基于VMD-TPE-LSTM模型的月径流预测方法研究
Research on Monthly Runoff Forecasting Method Based on VMD-TPE-LSTM Model
DOI: 10.12677/JWRR.2023.123025, PDF, 下载: 151  浏览: 747  科研立项经费支持
作者: 卢名燊, 郑雅莲, 刘 攀, 程 磊*:武汉大学水利水电学院,湖北 武汉;武汉大学水资源工程与调度全国重点实验室,湖北 武汉;朱彦泽, 刘森宇:国网新源集团有限公司富春江水力发电厂,浙江 桐庐
关键词: 入库流量预报变分模态分解剪枝优化算法长短期记忆网络Reservoir Inflow Forecasting Variational Mode Decomposition Tree-Structured Parzen Estimator Algorithm Long Short-Term Memory Network
摘要: 科学、准确、可靠的径流预测对防汛抗旱、水资源高效利用、水利设施综合效益的发挥至关重要。受到气候变化和人类活动的影响,径流过程易呈现出高度的非线性、非平稳性特征,给径流预测带来了更大的挑战。本文提出了一种基于变分模态分解(VMD)、剪枝优化算法(TPE)、长短期记忆网络(LSTM)等方法结合的月径流预测模型(VMD-TPE-LSTM),采用受钱塘江上游新安江水库调控影响的富春江水库1969~2022年月径流序列对VMD-TPE-LSTM模型进行了训练、验证与测试,月径流预测结果表明:VMD-TPE-LSTM模型的纳什效率系数达到了0.91,能够对峰值流量实现较好的预测,模型具有良好的泛化性能;进一步开展了对照实验,揭示了各因素在组合径流预测模型中对模型预测性能影响程度排序为:预处理技术 > 基准模型 > 模型参数。因此,耦合预处理技术和参数优化算法的径流预测方法能有效解决气候和人类活动影响的径流非平稳性问题,从而提高月径流预测精度和能力。
Abstract: Scientific, accurate, and reliable hydrological forecasting is crucial for flood control, drought resistance, efficient water resource utilization, and comprehensive water conservancy facility benefits. The runoff process is influenced by climate change and human activities, showing a high degree of non-linearity and non-smoothness, posing a greater challenge to runoff forecasting. In this paper, a monthly runoff forecasting model (VMD-TPE-LSTM) is proposed by coupling variational mode decomposition (VMD) with tree-structured parzen estimator algorithm (TPE) and long short-term memory network (LSTM). The model is trained, validated, and tested using the monthly runoff process of the Fuchun River Reservoir influenced by the upstream reservoir regulation from 1969 to 2022. The monthly runoff forecasting results show that the Nash efficiency coefficient of the VMD-TPE-LSTM model is 0.91 and achieves accurate forecast of peak flow, which has good generalization performance. Further controlled experiments reveal that the factors in the combined runoff forecasting model influence the model forecasting performance in the following order: pre-processing technique > baseline model > model parameters. It can be seen that the coupled pre-processing technique and parameter optimization algorithm can effectively solve the runoff non-smoothness problem influenced by climate change and human activities, thus improving the accuracy and capability of monthly runoff forecasting.
文章引用:卢名燊, 郑雅莲, 朱彦泽, 刘森宇, 刘攀, 程磊. 基于VMD-TPE-LSTM模型的月径流预测方法研究[J]. 水资源研究, 2023, 12(3): 213-225. https://doi.org/10.12677/JWRR.2023.123025

参考文献

[1] 杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018, 37(1): 36-45.
[2] YANG Dawen, XU Zongxue, LI Zhe, et al. Progress and prospect of hydrological sciences. Progress in Geography, 2018, 37(1): 36-45. (in Chinese)
[3] ARNELL, N. W., GOSLING, S. N. The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 2013, 486: 351-364.
https://doi.org/10.1016/j.jhydrol.2013.02.010
[4] SORG, A., BOLCH, T., STOFFEL, M., et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2012, 2(10): 725-731.
https://doi.org/10.1038/nclimate1592
[5] 王文, 马骏. 若干水文预报方法综述[J]. 水利水电科技进展, 2005(1): 56-60.
[6] WANG Wen, MA Jun. Review on some methods for hydrological forecasting. Advances in Science and Technology of Water Resources, 2005(1): 56-60. (in Chinese)
[7] DEB, P., KIEM, A. S. and WILLGOOSE, G. A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. Journal of Hydrology, 2019, 575: 273-291.
https://doi.org/10.1016/j.jhydrol.2019.05.039
[8] HSU, K., GUPTA, H. V. and SOROOSHIAN, S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 1995, 31(10): 2517-2530.
https://doi.org/10.1029/95WR01955
[9] SAJIKUMAR, N., THANDAVESWARA, B. S. A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology, 1999, 216(1-2): 32-55.
https://doi.org/10.1016/S0022-1694(98)00273-X
[10] 徐莹, 王嘉阳, 苏华英. 基于遗传算法的支持向量机在径流中长期预报中的应用[J]. 水利与建筑工程学报, 2014, 12(5): 42-45+72.
[11] XU Ying, WANG Jiayang and SU Huaying. Application of support vector machine based on genetic algorithm to mid-term and long-term run-off prediction. Journal of Water Resources and Architectural Engineering, 2014, 12(5): 42-45+72. (in Chinese)
[12] 万育生, 王栋, 黄朝君. 丹江口水库来水情势分析与径流预测[J]. 南水北调与水利科技(中英文), 2021, 19(3): 417-426.
[13] WAN Yusheng, WANG Dong and HUANG Chaojun. Water inflow regime analysis and runoff prediction of Danjiangkou reservoir. South-to-North Water Transfers and Water Science and Technology (Chinese and English), 2021, 19(3): 417-426. (in Chinese)
[14] YUAN, X., CHEN, C., LEI, X., et al. Monthly runoff forecasting based on LSTM-ALO model. Stochastic Environmental Research and Risk Assessment, 2018, 32(8): 2199-2212.
[15] MENG, E., HUANG, S., HUANG, Q., et al. A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. Journal of Hydrology, 2019, 568: 462-478.
https://doi.org/10.1016/j.jhydrol.2018.11.015
[16] HE, X., LUO, J., ZUO, G., et al. Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks. Water Resources Management, 2019, 33(4): 1571-1590.
https://doi.org/10.1007/s11269-019-2183-x
[17] FENG, Z., WANG, W., TANG, Z., et al. Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. Journal of Hydrology, 2020, 583: 124627.
https://doi.org/10.1016/j.jhydrol.2020.124627
[18] 钱晓燕, 邵骏, 袁鹏, 等. 基于EMD和LS-SVM的中长期径流预报[J]. 水电能源科学, 2010, 28(4): 11-13.
[19] QIAN Xiaoyan, SHAO Jun, YUAN Peng, et al. Mid-long term runoff forecasting base on EMD and LS-SVM. Water Resources and Power, 2010, 28(4): 11-13. (in Chinese)
[20] TAN, Q., LEI, X., WANG, X., et al. An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. Journal of Hydrology, 2018, 567: 767-780.
https://doi.org/10.1016/j.jhydrol.2018.01.015
[21] 王文川, 高畅, 徐雷. 基于TVF-EMD与LSTM神经网络耦合的月径流预测研究[J]. 中国农村水利水电, 2022(2): 76-81+89.
[22] WANG Wenchuan, GAO Chang and XU Lei. Monthly runoff forecast based on TVF-EMD and LSTM neural network coupling. China Rural Water and Hydropower, 2022(2): 76-81+89. (in Chinese)
[23] DRAGOMIRETSKIY, K., ZOSSO, D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
https://doi.org/10.1109/TSP.2013.2288675
[24] JING, X., LUO, J., ZHANG, S., et al. Runoff forecasting model based on variational mode decomposition and artificial neural networks. Mathematical Biosciences and Engineering, 2021, 19(2): 1633-1648.
https://doi.org/10.3934/mbe.2022076
[25] HOCHREITER, S., SCHMIDHUBER, J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[26] AKIBA, T., SANO, S., YANASE, T., et al. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 2623-2631.
https://doi.org/10.1145/3292500.3330701
[27] ZUO, G., LUO, J., WANG, N., et al. Decomposition ensemble model based on variational mode decomposition and long short-term memory for streamflow forecasting. Journal of Hydrology, 2020, 585: 124776.
https://doi.org/10.1016/j.jhydrol.2020.124776