碰撞动力学方程导出分数阶扩散极限的方法研究
Research on the Method of Deriving Fractional Diffusion Limits from Collision Dynamics Equations
DOI: 10.12677/AAM.2023.127326, PDF, 下载: 139  浏览: 204 
作者: 郭文雅:成都理工大学数理学院,四川 成都
关键词: Boltzmann方程碰撞动力学方程反常扩散极限Boltzmann Equation Collisional Kinetic Equations Anomalous Diffusion Limit
摘要: 碰撞动力学方程(Boltzmann方程)是描述物质中微观粒子运动的重要方程,该方程中包含微观粒 子之间的碰撞过程,因此可以用来研究物质中的输运现象。 当物质中微观粒子(如分子或粒子)的运 动呈现出一定的长时间规律且不满足Fick扩散定律时,我们就会遇到分数阶扩散的现象。 通常情 况下,此时我们可以通过碰撞动力学方程推导出分数阶扩散的极限。 本文将探究对碰撞动力学方 程的缩放方程的估计进而导出分数阶扩散极限来实现导出分数阶扩散极限。
Abstract: The Boltzmann equation of collision dynamics is an important equation for describing the motion of microscopic particles, which includes microscopic particles. The collision process between particles can be used to study the Transport phenomenon. When the transport of microscopic particles (such as molecules or particles) exhibit a certain long-term pattern and does not satisfy Fick’s diffusion law, we will encounter the phenomenon of fractional diffusion. Normally, at this point, we can derive the limit of fractional diffusion through the collision dynamics equation. This article will explore the scaling equation for collision dynamics equations. The estimation is then used to achieve the derivation of fractional diffusion limits.
文章引用:郭文雅. 碰撞动力学方程导出分数阶扩散极限的方法研究[J]. 应用数学进展, 2023, 12(7): 3268-3276. https://doi.org/10.12677/AAM.2023.127326

参考文献

[1] H´enon, M. (1982) Vlasov Equation. Astronomy and Astrophysics: A European Journal, 114, 211-212.
[2] Wigner, E.P. (1997) On the Quantum Correction for Thermodynamic Equilibrium. In: Wight- man, A.S., Ed., Part I: Physical Chemistry. Part II: Solid State Physics, Springer, Berlin, Heidelberg, 110-120.
https://doi.org/10.1007/978-3-642-59033-7 9
[3] Waldeer, K. (2003) The Direct Simulation Monte Carlo Method Applied to a Boltzmann-Like Vehicular Traffic Flow Model. Computer Physics Communications, 156, 1-12.
https://doi.org/10.1016/S0010-4655(03)00368-0
[4] Bird, G. (1970) Direct Simulation and the Boltzmann Equation. Physics of Fluids, 13, 2676- 2681.
https://doi.org/10.1063/1.1692849
[5] 魏金波, 张显文. Boltzmann方程的永久型解[J]. 数学物理学报, 2007, 27(2): 240-247.
[6] 晋守博, 陈攀峰, 孙善辉. 耗散线性Boltzmann方程的解的正则性[J]. 数学物理学报, 2011, 31(6): 1662-1668.
[7] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009: 32-33.
[8] Maxwell, J.C. (1860) Illustrations of the Dynamical Theory of Gases I. Philosophical Magazine, 19, 19-32.
https://doi.org/10.1080/14786446008642818
[9] Maxwell, J.C. (1860) Illustrations of the Dynamical Theory of Gases II. Philosophical Maga- zine, 20, 21-32.
https://doi.org/10.1080/14786446008642902
[10] Maxwell, J.C. (1867) On the Dynamical Theory of Gases. Philosophical Transactions of the Royal Society of London, 157, 49-88.
[11] Boltzmann, L. (1872) Weitere Studien u¨ber das w¨armegleichgewicht unter gasmoleku¨len. S- tizungsberichte der Akademie der Wissenschaften Wien, 66, 275-370.
[12] Boltzmann, L. (1875) U¨ ber das w¨armegleichgewicht Vongasen auf Welche ¨aussere ka¨afte wirken. Stizungsberichte der Akademie der Wissenschaften Wien, 72, 427-457.
[13] Boltzmann, L. (1876) U¨ ber die aufstellung und integration der gleichungen, welche die moleku- larbewegungen ingasenbestimmen. Stizungsberichte der Akademie der Wissenschaften Wien, 74, 503-552.
[14] 马志婷. 矩封闭系统的扩散极限[D]: [博士学位论文]. 北京: 清华大学, 2021.
https://doi.org/10.27266/d.cnki.gqhau.2021.000115
[15] Bolly, F. and Carrillo, J.A. (2011) Stochastic Mean-Field Limit: Non-Lipschitz Forces and Swarming. Mathematical Methods in the Applied Sciences, 21, 2179-2210.
https://doi.org/10.1142/S0218202511005702
[16] Jepps, L.G.S., Warwick, P., et al. (2000) The Fluctuating Nonlinear Schro¨dinger Equation: A Stochastic Theory of Anomalous Diffusion. Physica A, 283, 48-67.
[17] Arizmendi, C.M., Ledesma, A., Espinosa, J., et al. (2014) Beyond Fick’s Laws: Transition Density Functions for Highly Nonideal Systems. Journal of Chemical Theory and Computation, 10, 1801-1810.
[18] Mellet, A., Mischler, S. and Mouhot, C. (2011) Fractional Diffusion Limit for Collisional Kinetic Equations. Archive for Rational Mechanics and Analysis, 199, 493-525.
https://doi.org/10.1007/s00205-010-0354-2
[19] Mellet, A. (2010) Fractional Diffusion Limit for Collisional Kinetic Equations: A Moments Method. Indiana University Mathematics Journal, 59, 1333-1360.
https://doi.org/10.1512/iumj.2010.59.4128
[20] Bobylev, A.V. (1995) The Theory of the Nonlinear Spatially Uniform Boltzmann Equation for Maxwell Molecules. Physical Review, 18, 1-90.
[21] Pareschi, L. and Toscani, G. (2006) Self-Similarity and Decay of Heavy-Tailed Velocity Distri- butions for the Boltzmann Equation. Journal of Statistical Physics, 124, 747-779.
https://doi.org/10.1007/s10955-006-9025-y
[22] Birkhoff, G. and Wigner, E. (1961) Nuclear Reactor Theory, Vol. 11. American Mathematical Society, Providence.
[23] Bensoussan, A., Lions, J.L. and Papanicolaou, G.C. (1979) Boundary Layers and Homogeniza- tion of Transport Processes. Publications of the Research Institute for Mathematical Sciences, 15, 53-157.
https://doi.org/10.2977/prims/1195188427
[24] Larsen, E.W. and Keller, J.B. (1974) Asymptotic Solution of Neutron Transport Problems for Small Mean Free Paths. Journal of Mathematical Physics, 15, 75-81.
https://doi.org/10.1063/1.1666510
[25] Rubinˇste˘ın, A.I. (1978) Parseval’s Equality. Izvestiya Vysshikh Uchebnykh Zavedenii. Matem- atika, 6, 102-108.