两类基于Riemann-Liouville分数阶导数的非线性偏微分方程的对称分析
Symmetry Analysis of Two Kinds of Nonlinear Partial Differential Equations Based on Riemann-Liouville Fractional Derivatives
DOI: 10.12677/AAM.2023.127341, PDF, HTML, XML, 下载: 148  浏览: 222  国家自然科学基金支持
作者: 张天棋, 银 山*:内蒙古工业大学理学院,内蒙古 呼和浩特
关键词: Riemann-Liouville分数阶微分方程Lie对称约化Riemann-Liouville Fractional Differential Equation Lie Symmetry Reduction
摘要: 针对热传导类和扩散类这两类Riemann-Liouville分数阶微分方程,采用了Lie对称方法,研究了这两类分数阶微分方程所允许的Lie代数。给出两类方程拥有的对称,运用部分Lie对称变换把对应的偏微分方程化为新变量下的分数阶常微分方程,表明Lie对称方法适用于此类方程,可以使方程实现约化,进而更易求解,使得热传导类和扩散类Riemann-Liouville分数阶微分方程可以更加广泛地应用于对事物现象的描述。
Abstract: For two kinds of Riemann-Liouville fractional differential equations of heat conduction and diffu-sion, the Lie algebras allowed for these two kinds of fractional differential equations are studied by using Lie symmetry method. The symmetry of the two kinds of equations is given, and the corre-sponding partial lie symmetry transformation is used to transform the corresponding partial dif-ferential equations into fractional ordinary differential equations with new variables. It shows that the Lie symmetry method is suitable for such equations, which can reduce the equations and make them easier to solve. The Riemann-Liouville fractional differential equations of heat conduction and diffusion can be more widely used to describe the phenomena of things.
文章引用:张天棋, 银山. 两类基于Riemann-Liouville分数阶导数的非线性偏微分方程的对称分析[J]. 应用数学进展, 2023, 12(7): 3436-3446. https://doi.org/10.12677/AAM.2023.127341

1. 引言

分数阶微积分作为微积分理论中的一个重要分支,在17世纪末就已正式提出,在分数阶微积分引入的早期,其理论和作用仅在数学领域得到广泛研究 [1] [2] 。经过三百余年的发展,分数阶微积分已经成为众多科学领域的重要研究工具 [3] [4] 。分数阶导数具有记忆效应和非局部效应 [5] ,相对于整数阶导数而言,它可以更好地描述某些异常现象,例如:用分数阶微分方程描述在发生超扩散和亚扩散的复杂液体中的示踪粒子的异常扩散现象则更加精确 [6] 。但分数阶导数种类众多且结构复杂,所以分数阶微分方程的求解并没有一个通用的方法 [7] 。目前,许多理论与方法已被应用到分数阶导数相关理论中,并取得了显著成效,例如:拉普拉斯变换 [8] ,有限差分 [9] ,Adomian分解 [10] ,变分迭代 [11] 和Lie对称群理论 [12] 等。其中,拉普拉斯变换常用来求解线性微分方程,可以把初始条件一同考虑在变换后的方程组中,避免了先求通解进而求得特解的繁琐;有限差分则是求解分数阶微分方程数值解的一种常用方法;Adomian分解法可以在不进行线性化处理的前提下求解复杂的非线性分数阶微分方程,但其需要对非线性项作特别处理;变分迭代法在问题边界是直角形的前提下对线性和非线性的微分方程均可求解。

在这些方法中,Lie对称群理论是分析微分方程的有力工具,且Lie群具有可以简化微分方程的优点。且该方法已应用到很多分数阶偏微分方程(FPDE)中 [13] - [19] 。Leo等人 [20] 将Lie群理论推广到FPDE中,提出了FPDE在有限自变量下的Lie对称结构;Zhang等人 [6] [21] 证明了Riemann-Liouville时间分数阶导数的Lie无穷小算子在满足一定条件时具有简单的形式;Wang等人 [22] [23] [24] 描述了不同阶数下的时间分数阶KdV方程以及多维时间分数阶KdV方程的尺度变换;Liu等人 [12] [25] [26] 得到了具有Riemann-Liouville分数阶导数的标准形式下的时间分数阶热传导方程、分数阶扩散方程和时间分数阶Harry-Dym方程对称变换下的群不变解;Sahadevan等人 [27] 研究了耦合时间FPDE在Lie对称分析下的精确解。

在以上研究基础上,将继续运用Lie对称方法分析热传导类和扩散类Riemann-Liouville分数阶微分方程。文章结构如下:第一部分,回顾Riemann-Liouville导数的相关基础知识。第二部分,建立Lie对称结构,列出所求解方程的无穷小算子的分数阶延拓公式。第三部分,对所考虑的第一类方程进行对称分类及约化。第四部分,对所考虑的第二类方程进行对称分类及约化。

2. Riemann-Liouville分数阶导数

下面回顾Riemann-Liouville分数阶导数的定义和一些相关性质。

定义1函数 α > 0 时的Riemann-Liouville分数阶微分算子定义如下:

t α u = 1 Γ ( n α ) n t n 0 t u ( s , x ) ( t s ) α + 1 n d s , 0 n 1 < α n , n = 1 , 2 , . (1)

定义2 Erdelyi-Kober分数阶微分算子 ( P δ v , k ψ ) [27] 定义如下:

( P δ ν , κ ψ ) ( ω ) = r = 0 m 1 ( ν + r 1 δ ω d d ω ) ( k δ ν + κ , m κ ψ ) ( ω ) , ω > 0 , δ > 0 , κ > 0 , m = { [ κ ] + 1 , if κ κ , if κ , (2)

其中,

( k δ ν , κ ψ ) ( ω ) = { 1 Γ ( κ ) 1 ( u 1 ) κ 1 u ( ν + κ ) ψ ( ω u 1 δ ) d u , κ > 0 , ψ ( ω ) , κ = 0. (3)

引理1幂函数的Riemann-Liouville分数导数 [22] 形为

t α t γ = { Γ ( γ + 1 ) Γ ( γ + 1 α ) t γ α , γ > α 1 , 0 , γ = α 1. (4)

证明详见 [28] 。

引理2两个连续函数 u ( x , t ) v ( x , t ) 的乘积的Riemann-Liouville分数阶导数——广义莱布尼兹公式 [19] [25] [27] 为

t α ( u v ) = k = 0 ( α k ) t k u t α k v , α > 0 , (5)

( α k ) = ( 1 ) k 1 α Γ ( k α ) Γ ( 1 α ) Γ ( k + 1 ) . (6)

证明详见 [28] 。

当(5)式中的 v ( x , t ) = 1 时,得到Riemann-Liouville分数阶导数 [6] 的另一种定义:

t α u ( x , t ) = k = 0 ( α k ) t k α Γ ( k + 1 α ) k t k u ( x , t ) , 0 n 1 < α n . (7)

3. Riemann-Liouville分数阶微分方程的对称

考虑如下Riemann-Liouville分数阶微分方程

t α u ( x , t ) = F ( x , t , u , u 1 , u 2 , u 3 , , u l ) , 0 < α < 1 , (8)

其中, u = u ( x , t ) 是关于自变量 x , t t 的函数, u i = i u / x i i = 0 , 1 , , l 以及 u 0 = u

假设方程(8)在以下单参数变化群下不变

x ¯ = ϕ ( x , t , u ; a ) , t ¯ = φ ( x , t , u ; a ) , u ¯ = ψ ( x , t , u ; a ) , (9)

ϕ | a = 0 = x , φ | a = 0 = t , ψ | a = 0 = u , (10)

其中a是群参数。变换群(9)改写为

x ¯ = x + a ξ ( x , t , u ) + O ( a 2 ) , t ¯ = t + a τ ( x , t , u ) + O ( a 2 ) , u ¯ = u + a η ( x , t , u ) + O ( a 2 ) , (11)

其中,

ξ ( x , t , u ) = ϕ a | a = 0 , τ ( x , t , u ) = φ a | a = 0 , η ( x , t , u ) = ψ a | a = 0 . (12)

对应的无穷小算子为

X = ξ ( x , t , u ) x + τ ( x , t , u ) t + η ( x , t , u ) u . (13)

由于分数阶导数算子的结构在变换(9)下需要保持不变 [12] ,所以

τ ( x , t , u ( x , t ) ) | t = 0 = 0. (14)

引理3方程(8)在变换群(9)下不变的充分必要条件是

Pr ( α , l ) X ( t α u F ) | { t α u F = 0 } = 0. (15)

其中 Pr ( α , l ) X 是X的延拓,其结构如下

Pr ( α , l ) X = X + η α ( t α u ) + i = 1 l η ( i ) u i , (16)

η ( i ) = D x i ( η ξ u x τ u t ) + ξ u i + 1 + τ u i t , (17)

符号 D x 表示x的全导数

D x = x + u x u + u x x u x + u x t u t + . (18)

引理4 η α 0 < α < 1 时的一般表达式为

η α = D t α η + ξ D t α ( u x ) + D t α ( D t ( τ ) u ) + τ D t α + 1 u D t α ( ξ u x ) D t α + 1 ( τ u ) . (19)

证明详见 [21] 。

引理5复合函数的 α 阶导数公式 [29] 为

D t α f ( t , g ( t ) ) = n = 0 ( α n ) t n α Γ ( n + 1 α ) D t n [ f ( t , g ( t ) ) ] . (20)

证明:根据引理2可知,复合函数的 α 阶导数可表示为

D t α f ( t , g ( t ) ) = n = 0 ( α n ) t n α Γ ( n + 1 α ) D t n [ f ( t , g ( t ) ) ] . (21)

且复合函数的整数阶导数 [26] 在链式法则 [30] [31] 下记为

d m f ( g ( t ) ) d t m = k = 0 m r = 0 k ( k r ) 1 k ! [ g ( t ) ] r d m d t m [ ( g ( t ) ) k r ] d k f ( g ) d g k . (22)

因此

D t α f ( t , g ( t ) ) = n = 0 ( α n ) t n α Γ ( n + 1 α ) m = 0 n ( n m ) n f ( t , g ( t 1 ) ) t n m t 1 m | { t 1 = t } = n = 0 ( α n ) t n α Γ ( n + 1 α ) m = 0 n ( n m ) k = 0 m r = 0 k ( k r ) 1 k ! [ g ( t ) ] r d m d t m [ ( g ( t ) ) k r ] n m + k f ( t , g ) t n m g k = n = 0 m = 0 n k = 0 m r = 0 k ( α n ) ( n m ) ( k r ) 1 k ! t n α Γ ( n + 1 α ) [ g ( t ) ] r d m d t m [ ( g ( t ) ) k r ] n m + k f ( t , g ) t n m g k . (23)

证明完毕。

引理6 η α 0 < α < 1 时的具体表达式 [12] 为

η α = t α η + [ η u α D t ( τ ) ] t α u u t α ( η u ) + μ + n = 1 [ ( α n ) t n ( η u ) ( α n + 1 ) D t n + 1 ( τ ) ] t α n u ( α n ) D t n ( ξ ) t α n ( u x ) , (24)

其中,

μ = n = 2 m = 2 n k = 2 m r = 0 k 1 ( α n ) ( n m ) ( k r ) 1 k ! t n α Γ ( n + 1 α ) [ y ( t ) ] r d m d t m [ ( y ( t ) ) k r ] n m + k η ( t , y ) t n m y k . (25)

证明:根据复合函数的 α 阶导数公式

D t α η = n = 0 ( α n ) t n α Γ ( n + 1 α ) t n ( η [ t ] ) = n = 0 ( α n ) t n α Γ ( n + 1 α ) m = 0 n ( n m ) n η ( x , t , u ( x , t 1 ) ) t n m t 1 m | { t 1 = t } = n = 0 m = 0 n k = 0 m r = 0 k ( α n ) ( n m ) ( k r ) 1 k ! t n α Γ ( n + 1 α ) [ u ( x , t ) ] r d m d t m [ ( u ( x , t ) ) k r ] n m + k η ( x , t , u ) t n m u k . (26)

分离出 D t α η 中y及其导数的线性项,它们仅出现在 k = 0 k = 1 中,并借助FPDE的莱布尼茨公式可得

k = 0 , m = 0 : n = 0 ( α n ) t n α Γ ( n + 1 α ) n t n η ( x , t , u ) = t α η ;

k = 1 , r = 0 : n = 0 ( α n ) t n α Γ ( n + 1 α ) m = 1 n ( n m ) m u t m n m t n m ( η u ) = n = 0 ( α n ) t n α Γ ( n + 1 α ) [ n t n ( u η u ) u n t n ( η u ) ] = t α ( u η u ) u t α ( η u ) = n = 0 ( α n ) t α n u t n ( η u ) u t α ( η u ) . (27)

然后将上述结果代入 D t α η 可得

D t α η = t α η + n = 0 ( α n ) t α n u t n ( η u ) u t α ( η u ) + μ = t α η + η u t α u + n = 1 ( α n ) t α n u t n ( η u ) u t α ( η u ) + μ , (28)

其中,

μ = n = 2 m = 2 n k = 2 m r = 0 k 1 ( α n ) ( n m ) ( k r ) 1 k ! t n α Γ ( n + 1 α ) [ u ( x , t ) ] r m t m [ ( u ( x , t ) ) k r ] n m + k η ( x , t , u ) t n m u k . (29)

利用广义莱布尼兹公式,

D t α ( D t ( τ ) u ) + τ D t α + 1 u D t α + 1 ( τ u ) = α D t ( τ ) D t α u n = 1 ( α n + 1 ) D t n + 1 τ D t α n u . (30)

ξ D t α + 1 ( u x ) D t α + 1 ( ξ u x ) = n = 1 ( α n ) D t n ξ D t α n ( u x ) . (31)

因此,将上述所有结果代入引理4所得的表达式并化简

η α = D t α η + ξ D t α ( u x ) + D t α ( D t ( τ ) u ) + τ D t α + 1 u D t α ( ξ u x ) D t α + 1 ( τ u ) = t α η + η u t α u + n = 1 ( α n ) t α n u t n ( η u ) u t α ( η u ) + μ α D t ( τ ) D t α u n = 1 ( α n + 1 ) D t n + 1 τ D t α n u = t α η + [ η u α D t ( τ ) ] t α u u t α ( η u ) + μ + n = 1 [ ( α n ) t n ( η u ) ( α n + 1 ) D t n + 1 ( τ ) ] t α n u ( α n ) D t n ( ξ ) t α n ( u x ) . (32)

证明完毕。

引理7 μ = 0 当且仅当 η 关于u是线性的,即 η u u = 0

证明详见 [21] 。

4. 主要研究内容

定理1分数阶微分方程

t α u = ( f ( u ) u x ) x + u x 3 , (33)

拥有的Lie对称如下:

1) 对于任意函数 f ( u ) ,方程(33)允许的对称拥有无穷小算子 X 1 = x

2) 当 f ( u ) = c 时,方程(33)拥有无穷小算子 X 2 = x x + 2 t α t + u 2 u

3) 当 f ( u ) = u 2 时,方程(33)有无穷小算子 X 3 = t t α u 2 u

4) 当 f ( u ) = e u 时,方程(33)有无穷小算子 X 4 = t 2 t

其中, 0 α 1 u = u ( x , t ) f ( u ) = f ( u ( x , t ) ) 为任意函数。

证明:将变换(9)作用于方程(33),可得方程不变的条件

η α f u x 2 η f u x x η 2 f u x η ( 1 ) 3 u x 2 η ( 1 ) f ( u ) η ( 2 ) | eq . ( 2 ) = 0. (34)

其中,

η ( 1 ) = D x ( η ) u t D x ( τ ) u x D x ( ξ ) = η x + ( η u ξ x ) u x τ x u t u x 2 ξ u τ u u x u t . (35)

η ( 2 ) = D t ( η ( 1 ) ) u x t D x ( τ ) u x x D x ( ξ ) = η x x + ( 2 η x u ξ x x ) u x τ x x u t + ( η u u 2 ξ x u ) u x 2 2 τ x u u t u x u x 3 ξ u u τ u u u x 2 u t + ( η u 2 ξ x ) u x x 2 τ x u x t 3 ξ u u x x u x τ u u x x u t 2 τ u u x t u x . (36)

由方程(34)得到确定方程组

{ ( α n ) t n ( η u ) ( α n + 1 ) D t n + 1 ( τ ) = 0 , n = 1 , 2 , 3 , , τ x = τ u = ξ t = ξ u = η u u = 0 , 2 f η x 2 f η x u + f ξ x x = 0 , 2 f ξ x α f τ t f η = 0 , f η u α f τ t + 2 f ξ x f η 3 η x = 0 , 3 ξ x 2 η u α τ t = 0 , t α η u t α ( η u ) f η x x = 0. (37)

从(37)的第二式,易得到 τ = τ ( t ) ξ = ξ ( x ) η = c 1 ( x , t ) u + c 11 ( x , t ) ;由(37)的第六式可知 c 1 ( x , t ) = 1 2 ( 3 ξ ( x ) α τ ( t ) )

1) 当 f ( u ) = c 时,

由(37)的第三式可得 ξ ( x ) = c 3 x + c 4 ;进而可知 τ ( t ) = 2 c 3 α t ;且根据上述结果有

t α η u t α ( η u ) = t α [ c 1 ( x , t ) u + c 11 ( x , t ) ] u t α [ c 1 ( x , t ) ] = t α [ c 11 ( x , t ) ] ;求解(37)的最后一式则可得 c 11 ( x , t ) = 0

综上所述:

ξ ( x ) = c 3 x + c 4 , τ ( t ) = 2 c 3 t α , η ( x , t , u ) = c 3 u 2 . (38)

由此,得到方程(33)的两个无穷小算子

X 1 = x , X 2 = x x + 2 t α t + u 2 u . (39)

2) 当 f ( u ) = u n 时,取特殊值 n = 2 ,即 f ( u ) = u 2

此时,由(37)的第四式可知 c 11 ( x , t ) = 1 2 u ξ ( x ) ;将其代入(37)则有 ξ ( x ) = c 3 x + c 4 τ ( t ) = c 5 t ;由(37)最后一式可得 c 3 = 0

综上所述:

ξ ( x ) = c 4 , τ ( t ) = c 5 t , η ( x , t , u ) = α 2 c 5 u . (40)

由此,得到方程(33)的两个无穷小算子

X 1 = x , X 3 = t t α u 2 u . (41)

3) 当 f ( u ) = e u 时,

由(37)的第一式可得 τ ( t ) = a t 2 + b t ;由(37)的第三式可知 c 11 ( x , t ) = c 6 ( t ) ξ ( x ) 3 2 u ξ ( x ) ;将其代入(37)继续化简则有 ξ ( x ) = 1 6 x [ 2 b α 4 a t α + b u α + 2 a t u α + 2 c 6 ( t ) ] + c 7 ,其中 c 6 ( t ) = 1 2 ( b + 2 a t ) ( 4 + 3 u ) α b = 2 a t

综上所述:

ξ ( x ) = c 7 , τ ( t ) = a t 2 , η ( x , t , u ) = 0. (42)

由此,得到方程(33)的两个无穷小算子

X 1 = x , X 4 = t 2 t . (43)

定理2方程(33)可以约化为分数阶常微分方程 ( P 2 α 1 3 4 α , α g ) ( ω ) = c g ( ω ) + [ g ( ω ) ] 3

证明:当 f ( u ) = c 时:

对于 X 2 = x x + 2 t α t + u 2 u ,求解不变曲面条件 d x x = α d t 2 t = 2 d u u 可以得到相似变量 ω 和相似变换 g ( ω ) ,其中 u ( x , t ) = t α 4 g ( ω ) ω = x t α 2 ,将其代入方程(33)得到简化的分数阶微分方程

( P 2 α 1 3 4 α , α g ) ( ω ) = c g ( ω ) + [ g ( ω ) ] 3 . (44)

定理3分数阶微分方程

D t α u + μ u x x + v u u x + λ u = h ( x , t ) . (45)

所拥有的无穷小算子为 X 1 = x ,其中, 0 α 1 u = u ( x , t ) μ , v , λ 为任意常数, h ( x , t ) x , t 的任意函数。

证明:将变换(9)作用于方程(45),可得方程不变的条件

η α τ h t ξ h x + λ η + v u x η + v u η ( 1 ) + μ η ( 2 ) | eq . ( 1 ) = 0. (46)

由方程(46)得到确定方程组

{ ( α n ) t n ( η u ) ( α n + 1 ) D t n + 1 ( τ ) = 0 , n = 1 , 2 , 3 , , τ x = τ u = ξ t = ξ u = η u u = 0 , v ( η u α τ t ) u + μ ( 2 η x u ξ x x ) + v ( η u ξ x ) + v η = 0 , μ ( η u α τ t ) + μ ( η u 2 ξ x ) = 0 , t α η u t α ( η u ) λ ( η u α τ t ) u + ( η u α τ t ) h ( x , t ) + μ η x x + v η x + λ η τ h t ξ h x = 0. (47)

从(47)可得对称分类,易得到 τ = τ ( t ) ξ = ξ ( x ) η = c 1 ( x , t ) u + c 11 ( x , t ) ;由(47)的第四式,且根据 τ ( x , t , u ( x , t ) ) | t = 0 = 0 可得 ξ = c 3 x + c 2 τ = 2 c 3 α t ;代入第一式进而有 η = c 1 ( x ) u + c 11 ( x , t ) ;因此将上述结果代入(47)的其余各式可知 c 3 = c 1 ( x ) = c 11 ( x , t ) = 0

综上所述:

ξ = c 2 , τ = 0 , η = 0. (48)

由此得到方程(45)的无穷小算子

X 1 = x . (49)

定理4方程(45)可以相似约化为分数阶常微分方程 t α ϕ ( v ) + λ ϕ ( v ) h ( x , t ) = 0

证明:对于 X 1 = x ,求解不变曲面条件 d x 1 = d t 0 = d u 0 可以得到相似变量v, ϕ ( v ) ,其中 v = t u = ϕ ( v ) ,将其代入方程(45)得到简化的分数阶常微分方程

t α ϕ ( v ) + λ ϕ ( v ) h ( x , t ) = 0. (50)

5. 结论

本文对具有Riemann-Liouville导数的两类非线性偏微分方程 t α u = ( f ( u ) u x ) x + u x 3 D t α u + μ u x x + v u u x + λ u = h ( x , t ) 进行了Lie对称分析,得到了 t α u = ( f ( u ) u x ) x + u x 3 的三类Lie对称结构,且利用Lie点对称,在 f ( u ) = c ,无穷小算子 X 2 = x x + 2 t α t + u 2 u 时,方程可以约化为分数阶常微分方程 ( P 2 α 1 3 4 α , α g ) ( ω ) = c g ( ω ) + [ g ( ω ) ] 3 。对于方程 D t α u + μ u x x + v u u x + λ u = h ( x , t ) ,在无穷小算子 X 1 = x 下可以约化为分数阶常微分方程 t α ϕ ( v ) + λ ϕ ( v ) h ( x , t ) = 0

致谢

此次论文写作经过思索,推导,验证,多次修改直到最终完稿,让我体会到科研的魅力,对数学这门学科有了更加深刻的理解,让我提高了专业素养,今后我会继续努力,以严谨认真的态度对待每次研究,争取更大的进步。

本篇论文在我的导师银山老师的指导下完成,老师对我科研以及生活上提供了很大的帮助,借此机会向老师表示诚挚的感谢。

基金项目

国家自然科学基金地区基金(No. 12161064)。

内蒙古自治区自然基金项目(2020LH01003)。

NOTES

*通讯作者。

参考文献

[1] 张滑, 刘春凤. 分数阶R-L微分方程初值问题解的存在唯一性[J]. 数学的实践与认识, 2016, 46(3): 267-272.
[2] 薛齐文, 魏伟. 含分数阶导数微分方程的数值求解[J]. 大连交通大学学报, 2009, 30(5): 88-92.
[3] 彭钟琪, 李媛, 毕国健, 薛益民. 一类非线性Riemann-Liouville适型分数阶微分方程正解的存在性[J]. 吉林大学学报(理学版), 2023, 61(1): 23-31.
[4] Derakhsan, M.H. (2021) Existence, Uniqueness, Ulam—Hyers Stability and Numerical Simu-lation of Solutions for Variable Order Fractional Differential Equations in Fluid Mechanics. Applied Mathematics and Computing, 68, 403-429.
https://doi.org/10.1007/s12190-021-01537-6
[5] Bakkyaraj, T. (2020) Lie Symmetry Analysis of System of Non-Linear Fractional Partial Differential Equations with Caputo Fractional Derivative. Physical, 135, Article No. 126.
https://doi.org/10.1140/epjp/s13360-020-00170-9
[6] Zhang, Z.Y. (2020) Symmetry De-termination and Nonlinearization of a Nonlinear Time-Fractional Partial Differential Equation. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 476, Article 20190564.
https://doi.org/10.1098/rspa.2019.0564
[7] 张盼盼. R-L分数阶积分方程及积分微分方程的数值解法[D]: [硕士学位论文]. 银川: 宁夏大学, 2014.
[8] Bagley, R.L. (1983) A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity. Journal of Rheology, 27, 201-210.
https://doi.org/10.1122/1.549724
[9] Meerschaert, M.M., Scheffler, H.P. and Tadjeran, C. (2006) Finite Difference Methods for Two-Dimensional Fractional Dispersion Equation. Computational Physics, 211, 249-261.
https://doi.org/10.1016/j.jcp.2005.05.017
[10] Momani, S. and Odibat, Z. (2006) Analytical Solution of a Time-Fractional Navier-Stokes Equation by Adomiandecompostion Method. Applied Mathematics and Computation, 177, 488-494.
https://doi.org/10.1016/j.amc.2005.11.025
[11] Wu, G.C. and Lee, E.W.M. (2010) Fractional Variational Iteration Method and Its Application. Physics Letters A, 374, 2506-2509.
https://doi.org/10.1016/j.physleta.2010.04.034
[12] Huang, Q. and Zhdanov, R. (2014) Symmetries and Exact So-lutions of the Time Fractional Harry-Dym Equation with Riemann-Liouville Derivative. Physica A: Statistical Mechanics and Its Applications, 409, 110-118.
https://doi.org/10.1016/j.physa.2014.04.043
[13] Sun, H., Zhang, Y., Baleanu, D., et al. (2018) A New Collection of Real World Applications of Fractional Calculus in Science and Engineering. Communications in Nonlinear Science and Numerical Simulation, 64, 213-231.
https://doi.org/10.1016/j.cnsns.2018.04.019
[14] Guo, B.L., Pu, X.K. and Huang, F.H. (2015) Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific, Singapore.
https://doi.org/10.1142/9543
[15] Wang, G.W. and Xv, T.Z. (2014) Invariant Analysis and Exact Solutions of Nonlinear Time Fractional Sharma-Tasso- Olver Equation by Lie Group Analysis. Nonlinear Dynamics, 76, 571-580.
https://doi.org/10.1007/s11071-013-1150-y
[16] Liu, H. (2013) Complete Group Classifications and Symmetry Reductions of the Fractional Fifth-Order KdV Types of Equations. Studies in Applied Mathematics, 131, 317-330.
https://doi.org/10.1111/sapm.12011
[17] Singla, K. and Gupta, R.K. (2016) On Invariant Analysis of Some Time Fractional Nonlinear Systems of Partial Differential Equations. Mathematical Physics, 57, Article ID: 101504.
https://doi.org/10.1063/1.4964937
[18] Zhang, Y.F., Mei, J.Q. and Zhang, X.Z. (2018) Symmetry Properties and Explicit Solutions of Some Nonlinear Differential and Fractional Equations. Applied Mathematics and Computation, 337, 408-418.
https://doi.org/10.1016/j.amc.2018.05.030
[19] Chen, C. and Jiang, Y.L. (2017) Lie Group Analysis and Invariant Solutions for Nonlinear Time-Fractional Diffusion-Convection Equations. Communications in Theoretical Physics, 68, 295-300.
https://doi.org/10.1088/0253-6102/68/3/295
[20] Leo, R.A., Sicuro, G. and Tempesta, P. (2017) A Foundational Approach to the Lie Theory for Fractional Order Partial Differential Equations. Fractional Calculus and Applied Analysis, 20, 212-231.
https://doi.org/10.1515/fca-2017-0011
[21] Zhang, Z.Y. and Zheng, J. (2021) Symmetry Structure of Multi-Dimensional Time-Fractional Partial Differential Equations. Nonlinearity, 34, 5186-5212.
https://doi.org/10.1088/1361-6544/abf9ee
[22] Zhang, Y.W. (2015) Lie Symmetry Analysis to the Time Fractional Generalized Fifth-Order KdV Equation. Advanced Nonlinear Studies, 22, 473-484.
[23] Djordeveic, V.D. and At-anackovic, T.M. (2008) Similarity Solutions to Nonlinear Heat Conduction and Burgers Korteweg-deVries Fractional Equations. Applied Mathematics and Computation, 212, 701-714.
https://doi.org/10.1016/j.cam.2007.12.013
[24] Liu, J.G., Yang, J., Feng, Y.Y., Cui, P. and Ge, L.L. (2021) Onin-tegrability of the Higher Dimensional Time Fractional KdV-Type Equation. Geometry and Physics, 160, Article ID: 104000.
https://doi.org/10.1016/j.geomphys.2020.104000
[25] Liu, J.G., Yang, J. and Feng, Y.Y. (2019) Onintegrability of the Time Fractional Nonlinear Heat Conduction Equation. Geometry and Physics, 144, 190-198.
https://doi.org/10.1016/j.geomphys.2019.06.004
[26] Gazizov, R.K., Kasatkin, A.A. and Lukashchuk, S.Y. (2009) Symmetry Properties of Fractional Diffusion Equations. Physica Scripta, T136, Article ID: 014016.
https://doi.org/10.1088/0031-8949/2009/T136/014016
[27] Sahadevan, R. and Prakash, P. (2017) On Lie Sym-metry Analysis and Invariant Subspace Methods of Coupled Time Fractional Partial Differential Equations. Chaos, Soli-tons & Fractals, 104, 107-120.
https://doi.org/10.1016/j.chaos.2017.07.019
[28] 靳丹丹, 马芳芳, 么焕民. Riemann-Liouville分数阶积分及其性质证明[J]. 哈尔滨师范大学自然科学学报, 2011(3): 20-22.
[29] Gazizov, R.K., Kasatkin, A.A. and Lukashchuk, S.Y. (2007) Continuous Transformation Groups of Fractional Differential Equations. ReesearchGate, 21, 125-135.
[30] Sahadevan, R. and Bakkyaraj, T. (2012) Invariant Analysis of Time Fractional Generalized Burgers and Korteweg-de Vries Equations. Mathematical Analysis and Applications, 393, 341-347.
https://doi.org/10.1016/j.jmaa.2012.04.006
[31] Oldham, K.B. and Spanier, J. (1974) The Fractional Calculus. Ac-ademic Press, Cambridge.