马齿苋中黄酮类及生物碱类的研究进展
Research Progress on Flavonoids and Alkaloids in Portulaca oleracea L.
DOI: 10.12677/PI.2023.124040, PDF, HTML, XML, 下载: 290  浏览: 543 
作者: 李克仙:昆明医科大学药学院曁云南省天然药物药理重点实验室,云南 昆明
关键词: 马齿苋黄酮类生物碱类药理作用药物代谢Portulaca oleracea L. Flavonoids Alkaloids Pharmacology Drug Metabolism
摘要: 马齿苋(Portulaca oleracea L.)为马齿苋属分布较广的药食同源植物。马齿苋中含有黄酮、生物碱等多种化学成分,具有抗肿瘤、神经保护、抗氧化、抑菌、保肝、抗衰老等药理作用,可用于治疗阿尔茨海默病、帕金森氏病、三阴性乳腺癌、宫颈癌、肝癌、糖尿病、高血脂等疾病。本文对近年来马齿苋中黄酮及生物碱类的化学成分、药理作用、体内代谢过程进行总结,以期为马齿苋在医药和食品方面的利用提供参考。
Abstract: Portulaca oleracea L. is a medicinal and food-homologous plant in the genus Portulaca. Purslane contains flavonoids, alkaloids and other chemical components, with anti-tumor, neuroprotective, antioxidant, bacteriostatic, hepatoprotective, anti-aging and other pharmacological effects, can be used to treat Alzheimer’s disease, Parkinson’s disease, triple-negative breast cancer, cervical cancer, liver cancer, diabetes, hyperlipidemia, and other diseases. This work summarized the chemical composition, pharmacological activities and metabolism of flavonoids and alkaloids in purslane in recent years, in order to provide reference for the utilization of purslane in medicine and food.
文章引用:李克仙. 马齿苋中黄酮类及生物碱类的研究进展[J]. 药物资讯, 2023, 12(4): 317-337. https://doi.org/10.12677/PI.2023.124040

1. 引言

马齿苋(Portulaca oleracea L.)为马齿苋科马齿苋属马齿苋的干燥地上部分,又名长命草、长寿菜、马舌菜等,如图1所示。它是一年生肉质草本的药食同源植物 ‎[1] ,广布于世界各地的温热带地区。在《本草纲目》 ‎[2] 及《新修本草》 ‎[3] 中记载,马齿苋具味酸、性寒等特点。民间常作为菜肴,包括凉拌、清炒、包饺子等。近年来,国内外学者对马齿苋的化学成分、药理作用、临床应用进行了深入的研究,结果表明马齿苋具有神经保护 ‎[4] 、抗菌 ‎[5] 、抗氧化 ‎[6] 、抗炎 ‎[7] ‎[8] 、降血糖 ‎[9] 及降血脂 ‎[10] ‎[11] ‎[12] 、抗癌 ‎[13] 、保肝 ‎[14] 等丰富的药理作用,可作为保健品 ‎[15] 和化妆品 ‎[16] 。马齿苋中含有黄酮、生物碱、多酚、萜类及甾醇、香豆素、多糖等多种化学成分,其中黄酮、生物碱是马齿苋的主要活性成分,研究报道从该植物中已分离鉴定出32个黄酮类化合物及71个生物碱类化合物。本文将对该植物中生物碱及黄酮的化学成分、药理作用、体内代谢等研究进行综述,旨在为马齿苋在医药、食品、化妆品等方面的开发提供参考。

Figure 1. Portulaca oleracea L. taken by the author in Luoping Qujing, on April of 2023

图1. 马齿苋(2023年4月),摄于曲靖罗平

2. 化学成分

2.1. 黄酮类化学成分

黄酮类化学成分按分子量从小到大排序,如表1所示。

Table 1. Flavonoids components

表1. 黄酮类化学成分

2.2. 生物碱类化学成分

生物碱类化学成分按分子量从小到大排序,如表2所示。

Table 2. Alkaloids components

表2. 生物碱类化学成分

3. 药理作用

3.1. 黄酮类药理作用

3.1.1. 抗肿瘤作用

黄酮类化合物具有良好的抗肿瘤作用。其抗肿瘤机制可分为3种:1) 抑制恶性细胞增值;2) 诱导细胞凋亡;3) 抑制恶性细胞迁移及侵袭。马齿苋中含有丰富的杨梅素和槲皮素。Song等人 ‎[22] 的研究结果表明杨梅素不仅可激活Hippo信号通路,靶向于LATS1/2-YAP信号因子,抑制肝癌细胞的增殖;还能结合白血病K562细胞中的hIMPDH因子干扰嘌呤核苷酸的合成,从而抑制其增殖,发挥治疗白血病的作用;杨梅素还可作用于MAPK信号通路,激活EPK1/2、JNK基因、并使P38磷酸化,抑制Akt磷酸化及其下游P70S6K、P90RSK的调控因子,从而抑制恶性细胞的增殖,用于治疗人胎盘绒毛膜癌、三阴性乳腺癌。此外,杨梅素 ‎[22] 还能阻断人胶质母细胞瘤上游的表皮生长因子受体EGFR/P13K/Akt和下游RAS-EPK通路,诱导细胞凋亡,用于胶质母细胞瘤的治疗;杨梅素 ‎[22] 也可以显著降低MDA-MB-231细胞中MMP-2/9和ST6GALNAC5蛋白的表达,从而有效的抑制癌细胞的迁移、侵袭和粘附。Song等人 ‎[23] 的研究结果也表明槲皮素可通过NF-кB/TLR/NLRP3通路抑制肝脏炎症,减缓PI3K/Nrf2介导的氧化应激,抑制与肝病发展相关的凋亡因子的表达。

3.1.2. 治疗阿尔茨海默病

阿尔茨海默病又名老年痴呆(Alzheimer’s disease, AD),是以进行性认知功能障碍为主要特征的神经退行性病变,主要表现为记忆及认知的受损。其中β-样淀粉蛋白的沉积、τau的过度磷酸化的累积、神经炎斑块及神经纤维的缠结是AD的主要病理表现 ‎[24] 。目前,治疗AD的药物主要分为五类:1) 乙酰胆碱酯酶抑制剂,如多奈哌齐、加兰他明;2) n-甲基-d-天冬氨酸受体调节剂,如美金刚胺;3) Аβ靶向免疫剂,如Gantenerumab单抗,能降低β-样淀粉蛋白的沉积;4) τau的靶向治疗药物:亚甲基蓝;5) BACE1抑制剂:限制新斑块的形成,但不能抑制已生成斑块的生长,若联合Аβ靶向免疫的单抗能发挥协同作用。目前,开发抗阿尔茨海默病的药物一直在II、III期临床试验阶段失败所停滞。因此,开发一个有效治疗AD的药物极为重要。脑中铁离子过载会加重神经元的损伤,导致氧化应激,诱发阿尔茨海默病。研究结果显示杨梅素 ‎[22] 是理想的铁离子的螯合剂,可抑制转铁蛋白受体1的表达,增加抗氧化酶的活性,使脑中铁离子含量维持稳态,从而减轻小鼠认知功能障碍。加之,杨梅素还能抑制乙酰胆碱酯酶,能有效降低AD小鼠的神经和记忆损伤。王潞等人 ‎[25] 也证实了杨梅素可显著增加AD模型大鼠的海马CA3锥体神经元的数目,改善学习记忆障碍。李海涛等人 ‎[26] 证实了山奈酚、芹菜素、木犀草素、杨梅素、槲皮素具有较强的抗氧化作用,能预防老年痴呆及心血管疾病。Zhao和Salehi等人 ‎[27] ‎[28] ‎[29] 检测到芹菜素对淀粉样前体蛋白(APP/PS1)双转基因AD小鼠的神经保护作用。Li等人 ‎[30] 研究表明染料木素可通过Аβ调节代谢、Аβ诱导氧化应激、Аβ诱导线粒体功能障碍、Аβ诱导细胞凋亡、τau蛋白调节代谢等五方面来抑制Аβ的产生及其诱导的神经毒性的形成并改善τau蛋白的过度磷酸化及认知功能障碍。此外,Duan等人 ‎[20] 研究发现oleracone J和oleracone K的酚羟基分别与TYR-377、TYR-124形成氢键发挥抗乙酰胆碱酯酶的作用,其抗乙酰胆碱酯酶的IC50值分别为59.08 μmol/L 及67.89 μmol/L。

3.1.3. 治疗帕金森氏病

帕金森氏病是由中脑黒质多巴胺能神经元变性引起的神经退行性疾病,导致记忆衰退和运动协调丧失,主要表现为静坐不能、肌强直、锥体外系反应 ‎[31] 等,严重影响患者的生活质量。杨梅素对鱼藤酮诱导的帕金森果蝇模型具有抑制作用,能延长果蝇寿命,具有一定的神经保护作用 ‎[25] 。

3.1.4. 抗氧化作用

黄酮类化合物具有强大的抗氧化作用,oleracone j、oleraconek和oleraconeg均具清除1,1-二苯-2-吡啶–肼(DPPH)自由基的能力,与抗氧化剂丁基羟基茴香醚的IC50为57.41 μmol/L相比,以上三个化合物的IC50值分别为18.34 μmol/L、23.92 μmol/L、27.57 μmol/L,表明oleraconej ‎[20] 、oleraconek ‎[20] 及oleraconeg ‎[32] 具有良好的抗氧化能力。Wang等人 ‎[33] 发现山奈酚是羟基自由基的清除剂,IC50值为0.5 µmol/L。此外,Parhiz等人 ‎[34] 的研究证实了橙皮苷不仅能清除自由基,还可通过ERK/Nrf2信号通路增强抗氧化细胞的防御功能。

3.1.5. 抑菌作用

黄酮类化合物是广谱的抑菌药物。刘治廷等人 ‎[17] 的研究结果表明,槲皮素、芹菜素、黄芩苷等黄酮类化合物可破坏细胞膜的结构和影响微生物的能量代谢,发挥抑菌的作用。

3.1.6. 保肝作用

马齿苋总黄酮可预防肝癌及肝硬化。乔靖怡等人 ‎[35] 的研究表明马齿苋总黄酮能降低由四氯化碳诱导的大鼠肝损伤指数,降低肝组织中MDA、NO、TNF-α和IL-6含量,以及血清中ALT、AST、ALP和TBIL水平,同时增强SOD、GSH-PX活性。

3.2. 生物碱类药理作用

3.2.1. 抗肿瘤作用

王天宇等人 ‎[36] 发现马齿苋脑苷a能诱导人宫颈癌Hela细胞的凋亡并抑制其迁移与侵袭,是潜在的抗宫颈癌药物。oleraciamided ‎[37] 与n-反式阿魏酰酪胺的结构相似,当浓度为50 μmol/L时能显著抑制人神经母细胞瘤的增殖。

3.2.2. 治疗阿尔茨海默病

生物碱发挥抗乙酰胆碱酯酶活性及其结构的多样性使其成为AD的候选药物。其中,oleraisoindolea ‎[38] 、oleraciamideg ‎[39] 、oleraindoled ‎[39] 、oleraindolea-e ‎[18] 、及oleraciamidee ‎[18] 具有显著的抗乙酰胆碱酯酶作用。甜菜红素能提升认知障碍小鼠大脑中超氧化物歧化酶、过氧化氢酶、谷胱甘肽还原酶和谷胱甘肽过氧化物酶的水平,降低丙二醛的水平,其效果优于维生素C ‎[4] 。马齿苋酰胺e不仅能通过抗氧化,抑制神经细胞的凋亡,还可改善由d-半乳糖和亚硝酸钠联合给药后诱导的AD小鼠模型空间记忆能力 ‎[40] ‎[41] 。n-反式–阿魏酰-3-甲氧基酪氨 ‎[42] 能抑制磷酸化的τau蛋白而发挥治疗阿尔茨海默病。

3.2.3. 抗炎作用

n-反式–阿魏酰-3-甲氧基酪氨能显著抑制由脂多糖诱导的促炎因子的产生 ‎[43] 。此外,n-反式–对香豆酪胺 ‎[8] 、oleraisoindole、马齿苋酰胺e、isoquinolinea、isoquinolineb、isoquinolinec、oleracone、oleracimine均具有较强的抗炎活性 ‎[21] 。

3.3. 其他药理作用

马齿苋总黄酮可以减轻d-半乳糖及女性生殖系统引起的衰老 ‎[36] ,其中木犀草素可对糖脂代谢综合征发挥益处 ‎[44] 。此外,马齿苋乙醇提取物对甲基汞诱导的神经毒性具有保护作用 ‎[45] ,且水提取物中甜菜红色素是发挥神经保护的活性成分。

4. 体内代谢

马齿苋中黄酮类及生物碱类化合物种类丰富。黄酮类化合物多以糖苷的形式存在,口服生物利用度较低。黄酮类活性成分是含有多羟基的化合物,主要在小肠上进行吸收,经小肠β-葡萄糖苷酶或乳糖酶根皮苷水解酶发生水解,进而穿过肠壁进入肠上皮细胞,再经门静脉进入肝脏,在肝脏细胞色素P450酶的作用下发生I相代谢 ‎[46] ,II相代谢主要在尿苷5'-二磷酸葡萄糖醛酸基转移酶、磺基转移酶、儿茶酚-O-甲基转移酶的作用下进行葡萄糖醛酸化、硫酸化、甲基化等,生成相应的II相代谢产物 ‎[47] 。生物碱类化合物多数含有氮原子,进入体内吸收迅速,分布至全身各个组织,在肝脏中进行代谢。此外,多数黄酮类及生物碱类化合物能穿透血脑屏障,发挥治疗中枢神经系统疾病的作用。通过SwissADME网站(http://swissadme.ch/index.php)共预测了黄酮类化合物32个,生物碱类化合物71个,其中能穿透血脑屏障(Blood Brain Barrier, BBB)的黄酮类化合物有12个,生物碱类化合物有19个,结果分别如表3所示:

Table 3. BBB components

表3. 穿透血脑屏障的药物

黄酮类化合物药理活性广泛。目前,马齿苋的体内代谢研究未见报道,但马齿苋中分离出的黄酮类化合物的体内代谢研究不胜枚举。从马齿苋中分离出32个黄酮类化合物,其中山奈酚 ‎[48] ‎[49] 、芹菜素 ‎[50] 、木犀草素 ‎[44] ‎[51] 、槲皮素 ‎[52] 、杨梅素 ‎[53] 、野黄芩苷 ‎[54] 、黄芩苷 ‎[55] 、葛根素 ‎[56] 、大豆黄酮 ‎[57] 、甘草苷 ‎[58] 、牡荆素 ‎[59] 、橙皮苷 ‎[60] 、oleraconec ‎[61] 、木犀草素-7-O-葡萄糖苷 ‎[62] 等13个黄酮类化合物开展了体内代谢研究。

马齿苋中生物碱类化合物的代谢主要是马齿苋酰胺e ‎[40] 、soyalkaloida ‎[63] 、oleracone ‎[64] 、olerciamide A ‎[65] 、oleracimine、aurantiamide acetate ‎[66] 。

5. 小结与展望

马齿苋的化学成分明确,药理作用丰富,广泛应用于各种疾病的预防及治疗、食品添加剂、化妆品抗炎保湿抗氧化剂、牲畜的饲料等。马齿苋中黄酮类及生物碱类化合物着重应用于抗肿瘤、神经保护、抗炎、抗氧化等领域,具有广阔的应用前景,尤其在抗肿瘤及神经保护方面。目前,马齿苋在体内的药物代谢及药物动力学研究鲜有报道,因此需进一步对其深入研究,为后期的马齿苋资源开发利用提供科学依据。此外,有文献报道马齿苋具有一定的肾毒性 ‎[67] ,因此,在后期实验中应着重关注马齿苋中哪些化合物在肾脏聚集及是否具有其他的毒性,为后期的临床研究奠定基础。

参考文献

[1] 陈珏, 倪江, 周德尧, 等. 药食同源植物——马齿苋的研究进展[J]. 上海蔬菜, 2020(3): 86-87+96.
[2] 李明珍. 本草纲目第四册[M]. 北京: 人民卫生出版社, 1977.
[3] 苏敬. 新修本草[M]. 合肥: 安徽科学技术出版社, 1981.
[4] Jalali, J. and Ghasemzadeh Rahbardar, M. (2023) Ameliorative Effects of Portulaca oleracea L. (Purslane) and Its Active Constituents on Nervous System Disorders: A Review. Iranian Journal of Basic Medical Sciences, 26, 2-12.
[5] Liu, G., Liu, A., Yang, C., et al. (2022) Portulaca oleracea L. Organic Acid Extract Inhibits Persistent Methicillin-Resistant Staphylococcus aureus in Vitro and in Vivo. Frontiers in Microbiology, 13, Article 1076154.
https://doi.org/10.3389/fmicb.2022.1076154
[6] Ma, Y., Bao, Y., Zhang, W., Ying, X. and Stien, D. (2020) Four Lignans from Portulaca oleracea L. and Its Antioxidant Activities. Natural Product Research, 34, 2276-2282.
https://doi.org/10.1080/14786419.2018.1534852
[7] Liu, F., Cui, X., Duan, Y., et al. (2022) A New Alkaloid from Portulaca oleracea L. and Its Anti-Inflammatory Activity. Natural Product Research, 36, 4709-4713.
https://doi.org/10.1080/14786419.2021.2000984
[8] Gu, Y., Leng, A., Zhang, W., Ying, X. and Stien, D. (2022) A Novel Alkaloid from Portulaca oleracea L. and Its Anti-Inflammatory Activity. Natural Product Research, 36, 595-600.
https://doi.org/10.1080/14786419.2020.1795855
[9] Zhou, Y.-X., Xin, H.-L., Rahman, K., et al. (2015) Portulaca oleracea L.: A Review of Phytochemistry and Pharmacological Effects. Biomed Research International, 2015, Article ID: 925631.
https://doi.org/10.1155/2015/925631
[10] Jang, S., Lee, M.-S., Kang, S.-A., Kim, C.-T and Kim, Y. (2022) Portulaca oleracea L. Extract Regulates Hepatic Cholesterol Metabolism via the AMPK/MicroRNA-33/34α Pathway in Rats Fed a High-Cholesterol Diet. Nutrients, 14, Article No. 3330.
https://doi.org/10.3390/nu14163330
[11] Ebrahimian, Z., Razavi, B.M., Mousavi Shaegh, S.A. and Hosseinzadeh, H. (2022) Effects of Portulaca oleracea L. (Purslane) on the Metabolic Syndrome: A Review. Iranian Journal of Basic Medical Sciences, 25, 1275-1285.
[12] Jalali, J. and Ghasemzadeh Rahbardar, M. (2022) Ameliorative Effects of Portu-laca oleracea L. (Purslane) on the Metabolic Syndrome: A Review. Journal of Ethnopharmacology, 299, Article ID: 115672.
https://doi.org/10.1016/j.jep.2022.115672
[13] De Souza, P.G., Rosenthal, A., Ayres, E.M.M. and Teodoro, A.J. (2022) Potential Functional Food Products and Molecular Mechanisms of Portulaca Oleracea L. on Anticancer Activity: A Review. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 7235412.
https://doi.org/10.1155/2022/7235412
[14] Farkhondeh, T., Samarghandian, S., Azimi-Nezhad, M. and Hozeifi, S. (2019) The Hepato-Protective Effects of Portulaca oleracea L. Extract: Review. Current Drug Discovery Technologies, 16, 122-126.
https://doi.org/10.2174/1570163815666180330142724
[15] 权美平, 郝晓宁. 马齿苋药用价值及其保健制品的研究进展[J]. 保鲜与加工, 2012, 12(5): 44-47.
[16] 张红燕, 王鹏, 李玉梅, 等. 马齿苋在化妆品中的功效研究进展[J]. 日用化学品科学, 2022, 45(12): 47-50.
[17] 刘治廷, 王忠娟, 张秀娟, 等. 马齿苋抑菌活性成分研究进展[J/OL]. 食品科学, 2022. http://kns.cnki.net/kcms/detail/11.2206.ts.20221111.1127.016.html, 2023-07-12.
[18] 唐凯俊. 马齿苋的化学成分及其活性研究[D]: [硕士学位论文]. 济南: 山东大学, 2022.
[19] Park, J.-E. and Han, J.-S. (2022) HM-Chromanone, a Major Homoisoflavonoid in Portulaca oleracea L., Improves Palmitate-Induced Insulin Resistance by Regulating Phos-phorylation of IRS-1 Residues in L6 Skeletal Muscle Cells. Nutrients, 14, Article No. 3815.
https://doi.org/10.3390/nu14183815
[20] Duan, Y., Ying, Z., Zhang, M., Ying, X. and Yang, G. (2022) Two New Homoisoflavones from Portulaca oleracea L. and Their Activities. Natural Product Research, 36, 1765-1773.
https://doi.org/10.1080/14786419.2020.1815742
[21] 鲍守民, 贾红梅, 邹忠梅, 等. 马齿苋生物碱的研究进展[J]. 药物评价研究, 2020, 43(6): 1174-1182.
[22] Song, X., Tan, L., Wang, M., et al. (2021) Myricetin: A Review of the Most Recent Research. Biomedicine & Pharmacotherapy, 134, Article ID: 111017.
https://doi.org/10.1016/j.biopha.2020.111017
[23] Zhao, X., Wang, J., Deng, Y., et al. (2021) Quercetin as a Pro-tective Agent for Liver Diseases: A Comprehensive Descriptive Review of the Molecular Mechanism. Phytotherapy Re-search, 35, 4727-4747.
https://doi.org/10.1002/ptr.7104
[24] Long, J.M. and Holtzman, D.M. (2019) Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179, 312-339.
https://doi.org/10.1016/j.cell.2019.09.001
[25] 王潞, 周云英. 杨梅素抗神经系统疾病相关药理作用研究进展[J]. 海峡药学, 2019, 31(9): 14-17.
[26] 李海涛, 葛翎, 段国梅, 等. 马齿苋的化学成分及药理活性研究进展[J]. 中国野生植物资源, 2020, 39(6): 43-47.
[27] Zhao, L., Wang, J.-L., Liu, R., et al. (2013) Neuroprotective, Anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’s Disease Mouse Model. Molecules, 18, 9949-9965.
https://doi.org/10.3390/molecules18089949
[28] Zhao, L., Wang, J.-L., Wang, Y.-R. and Fa, X.-Z. (2013) Apig-enin Attenuates Copper-Mediated β-Amyloid Neurotoxicity through Antioxidation, Mitochondrion Protection and MAPK Signal Inactivation in an AD Cell Model. Brain Research, 1492, 33-45.
https://doi.org/10.1016/j.brainres.2012.11.019
[29] Salehi, B., Venditti, A., Sharifi-Rad, M., et al. (2019) The Therapeutic Potential of Apigenin. International Journal Molecular Sciences, 20, Article No. 1305.
https://doi.org/10.3390/ijms20061305
[30] Li, R., Robinson, M., Ding, X., et al. (2022) Genistein: A Focus on Several Neurodegenerative Diseases. Journal of Food Biochemistry, 46, e14155.
https://doi.org/10.1111/jfbc.14155
[31] 谢悦. 锥体外系反应[C]//浙江省科学技术协会. 2019浙江省医学会肠外肠内营养学术大会暨江浙沪临床营养学术会议论文汇编: 2019年卷. 杭州: 医药卫生科技, 2019: 12.
[32] Duan, Y., Ying, Z., He, F., et al. (2021) A New Skeleton Flavonoid and a New Lignan from Portulaca oleracea L. and Their Activities. Fitoterapia, 153, Article ID: 104993.
https://doi.org/10.1016/j.fitote.2021.104993
[33] Wang, L., Tu, Y.-C., Lian, T.-W., et al. (2006) Distinctive Anti-oxidant and Antiinflammatory Effects of Flavonols. Journal of Agricultural and Food Chemistry, 54, 9798-9804.
https://doi.org/10.1021/jf0620719
[34] Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R., and Iranshahi, M. (2015) Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of Their Molecular Mechanisms and Experimental Models. Phytotherapy Research, 29, 323-331.
https://doi.org/10.1002/ptr.5256
[35] 乔靖怡, 李汉伟, 胡锴, 等. 马齿苋总黄酮对四氯化碳致大鼠急性肝损伤的保护作用[J]. 中药药理与临床, 2020, 36(5): 91-95.
[36] 王天宁, 刘玉婷, 肖凤琴, 等. 马齿苋化学成分及药理活性的现代研究整理[J]. 中国实验方剂学杂志, 2018, 24(6): 224-234.
[37] Zhao, C., Ying, Z., Tao, X., et al. (2018) A New Lactam Alkaloid from Portulaca oleracea L. and Its Cytotoxity. Natural Product Research, 32, 1548-1553.
https://doi.org/10.1080/14786419.2017.1385022
[38] Ma, Y., Li, X., Zhang, W., Ying, X. and Stien, D. (2021) A Trace Alkaloid, Oleraisoindole A from Portulaca oleracea L. and Its Anticholinesterase Effect. Natural Product Research, 35, 350-353.
https://doi.org/10.1080/14786419.2019.1627356
[39] Xu, W., Ying, Z., Tao, X., Ying, X. and Yang, G. (2021) Two New Amide Alkaloids from Portulaca oleracea L. and Their Anticholinesterase Activities. Natural Product Re-search, 35, 3794-3800.
https://doi.org/10.1080/14786419.2020.1739040
[40] 岳苏. 马齿苋酚性成分的分离及马齿苋酰胺E的药代动力学研究[D]: [硕士学位论文]. 济南: 山东大学, 2016.
[41] 李玲玉. 马齿苋酰胺E和马齿苋提取物的神经保护和抗炎活性研究[D]: [硕士学位论文]. 济南: 山东大学, 2018.
[42] Othman, A., Sayed, A.M., Amen, Y. and Shimizu, K. (2022) Possible Neuroprotective Effects of Amide Alkaloids from Bassia indica and Agathophora alopecu-roides: In Vitro and in Silico Investigations. RSC Advances, 12, 18746-18758.
https://doi.org/10.1039/D2RA02275C
[43] Kim, Y., Lim, H.J., Jang, H.J., et al. (2018) Portulaca oleracea Ex-tracts and Their Active Compounds Ameliorate Inflammatory Bowel Diseases in Vitro and in Vivo by Modulating TNF-α, IL-6 and IL-1β Signalling. Food Research International, 106, 335-343.
https://doi.org/10.1016/j.foodres.2017.12.058
[44] Wang, Z., Zeng, M., Wang, Z., et al. (2021) Dietary Luteolin: A Narrative Review Focusing on Its Pharmacokinetic Properties and Effects on Glycolipid Metabolism. Journal of Agri-cultural and Food Chemistry, 69, 1441-1454.
https://doi.org/10.1021/acs.jafc.0c08085
[45] 叶梅荣, 王晓鹏, 刘爱荣, 等. 药食两用植物马齿苋的研究进展[J]. 安徽农业科学, 2017, 45(32): 140-141+164.
[46] 刘雪艳, 查代君. 黄酮类活性成分的代谢研究进展[J]. 福建医科大学学报, 2021, 55(4): 358-366.
[47] Murota, K., Nakamura, Y. and Uehara, M. (2018) Flavonoid Metabolism: The Interaction of Metabolites and Gut Microbiota. Bioscience, Biotechnology, and Biochemistry, 82, 600-610.
https://doi.org/10.1080/09168451.2018.1444467
[48] Barve, A., Chen, C., Hebbar, V., et al. (2009) Metabolism, Oral Bioavailability and Pharmacokinetics of Chemopreventive Kaempferol in Rats. Biopharmaceutics & Drug Disposi-tion, 30, 356-365.
https://doi.org/10.1002/bdd.677
[49] Calderón-Montaño, J.M., Burgos-Morón, E., Pé-rez-Guerrero, C. and Lopez-Lazaro, M. (2011) A Review on the Dietary Flavonoid Kaempferol. Mini-Reviews in Medic-inal Chemistry, 11, 298-344.
https://doi.org/10.2174/138955711795305335
[50] Tang, D., Chen, K., Huang, L. and Li, J. (2017) Pharmacoki-netic Properties and Drug Interactions of Apigenin, a Natural Flavone. Expert Opinion on Drug Metabolism & Toxicolo-gy, 13, 323-330.
https://doi.org/10.1080/17425255.2017.1251903
[51] Ying, J.Y., Gu, S.J. and Yao, T.W. (2008) Research Pro-gress on Interactions between Luteolin (Glucosides) and Drug-Metabolizing Enzyme. Acta Pharmaceutica Sinica, 43, 335-342.
[52] Yeh, S.-L., Lin, Y.-C., Lin, Y.-L., et al. (2016) Comparing the Metabolism of Quercetin in Rats, Mice and Gerbils. European Journal of Nutrition, 55, 413-422.
https://doi.org/10.1007/s00394-015-0862-9
[53] Li, H., Li, H., Jiang, S., et al. (2022) Study of the Metabolism of Myricetin in Rat Urine, Plasma and Feces by Ul-tra-High-Performance Liquid Chromatography. Biomedical Chromatography, 36, e5281.
https://doi.org/10.1002/bmc.5281
[54] Huang, T., Liu, Y. and Zhang, C. (2019) Pharmacokinetics and Bioavailabil-ity Enhancement of Baicalin: A Review. European Journal of Drug Metabolism and Pharmacokinetics, 44, 159-168.
https://doi.org/10.1007/s13318-018-0509-3
[55] Zhang, J., Cai, W., Zhou, Y., et al. (2015) Profiling and Identifi-cation of the Metabolites of Baicalin and Study on Their Tissue Distribution in Rats by Ultra-High-Performance Liquid Chromatography with Linear Ion Trap-Orbitrap Mass Spectrometer. Journal of Chromatography B, 985, 91-102.
https://doi.org/10.1016/j.jchromb.2015.01.018
[56] Luo, C.-F., Cai, B., Hou, N., et al. (2012) UDP-Glucuronosyltransferase 1A1 Is the Principal Enzyme Responsible for Puerarin Metabolism in Human Liver Mi-crosomes. Archives of Toxicology, 86, 1681-1690.
https://doi.org/10.1007/s00204-012-0874-7
[57] Chitsazan, M. and Chitsazan, M. (2023) The Role of Free Fatty Acids as a Prognostic Biomarker in Coronary Artery Disease Patients with Type 2 Diabetes. European Journal of Pre-ventive Cardiology, 30, 728-729.
https://doi.org/10.1093/eurjpc/zwad100
[58] Qin, J., Chen, J., Peng, F., et al. (2022) Pharmacological Activities and Pharmacokinetics of Liquiritin: A Review. Journal of Ethnopharmacology, 293, Article ID: 115257.
https://doi.org/10.1016/j.jep.2022.115257
[59] Peng, Y., Gan, R., Li, H., et al. (2021) Absorption, Metabolism, and Bioactivity of Vitexin: Recent Advances in Understanding the Efficacy of an Important Nutraceutical. Critical Re-views in Food Science Nutrition, 61, 1049-1064.
https://doi.org/10.1080/10408398.2020.1753165
[60] 陈彦, 王晋艳, 贾晓斌, 等. 枳实中主要二氢黄酮类成分肠道吸收代谢及与药物相互作用的研究进展[J]. 中草药, 2010, 41(9): 1564-1566.
[61] Yang, X., Ying, Z., He, F., et al. (2018) A Pharmacokinetic Study on Oleracone C after Oral and Intravenous Administration. Fitoterapia, 131, 44-49.
https://doi.org/10.1016/j.fitote.2018.10.005
[62] Lin, L.-C., Pai, Y.-F. and Tsai, T.-H. (2015) Isolation of Luteolin and Luteolin-7-O-Glucoside from Dendranthema morifolium Ramat Tzvel and Their Pharmacokinetics in Rats. Journal of Agricultural and Food Chemistry, 65, 6-10.
https://doi.org/10.1021/jf505848z
[63] Xiu, F., Ying, Z., Ying, X. and Yang, G. (2019) Pharmacokinetic Studies of Soyalkaloid A from Portulaca oleracea L. Using Ultra High-Performance Liquid Chromatography Electrospray Ioniza-tion Quadrupole-Time of Flight Mass Spectrometry and Its Antioxidant Activity. Biomedical Chromatography, 33, e4399.
https://doi.org/10.1002/bmc.4399
[64] Meng, Y., Ying, Z., Xiang, Z., et al. (2016) The Anti-Inflammation and Pharmacokinetics of a Novel Alkaloid from Portulaca oleracea L. Journal of Pharmacy Pharmacology, 68, 397-405.
https://doi.org/10.1111/jphp.12526
[65] Ying, Z., Li, C., Gao, M., Ying, X. and Yang, G. (2018) Pharmacokinetics and Metabolism of Olerciamide A from Portulaca oleracea L. in Rats by UHPLC-UV and UHPLC-ESI-Q-TOF/MS. Biomedical Chromatography, 32, e4061.
https://doi.org/10.1002/bmc.4061
[66] Chen, L., Liu, Y., Jia, D., et al. (2016) Pharmacokinetics and Biodistribution of Aurantiamide and Aurantiamide Acetate in Rats after Oral Administration of Portulaca oleracea L. Extracts. Journal of Agricultural and Food Chemistry, 64, 3445-3455.
https://doi.org/10.1021/acs.jafc.6b00470
[67] 郑腾晔, 陈天新, 蔡露茜, 黄朝兴. 食用马齿苋野菜后发生急性肾衰竭2例报告[J]. 中国中西医结合肾病杂志, 2021, 22(10): 930-931+944.