FGF-21、CVAI在2型糖尿病肾病中的研究进展
Research Progress of FGF-21 and CVAI in Type 2 Diabetic Kidney Disease
DOI: 10.12677/ACM.2023.1371690, PDF, HTML, XML, 下载: 194  浏览: 259 
作者: 才巴央宗:青海大学研究生院,青海 西宁;张惠莉*:青海大学附属医院内分泌与代谢科,青海 西宁
关键词: FGF-21CVAI2型糖尿病糖尿病肾病胰岛素抵抗FGF-21 CVAI Type 2 Diabetes Mellitus Diabetic Kidney Disease Nephropathy Insulin Resistance
摘要: 2型糖尿病是一种异质病因的病理学,其特征是存在胰岛素抵抗、胰岛素分泌不足或两者兼而有之导致的高血糖,预计到2030年全球糖尿病患者人数约为4.39亿。糖尿病的延长与微血管有关,尤其是糖尿病肾病(DKD)。DKD是2型糖尿病最常见的并发症,是全球终末期肾病的主要原因。成纤维细胞生长因子21 (Fibroblast growth factor 21, FGF-21)是一种内分泌因子,参与机体物质代谢、维持脂肪和糖代谢的平衡。近年来研究发现FGF-21在糖尿病肾病(DKD)患者中呈异常高表达,且对DKD有较高的诊断价值。腹型肥胖被认为是心脏疾病、代谢疾病、糖尿病、和糖尿病并发症的重要危险因素之一。最近一项新的调查研究提示在中国成人糖尿病患者中,内脏脂肪指数(VAI)和中国人内脏脂肪指数(CVAI)与肾病的发生独立相关。本文对FGF-21、CVAI与糖尿病肾病相关性进行综述。
Abstract: Type 2 diabetes mellitus, a heteroetiological pathology characterized by hyperglycemia due to insu-lin resistance, inadequate insulin production, or both, is estimated to affect 439 million people worldwide by 2030. Prolongation of diabetes is associated with microvessels, especially diabetic kidney disease (DKD). DKD is the most common complication of type 2 diabetes and the leading cause of end-stage renal disease worldwide. Fibroblast growth factor 21 (Fibroblast growth factor 21, FGF-21) is a kind of endocrine factor, involved in the body’s metabolism, maintaining the bal-ance of metabolism of fat and sugar. Recent studies have found that FGF-21 is abnormally highly expressed in patients with diabetic kidney disease (DKD), and has high diagnostic value for DKD. Abdominal obesity is considered to be an important risk factor for heart disease, metabolic disease, diabetes, and diabetes complications. A new study suggests that visceral fat index (VAI) and Chinese visceral fat index (CVAI) are independently associated with the development of kidney disease in Chinese adults with diabetes. This paper reviews the correlation between FGF-21, CVAI and diabetic nephropathy.
文章引用:才巴央宗, 张惠莉. FGF-21、CVAI在2型糖尿病肾病中的研究进展[J]. 临床医学进展, 2023, 13(7): 12056-12061. https://doi.org/10.12677/ACM.2023.1371690

1. 糖尿病肾病(DKD)的概述

糖尿病肾病(DKD)发生率为25%~40%,是世界范围内肾衰竭的主要原因 [1] 。考虑到这种进行性肾功能下降的高风险,导致终末期肾病(ESKD)最终需要肾脏替代治疗,早期识别高危患者是很重要的。尽管近年来我们对这种疾病的认识有所提高,但与其他糖尿病并发症不同,DKD的患病率在过去30年中并没有下降 [2] 。

临床上通常是根据持续存在的UACR增高和(或) eGFR下降,同时排除其他CKD而做出的临床诊断。它是糖尿病的微血管并发症,以高滤过和系膜基质扩张为特征,导致肾脏肥大,肾小球基底膜增厚,随后足细胞和肾小球损伤,以及小管损伤,所有这些都导致肾小球硬化和小管间质纤维化。DKD的发病机制是多因素的,许多结构、血流动力学和炎症病理生理过程参与了疾病的发生和发展 [3] [4] 。

1.1. 高血糖

在临床研究中,强化血糖控制可使蛋白尿发生率降低50% [5] ,糖化血红蛋白(HbA1c)每降低1%,可使微量蛋白尿风险降低33% [6] 。在两项具有里程碑意义的试验中,强化血糖控制与较低的蛋白尿发生率相关,尽管在2型糖尿病(T2DM)和晚期CKD患者中并非如此 [7] [8] 。尽管严格的血糖控制可以减缓白蛋白尿水平较高的患者的DKD进展,但它可能无法完全阻止疾病进展 [9] 。大约20%的T2DM患者在没有蛋白尿的情况下发生DKD,这一事实支持了这一观点 [10] 。已知高血糖症通过产生晚期糖基化终产物(AGEs)、氧化损伤和缺氧导致肾脏肥大 [11] 。

1.2. 炎症

高血糖引起细胞损伤,触发促炎介质的释放,包括趋化因子如组织坏死因子-α (TNF-α)和白细胞介素-1 (il-1)、粘附分子和损伤相关的分子模式 [12] [13] [14] 。这导致炎症细胞如巨噬细胞、单核细胞、活化的T淋巴细胞和淋巴结样受体蛋白-3 (Nlrp-3)炎症小体聚集到肾脏 [15] [16] 。巨噬细胞在肾小球内的积累产生细胞因子、活性氧(ROS)和蛋白酶,导致肾脏损伤和纤维化,导致DKD进展。在T1DM和T2DM小鼠模型中,C-C基序趋化因子2 (CCL2;也被称为单核细胞趋化蛋白-1)和细胞内粘附分子1 (ICAM-1),已知它们促进肾脏巨噬细胞浸润,降低蛋白尿和炎症水平。

1.3. 氧化应激

慢性高血糖还会刺激多元醇途径AGEs的产生,激活PKC,导致ROS水平升高和氧化应激。肾脏ROS水平升高导致必需细胞成分和DNA的损伤 [17] [18] [19] ,以及内皮功能障碍,这是T2DM和DKD的标志特征 [3] [19] 。内皮功能障碍的特征是一氧化氮的生物利用度降低和氧化应激增加 [20] 。在实验动物模型中,内皮一氧化氮合酶的减少,导致ROS和氧化应激的产生增加,与DKD的进展有关。

2. FGF-21、CVAI概述

成纤维细胞生长因子21 (Fibroblast growth factor 21, FGF-21)是一种内分泌因子,参与机体物质代谢、维持脂肪和糖代谢的平衡。有研究表明微量白蛋白尿患者的血清FGF-21水平高于正常白蛋白尿患者,提示循环FGF-21与早期DKD有关,在T2D高危人群中,血清FGF-21水平与微量白蛋白尿密切相关。有研究证明在胰岛素抵抗和肥胖患者中FGF-21水平明显升高。T2DM患者血浆FGF-21水平升高,与异位脂肪堆积(内脏脂肪、心外膜脂肪、肝内脂肪和肌内脂肪)呈强正相关。FGF-21与人类的许多临床和非临床疾病有关,包括代谢综合征和T2DM、肝脏疾病和运动期间的代谢调节。同时,它在人类的生物学中作为一种饥饿激素、运动诱导的肌生长因子和餐后代谢调节因子,它与胰岛素的作用和代谢综合征的联系,仍然处于探索的道路上。

我国近年来研究发现FGF-21在糖尿病肾病(DKD)患者中呈异常高表达,二者的表达与肾功能密切相关,且对DKD有较高的诊断价值 [21] 。国外研究发现在T2D患者高危人群中,血清FGF-21水平与早期糖尿病肾病密切相关(特别是循环FGF-21值高于181 pg/mL)。血清FGF-21与糖尿病肾病亚临床分期的相关性为通过有效的FGF-21靶向治疗、早期发现和预防晚期慢性糖尿病微血管并发症提供了新的思路。

内脏脂肪指数(visceral adiposity index, VAI)是一种综合体重指数(body mass index, BMI),腰围(waist circumference),腰臀比(waist-to-hip ratio, WHR)及血脂等的新型指标,能够全面反映内脏脂肪分布及功能。中国人内脏肥胖指数(Chinese visceral adiposity index, CVAI)是在中国成人中形成的一种新的内脏脂肪指数,与内脏脂肪面积和胰岛素抵抗相关。内脏肥胖在糖尿病的发病机制中起关键作用,CVAI估计的内脏肥胖在预测中国成人前驱糖尿病和糖尿病方面优于传统的肥胖估计。

腹型肥胖被认为是心脏疾病、代谢疾病、糖尿病、和糖尿病并发症的重要危险因素之一。X线计算机断层扫描(CT)和磁共振成像(MRI)是检测腹部脂肪的精确方法。然而,这些方法昂贵、耗时且需要辐射照射,不适用于普通人群的频繁临床使用和流行病学研究。腰围是内脏脂肪增加的主要临床指标,由于皮下脂肪和内脏脂肪的作用不同,无法区分皮下和内脏脂肪量。由此,建立了内脏脂肪的替代指标,包括内脏脂肪指数和中国人内脏脂肪指数。以往的研究发现VAI和CVAI可以预测成人糖尿病的风险。最近一项新的调查研究提示在中国成人糖尿病患者中,VAI和CVAI与肾病的发生独立相关,而与视网膜病变无关 [22] 。

3. FGF-21、CVAI与糖尿病肾病(DKD)

3.1. FGF-21与糖尿病肾病(DKD)的关系机制概述

FGF-21通过影响血糖与糖尿病肾病(DKD)相联系。DKD的发生与持续存在的高血糖状态紧密相关。FGF-21通过上调葡萄糖转运体1 (GLUT1)的转录及蛋白的表达,促进脂肪组织对葡萄糖的摄取。禁食条件下可诱导FGF-21表达增加,通过诱导过氧化物酶体增殖物活化受体γ协同刺激因子1α (PGC-1α)的表达,促进肝糖异生,而不影响肝糖分解 [23] 。

FGF-21具有抗炎作用,炎症、氧化应激是糖尿病肾脏损伤的主要机制之一。在高糖状态下,通过糖基化终末产物途径、多元醇途径、己糖胺旁路、蛋白激酶C途径等产生大量氧自由基,同时抗氧化能力有所下降,活性氧自由基(ROS)清除减少,导致氧化应激发生 [24] ,促进脂质过氧化。还通过多种信号转导,引起肾脏炎性因子产生,导致细胞外基质( ECM)蛋白过度积累、系膜区扩张、肾血管收缩,损伤肾脏内皮细胞,促进肾脏细胞肥大,加速糖尿病肾病的进展。如肿瘤坏死因子-α (TNF-α)、结缔组织生长因子(CTGF)等炎症因子均可诱导肾脏损伤。有研究表明,FGF-21能抑制糖尿病小鼠肾脏中炎症因子,如细胞间黏附分子-1 (ICAM-1)、TNF-α和血浆组织因子(PAI-1)表达、血清C反应蛋白(CRP)和白细胞计数,缓解局部和全身的炎症反应,同时降低3-硝基酪氨酸(3-NT)、4-羟基壬烯醛(4-HNE)和结缔组织生长因(CTGF)表达,减弱氧化应激和纤维化效应。FGF-21的抗炎作用可能与AMPK诱导信号通路的激活有关,通过激活下游SIRT1-PGC1α信号通路,抑制核因子KB (N-KB)功能,促进脂肪酸β氧化及抗氧化剂表达,防止炎症和氧化应激。目前FGF-21类似物在针对2型糖尿病和非酒精性脂肪肝的临床试验中显示了良好效果,因此FGF-21有望应用于临床,针对DKD发病机制的各个环节进行治疗,更好地延缓疾病进展。

3.2. CVAI与糖尿病肾病(DKD)关系的机制

目前CVAI与糖尿病肾病的潜在机制尚未完全阐明,但有几种可能的解释可以解释所观察到的关联。首先,CVAI是评估内脏脂肪的代表性指标,内脏脂肪与胰岛素抵抗密切相关,而胰岛素抵抗可导致低炎症、内皮功能障碍和氧化应激 [25] ,促进微血管病变的发生。足细胞是胰岛素敏感的肾细胞,因此胰岛素抵抗更容易引起肾脏损害 [26] 。

其次,CVAI是衡量内脏脂肪功能的重要指标。游离脂肪酸从中央和内脏脂肪组织释放,可增加促炎因子的分泌,如TNF-α和白细胞介素-6,可引起肾小球内皮功能障碍和尿白蛋白升高。第三,肥胖还可能通过改变肾脏血流动力学,以及脂肪因子和生长因子的产生,直接影响肾脏病理生理。脂肪因子通过介导内皮功能障碍、诱导氧化应激、炎症、激活肾素–血管紧张素–醛固酮系统和内质网应激参与微血管损伤和肾损伤。所有这些机制可以部分解释CVAI与肾病发展之间的正相关关系。

4. 展望

糖尿病微血管并发症的发病机制极其复杂,目前尚未完全阐明。近年来研究发现FGF-21在糖尿病肾病(DKD)患者中呈异常高表达,二者的表达与肾功能密切相关,且对DKD有一定的诊断价值。最近一项新的调查研究提示在中国成人糖尿病患者中,VAI和CVAI与肾病的发生独立相关。通过探讨分析FGF-21及CVAI与糖尿病肾病的相关性,有助于进一步理解糖尿病肾病(DKD)的发病机制。

NOTES

*通讯作者。

参考文献

[1] Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045.
https://doi.org/10.2215/CJN.11491116
[2] Gregg, E.W., Li, Y., Wang, J., Burrows, N.R., Ali, M.K., Rolka, D., et al. (2014) Changes in Diabetes-Related Complications in the United States, 1990-2010. The New England Journal of Medicine, 370, 1514-1523.
https://doi.org/10.1056/NEJMoa1310799
[3] Thomas, M.C., Brownlee, M., Susztak, K., Sharma, K., Jande-leitDahm, K.A., Zoungas, S., et al. (2015) Diabetic Kidney Disease. Nature Reviews Disease Primers, 1, Article No. 15018.
https://doi.org/10.1038/nrdp.2015.18
[4] Anders, H.J., Huber, T.B., Isermann, B. and Schiffer, M. (2018) CKD in Diabetes: Diabetic Kidney Disease versus Nondiabetic Kidney Disease. Nature Reviews Nephrology, 14, 361-377.
https://doi.org/10.1038/s41581-018-0001-y
[5] Diabetes Control and Complications Trial Research Group, Nathan, D.M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., et al. (1993) The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. The New England Journal of Medicine, 329, 977-986.
https://doi.org/10.1056/NEJM199309303291401
[6] American Diabetes Association (2018) 6. Glycemic Targets: Standards of Medical Care in Diabetes—2018. Diabetes Care, 41, S55-S64.
https://doi.org/10.2337/dc18-S006
[7] ADV ANCE Collaborative Group, Patel, A., MacMahon, S., Chalmers, J., Neal, B., Billot, L., et al. (2008) Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Dia-betes. The New England Journal of Medicine, 358, 2560-2572.
https://doi.org/10.1056/NEJMoa0802987
[8] Ismail-Beigi, F., Craven, T., Banerji, M.A., Basile, J., Calles, J., Cohen, R.M., et al. (2010) Effect of Intensive Treatment of Hyperglycaemia on Microvascular Outcomes in Type 2 Dia-betes: An Analysis of the ACCORD Randomised Trial. The Lancet, 376, 419-430.
https://doi.org/10.1016/S0140-6736(10)60576-4
[9] Tamborlane, W.V., Puklin, J.E., Bergman, M., Verdonk, C., Rudolf, M.C., Felig, P., et al. (1982) Long-Term Improvement of Metabolic Control with the Insulin Pump Does Not Reverse Diabetic Microangiopathy. Diabetes Care, 5, 58-64.
[10] Caramori, M.L., Fioretto, P. and Mauer, M. (2003) Low Glomerular Filtrationrate in Normoalbuminuric Type 1 Diabetic Patients: An Indicator of More Advanced Glomer-ular Lesions. Diabetes, 52, 1036-1040.
https://doi.org/10.2337/diabetes.52.4.1036
[11] Lin, L., Tan, W., Pan, X., Tian, E., Wu, Z. and Yang, J. (2022) Metabolic Syndrome-Related Kidney Injury: A Review and Update. Frontiers in Endocrinology (Lausanne), 13, Article ID: 904001.
https://doi.org/10.3389/fendo.2022.904001
[12] Lin, Y.C., Chang, Y.H., Yang, S.Y., Wu, K.D. and Chu, T.S. (2018) Update of Pathophysiology and Management of Diabetic Kidney Disease. Journal of the Formosan Medical As-sociation, 117, 662-675.
https://doi.org/10.1016/j.jfma.2018.02.007
[13] Sharma, D., Bhattacharya, P., Kalia, K. and Tiwari, V. (2017) Dia-betic Nephropathy: New Insights into Established Therapeutic Paradigms and Novel Molecular Targets. Diabetes Re-search and Clinical Practice, 128, 91-108.
https://doi.org/10.1016/j.diabres.2017.04.010
[14] Warren, A.M., Knudsen, S.T. and Cooper, M.E. (2019) Diabetic Nephropathy: An Insight into Molecular Mechanisms and Emerging Therapies. Expert Opinion on Therapeutic Targets, 23, 579-591.
https://doi.org/10.1080/14728222.2019.1624721
[15] Chow, F., Ozols, E., Nikolic-Paterson, D.J., Atkins, R.C. and Tesch, G.H. (2004) Macrophages in Mouse Type 2 Diabetic Nephropathy: Correlation with Diabetic State and Pro-gressive Renal Injury. Kidney International, 65, 116-128.
https://doi.org/10.1111/j.1523-1755.2004.00367.x
[16] Shahzad, K., Bock, F., Dong, W., Wang, H., Kopf, S., Kohli, S., et al. (2015) Nlrp3-Inflammasome Activation in Non-Myeloid-Derived Cells Aggravates Diabetic Nephropa-thy. Kidney International, 87, 74-84.
https://doi.org/10.1038/ki.2014.271
[17] Honda, T., Hirakawa, Y. and Nangaku, M. (2019) The Role of Oxidative Stress and Hypoxia in Renal Disease. Kidney Research and Clinical Practice, 38, 414-426.
https://doi.org/10.23876/j.krcp.19.063
[18] Verma, S., Singh, P., Khurana, S., Ganguly, N.K., Kukreti, R., Saso, L., et al. (2021) Implications of Oxidative Stress in Chronic Kidney Disease: A Review on Current Concepts and Therapies. Kidney Research and Clinical Practice, 40, 183-193.
https://doi.org/10.23876/j.krcp.20.163
[19] Sasaki, S. and Inoguchi, T. (2012) The Role of Oxidative Stress in the Pathogenesis of Diabetic Vascular Complications. Diabetes & Metabolism Journal, 36, 255-261.
https://doi.org/10.4093/dmj.2012.36.4.255
[20] Goligorsky, M.S., Chen, J. and Brodsky, S. (2001) Workshop: Endothelial Cell Dysfunction Leading to Diabetic Nephropathy: Focus on Nitric Oxide. Hypertension, 37, 744-748.
https://doi.org/10.1161/01.HYP.37.2.744
[21] 黄丽君, 占志平, 张琳静, 熊小琴, 童俊, 童惠. 血清FGF-21、FGF-23在糖尿病肾病中的表达及其临床意义[J]. 标记免疫分析与临床, 2020, 27(4): 598-602.
[22] Wu, Z., Yu, S., Kang, X., Liu, Y., Xu, Z., Li, Z., Wang, J., Miao, X., Liu, X., Li, X., Zhang, J., Wang, W., Tao, L. and Guo, X. (2022) Association of Visceral Adiposity Index with Incident Nephropathy and Retinopathy: A Cohort Study in the Diabetic Population. Cardiovascular Diabetology, 21, Article No. 32.
https://doi.org/10.1186/s12933-022-01464-1
[23] Potthoff, M.J., Inagaki, T., et al. (2009) FGF21 Induces PGC-1alpha and Regulates Carbohydrate and Fatty Acid Metabolism during the Adaptive Starvation Response. Pro-ceedings of the National Academy of Sciences of the United States of America, 106, 10853-10858.
https://doi.org/10.1073/pnas.0904187106
[24] 崔洪臣. 氧化应激与糖尿病肾病[J]. 临床内科杂志, 2015, 32(1): 65-66.
[25] Inoguchi, T., Li, P., Umeda, F., Yu, H.Y., Kakimoto, M., Imamura, M., Aoki, T., et al. (2000) High Glu-cose Level and Free Fatty Acid Stimulate Reactive Oxygen Species Production through Protein Kinase C-Dependent Ac-tivation of NAD(P)H Oxidase in Cultured Vascular Cells. Diabetes, 49, 1939-1945.
https://doi.org/10.2337/diabetes.49.11.1939
[26] Bamba, R., Okamura, T., Hashimoto, Y., Hamaguchi, M., Obora, A., Kojima, T. and Fukui, M. (2020) The Visceral Adiposity Index Is a Predictor of Incident Chronic Kidney Disease: A Population-Based Longitudinal Study. Kidney and Blood Pressure Research, 45, 407-418.
https://doi.org/10.1159/000506461