点(如LAG3)的单克隆抗体(mAbs)的开发具有相当大的兴趣。已有研究表明,LAG3和PD-1在肿瘤浸润淋巴细胞(TIL)上特别表达,并产生协同作用可以促进肿瘤免疫逃逸 [52] 。因此,大量的临床前数据导致LAG3成为临床中针对的第三个检查点,并有目前正在临床试验中针对癌症的LAG3靶向免疫疗法的开发进行研究 [53] 。

众所周知,p53是一种肿瘤抑制基因,在调控肿瘤细胞的增殖、凋亡和DNA修复中起着重要作用,其编码蛋白p53是影响细胞周期开始的转录因子。然而,在恶性肿瘤患者中p53突变的概率大于50%,突变的p53将失去抑制癌细胞增殖的能力,成为肿瘤发生的罪魁祸首之一。近年来,许多研究表明p53的状态可以调节放疗的体外抗肿瘤作用。在小鼠模型系统中,Strigari等人在20 Gy或10 Gy辐照后,发现受辐照的野生型p53突变肿瘤的生长受到抑制。然而,在未受辐射的野生型p53突变肿瘤中,无论剂量如何,均未观察到明显的肿瘤生长延迟 [54] 。Camphausen等人在其研究中也观察到类似的结果,在p53缺失小鼠和p53被pifithrin-α (一种可以阻断p53通路的药物)抑制的小鼠中均未观察到异位的抗肿瘤作用 [55] 。因此,我们可以假设p53依赖信号可能与放疗的全身性抗肿瘤作用有关,而评估p53在体内的状态可以用来预测放疗的癌症患者发生体外效应的可能性,从而提供更好的治疗给药。

5. 总结

放疗的远隔效应已经在许多的临床前和临床研究中被证实报道,放疗不仅可以通过照射肿瘤细胞致其死亡,还可以通过促进肿瘤抗原的释放和肿瘤来源的抗原交叉递呈给T细胞来刺激抗肿瘤适应性免疫。除此之外,随着癌症免疫治疗,特别是ICIs的发展,放疗产生的原位疫苗接种可以被免疫治疗大大增强。放疗与免疫治疗俨然都已经成为恶性肿瘤治疗中不可或缺的治疗手段,除了他们各自发挥作用外,利用这两种治疗方法的协同抗肿瘤的效果也是是令人鼓舞的。然而,在联合治疗的过程中,怎么让治疗可以达到“1 + 1 ≥ 2”的效果是当前亟待解决的问题之一。当前,放疗与免疫治疗的联合方案中,治疗的最佳排序、放疗剂量的确定、放疗方式的选择等均有待于优化与提高,再者,放疗联合免疫治疗的不良反应与毒副作用、生物标志物的预测还需更进一步探索与验证。随着更多的临床前与临床研究带来的数据,放疗联合免疫治疗的方案会更加规范、专业、精准、安全,为恶性肿瘤患者的治疗带来更好的治疗环境。值得注意的是,在联合治疗的临床实践中,面对不同的恶性肿瘤、不同患者的机体情况,应该注重培养个体化治疗思维,为患者谋求治疗利益最大化。

NOTES

*通讯作者。

参考文献

[1] Barbari, C., et al. (2020) Immunotherapies and Combination Strategies for Immuno-Oncology. International Journal of Molecular Sciences, 21, Article 5009.
https://doi.org/10.3390/ijms21145009
[2] Herrera, F.G., et al. (2019) Ra-tional Combinations of Immunotherapy with Radiotherapy in Ovarian Cancer. The Lancet Oncology, 20, e417-e433.
https://doi.org/10.1016/S1470-2045(19)30401-2
[3] Takahashi, J. and Nagasawa, S. (2020) Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. International Journal of Molecular Sciences, 21, Article 9324.
https://doi.org/10.3390/ijms21239324
[4] Zietman, A.L. and Yom, S.S. (2020) Radiation Therapy and the Im-mune System: A Scientific Revolution in the Making. International Journal of Radiation Oncology, Biology, Physics, 108, 1-2.
https://doi.org/10.1016/j.ijrobp.2020.06.037
[5] Turgeon, G.A., Andrew, W., Arun, A.A., Benjamin, S. and Shankar, S. (2019) Radiotherapy and Immunotherapy: A Synergistic Effect in Cancer Care. Medical Journal of Australia, 210, 47-53.
https://doi.org/10.5694/mja2.12046
[6] Brandmaier, A. and Formenti, S.C. (2020) The Impact of Ra-diation Therapy on Innate and Adaptive Tumor Immunity. Seminars in Radiation Oncology, 30, 139-144.
https://doi.org/10.1016/j.semradonc.2019.12.005
[7] Deng, L., et al. (2014) Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. The Journal of Clinical Investigation, 124, 687-695.
https://doi.org/10.1172/JCI67313
[8] Janopaul-Naylor, J.R., Shen, Y., Qian, D.C. and Buchwald, Z.S. (2021) The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. International Journal of Molecular Sciences, 22, Arti-cle 11061.
https://doi.org/10.3390/ijms222011061
[9] Demaria, S. and Formenti, S.C. (2020) The Abscopal Effect 67 Years Later: From a Side Story to Center Stage. The British Journal of Radiology, 93, 20200042.
https://doi.org/10.1259/bjr.20200042
[10] Abuodeh, Y., Venkat, P. and Kim, S. (2016) Systematic Review of Case Reports on the Abscopal Effect. Current Problems in Cancer, 40, 25-37.
https://doi.org/10.1016/j.currproblcancer.2015.10.001
[11] Monjazeb, A.M., et al. (2020) Effects of Radiation on the Tumor Microenvironment. Seminars in Radiation Oncology, 30, 145-157.
https://doi.org/10.1016/j.semradonc.2019.12.004
[12] Zhang, Z., Liu, X., Chen, D. and Yu, J. (2022) Radiotherapy Combined with Immunotherapy: The Dawn of Cancer Treatment. Signal Transduction and Targeted Therapy, 7, Article No. 258.
https://doi.org/10.1038/s41392-022-01102-y
[13] Rodríguez-Ruiz, M.E., Vanpouille-Box, C., Melero, I., Formenti, S.C. and Demaria, S. (2018) Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends in Immunology, 39, 644-655.
https://doi.org/10.1016/j.it.2018.06.001
[14] Demaria, S., et al. (2004) Ionizing Radiation Inhibition of Distant Un-treated Tumors (Abscopal Effect) Is Immune Mediated. International Journal of Radiation Oncology∙Biology∙Physics, 58, 862-870.
https://doi.org/10.1016/j.ijrobp.2003.09.012
[15] Citrin, D.E. (2017) Recent Developments in Radiotherapy. The New England Journal of Medicine, 377, 1065-1075.
https://doi.org/10.1056/NEJMra1608986
[16] Procureur, A., et al. (2021) Enhance the Immune Checkpoint Inhibi-tors Efficacy with Radiotherapy Induced Immunogenic Cell Death: A Comprehensive Review and Latest Developments. Cancers, 13, Article 678.
https://doi.org/10.3390/cancers13040678
[17] Jarosz-Biej, M., et al. (2019) Tumor Microenvironment as a “Game Changer” in Cancer Radiotherapy. International Journal of Molecular Sciences, 20, Article 3212.
https://doi.org/10.3390/ijms20133212
[18] Wang, N., et al. (2022) Radiation-Induced PD-L1 Expression in Tumor and Its Microenvironment Facilitates Cancer-Immune Escape: A Narrative Review. Annals of Translational Medicine, 10, 1-15,
https://doi.org/10.21037/atm-22-6049
[19] Gallo, P.M. and Gallucci, S. (2013) The Dendritic Cell Response to Classic, Emerging and Homeostatic Danger Signals. Implications for Autoimmunity. Frontiers in Immunology, 4, Article 138.
https://doi.org/10.3389/fimmu.2013.00138
[20] Merrick, A., et al. (2005) Immunosuppressive Effects of Radiation on Human Dendritic Cells: Reduced IL-12 Production on Activation and Impairment of Naive T-cell Priming. British Journal of Cancer, 92, 1450-1458.
https://doi.org/10.1038/sj.bjc.6602518
[21] Wunderlich, R., Ernst, A., Rödel, F., Fietkau, R., Ott, O., Lauber, K., Frey, B. and Gaipl, U.S. (2015) Low and Moderate Doses of Ionizing Radiation up to 2 Gy Modulate Transmigration and Chemotaxis of Activated Macrophages, Provoke an Anti-Inflammatory Cytokine Milieu, but Do Not Impact upon Viability and Phagocytic Function. Clinical and Experimental Immunology, 179, 50-61.
https://doi.org/10.1111/cei.12344
[22] Matsumura, S., et al. (2008) Radiation-Induced CXCL16 Release by Breast Cancer Cells Attracts Effector T Cells. The Journal of Immunology, 181, 3099-3107.
https://doi.org/10.4049/jimmunol.181.5.3099
[23] Gupta, A., et al. (2012) Radiotherapy Promotes Tumor-Specific Effector CD8+ T Cells via Dendritic Cell Activation. The Journal of Immunology, 189, 558-566.
https://doi.org/10.4049/jimmunol.1200563
[24] Thomas, D.A. and Massagué, J. (2005) TGF-β Directly Targets Cytotoxic T Cell Functions during Tumor Evasion of Immune Surveillance. Cancer Cell, 8, 369-380.
https://doi.org/10.1016/j.ccr.2005.10.012
[25] Lee, Y., et al. (2009) Therapeutic Effects of Ablative Radiation on Local Tumor Require CD8+ T Cells: Changing Strategies for Cancer Treatment. Blood, 114, 589-595.
https://doi.org/10.1182/blood-2009-02-206870
[26] Burnette, B.C., et al. (2011) The Efficacy of Radiotherapy Re-lies upon Induction of Type i Interferon-Dependent Innate and Adaptive Immunity. Cancer Research, 71, 2488-2496.
https://doi.org/10.1158/0008-5472.CAN-10-2820
[27] Mouw, K.W., Goldberg, M.S., Konstantinopoulos, P.A. and D’Andrea, A.D. (2017) DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discovery, 7, 675-693.
https://doi.org/10.1158/2159-8290.CD-17-0226
[28] Cloosen, S., Arnold, J., Thio, M., Bos, G.M.J., Kyewski, B. and Germeraad, W.T.V. (2007) Expression of Tumor-Asso- ciated Differentiation Antigens, MUC1 Gly-coforms and CEA, in Human Thymic Epithelial Cells: Implications for Self-Tolerance and Tumor Therapy. Cancer Re-search, 67, 3919-3926.
https://doi.org/10.1158/0008-5472.CAN-06-2112
[29] Wang, Y., Shi, T., Song, X., Liu, B. and Wei, J. (2021) Gene Fusion Neoantigens: Emerging Targets for Cancer Immunotherapy. Cancer Letters, 506, 45-54.
https://doi.org/10.1016/j.canlet.2021.02.023
[30] Aleksic, M., et al. (2012) Different Affinity Windows for Virus and Cancer-Specific T-Cell Receptors: Implications for Therapeutic Strategies. European Journal of Immunology, 42, 3174-3179.
https://doi.org/10.1002/eji.201242606
[31] Tan, M.P., et al. (2015) T Cell Receptor Binding Affinity Governs the Functional Profile of Cancer-Specific CD8+ T Cells. Clinical and Experimental Immunology, 180, 255-270.
https://doi.org/10.1111/cei.12570
[32] Bhalla, N., Brooker, R. and Brada, M. (2018) Combining Immunotherapy and Radiotherapy in Lung Cancer. Journal of Thoracic Disease, 10, S1447-S1460.
https://doi.org/10.21037/jtd.2018.05.107
[33] Demaria, S. and Formenti, S.C. (2012) Role of T Lymphocytes in Tumor Response to Radiotherapy. Frontiers in Oncology, 2, Article 95.
https://doi.org/10.3389/fonc.2012.00095
[34] Boone, B.A. and Lotze, M.T. (2014) Targeting Damage-Associated Molecular Pattern Molecules (DAMPs) and DAMP Receptors in Melanoma. In: Thurin, M. and Marincola, F., Eds., Molecular Diagnostics for Melanoma, Methods in Molecular Biology, Vol. 1102, Humana Press, Totowa, 537-552.
https://doi.org/10.1007/978-1-62703-727-3_29
[35] Vanpouille-Box, C., et al. (2017) DNA Exonuclease Trex1 Regulates Radiotherapy-Induced Tumour Immunogenicity. Nat Commun, 8, Article No. 15618.
https://doi.org/10.1038/ncomms15618
[36] Vanpouille-Box, C., Formenti,, S.C. and Demaria, S. (2017) TREX1 Dictates the Immune Fate of Irradiated Cancer Cells. Oncoimmunology, 6, e1339857.
https://doi.org/10.1080/2162402X.2017.1339857
[37] Lugade, A.A., et al. (2008) Radiation-Induced IFN-Gamma Production within the Tumor Microenvironment Influences Antitumor Immunity. The Journal of Immunology, 180, 3132-3139.
https://doi.org/10.4049/jimmunol.180.5.3132
[38] Tabi, Z., et al. (2010) Resistance of CD45RA-T Cells to Apoptosis and Functional Impairment and Activation of Tumor-Antigen Specific T Cells during Radiation Ther-apy of Prostate Cancer. The Journal of Immunology, 185, 1330- 1339.
https://doi.org/10.4049/jimmunol.1000488
[39] Ma, Y., Pitt, J.M., Li, Q. and Yang, H. (2017) The Renaissance of Anti-Neoplastic Immunity from Tumor Cell Demise. Immunological Reviews, 280, 194-206.
https://doi.org/10.1111/imr.12586
[40] Sundahl, N., et al. (2019) Randomized Phase 1 Trial of Pembrolizumab with Sequential Versus Concomitant Stereotactic Body Radiotherapy in Metastatic Urothelial Carcinoma. European Urology, 75, 707-711.
https://doi.org/10.1016/j.eururo.2019.01.009
[41] Qin, R., et al. (2016) Safety and Efficacy of Radiation Therapy in Advanced Melanoma Patients Treated with Ipilimumab. International Journal of Radiation Oncology, Biology, Physics, 96, 72-77.
https://doi.org/10.1016/j.ijrobp.2016.04.017
[42] Dovedi, S.J., et al. (2014) Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade. Cancer Research, 74, 5458-5468.
https://doi.org/10.1158/0008-5472.CAN-14-1258
[43] Reynders, K., et al. (2015) The Abscopal Effect of Local Radiotherapy: Using Immunotherapy to Make a Rare Event Clinically Relevant. Cancer Treatment Reviews, 41, 503-510.
https://doi.org/10.1016/j.ctrv.2015.03.011
[44] Pinedo, H.M., et al. (2003) Extended Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Combined with GM-CSF: Effect on Tumour-Draining Lymph Node Dendritic Cells. European Journal of Cancer, 39, 1061-1067.
https://doi.org/10.1016/S0959-8049(03)00131-X
[45] Siva, S., MacManus, M.P., Martin, R.F. and Martin, O.A. (2015) Abscopal Effects of Radiation Therapy: A Clinical Review for the Radiobiologist. Cancer Letters, 356, 82-90.
https://doi.org/10.1016/j.canlet.2013.09.018
[46] Dewan, M.Z., et al. (2009) Fractionated but Not Single-Dose Ra-diotherapy Induces an Immune-Mediated Abscopal Effect when Combined with Anti-CTLA-4 Antibody. Clinical Can-cer Research, 15, 5379-5388.
https://doi.org/10.1158/1078-0432.CCR-09-0265
[47] Wang, K., et al. (2023) Intensity-Modulated Radiotherapy Combined with Systemic Atezolizumab and Bevacizumab in Treatment of Hepatocellular Carcinoma with Extrahepatic Portal Vein Tumor Thrombus: A Preliminary Multicenter Single-Arm Prospective Study. Frontiers in Immunology, 14, Article 1107542.
https://doi.org/10.3389/fimmu.2023.1107542
[48] Wang, W., Huang, C., Wu, S., Liu, Z., Liu, L. Li, L. and Li, S. (2020) Abscopal Effect Induced by Modulated Radiation Therapy and Pembrolizumab in a Patient with Pancreatic Meta-static Lung Squamous Cell Carcinoma. Thoracic Cancer, 11, 2014-2017.
https://doi.org/10.1111/1759-7714.13427
[49] Belgioia, L., et al. (2019) Safety and Efficacy of Combined Radio-therapy, Immunotherapy and Targeted Agents in Elderly Patients: A Literature Review. Critical Reviews in Oncolo-gy/Hematolog, 133, 163-170.
https://doi.org/10.1016/j.critrevonc.2018.11.009
[50] Kroeze, S.G., et al. (2017) Toxicity of Concurrent Stereotactic Radiotherapy and Targeted Therapy or Immunotherapy: A Systematic Review. Cancer Treatment Reviews, 53, 25-37.
https://doi.org/10.1016/j.ctrv.2016.11.013
[51] Grimaldi, A.M., et al. (2014) Abscopal Effects of Radiotherapy on Advanced Melanoma Patients Who Progressed after Ipilimumab Immunotherapy. Oncoimmunology, 3, e28780.
https://doi.org/10.4161/onci.28780
[52] Woo, S.R., et al. (2012) Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-Cell Function to Promote Tumoral Immune Escape. Cancer Research, 72, 917-927.
https://doi.org/10.1158/0008-5472.CAN-11-1620
[53] Ruffo, E., Wu, R.C., Bruno, T.C., Workman, C.J. and Vignali, D.A.A. (2019) Lymphocyte-Activation Gene 3 (LAG3): The Next Immune Checkpoint Receptor. Seminars in Immunology, 42, Article ID: 101305.
https://doi.org/10.1016/j.smim.2019.101305
[54] Strigari, L., et al. (2014) Abscopal Effect of Radiation Therapy: Interplay between Radiation Dose and p53 Status. International Journal of Radiation Biology, 90, 248-255.
https://doi.org/10.3109/09553002.2014.874608
[55] Camphausen, K., et al. (2003) Radiation Abscopal Antitumor Effect Is Mediated through p53. Cancer Research, 63, 1990-1993.