分数次极大算子及交换子在加权Morrey空间上的有界性
Boundedness of Fractional Maximal Operator and its Commutator on Weighted Morrey Spaces
DOI: 10.12677/PM.2023.137214, PDF, HTML, XML, 下载: 199  浏览: 276 
作者: 刘占宏:西北师范大学数学与统计学院,甘肃 兰州
关键词: 加权Morrey空间分数次极大算子交换子BMO函数Weighted Morrey Space Fractional Maximal Operator Commutator BMO Function
摘要: 利用调和分析的实变方法以及权不等式,证明了分数次极大算子在加权Morrey空间上的强有界性和弱有界性,并且得到了分数次极大算子与BMO函数生成的交换子的加权有界性。
Abstract: By applying the real variable methods of harmonic analysis and the weighted inequality, the strong and weak boundedness of the fractional maximal operator is proved on the weighted Morrey space, and the weighted boundedness of commutators generated by fractional maximal operators and BMO functions is obtained.
文章引用:刘占宏. 分数次极大算子及交换子在加权Morrey空间上的有界性[J]. 理论数学, 2023, 13(7): 2080-2092. https://doi.org/10.12677/PM.2023.137214

1. 引言

经典Morrey空间在研究二阶椭圆偏微分方程解的正则性时被首次定义 [1] 。这类函数空间作为经典Lebesgue空间的推广,在调和分析本身及偏微分方程等领域有着重要应用。分数次极大算子作为现代多元调和分析基本的理论工具,其在各类函数空间上的有界性一直受到众多学者的广泛关注。1974年,Muckenhoupt和Wheeden研究了分数次极大算子在加权Lebesgue空间上的有界性 [2] ;1987年,Chiarenza和Frasca获得了分数次极大算子在Morrey空间上的有界性 [3] ;1996年,Ding研究了一类粗糙核极大算子交换子的有界性 [4] ;2016年,Wang和Zhu研究了分数次极大算子在加权变指标空间上的有界性 [5] 。2020年,Duoandikoetxea和Rosenthal引入一类新的加权Morrey空间 [6] ,这类空间是经典Morrey空间的推广并且受到了广泛的关注。2022年,Zhou和Zhao证明了分数次极大算子在这类加权Morrey空间上的有界性 [7] 。受以上启发,本文主要研究分数次极大算子及其交换子在这类加权Morrey空间上的加权估计。关于加权Morrey空间还有更多的结果 [8] [9] [10] [11] [12] 。在叙述本文主要结果之前,首先引入需要的概念和记号。

0 α < n ,f为Rn上局部可积函数,分数次极大算子定义为

M α f ( x ) = sup x B 1 | B | 1 α n B | f ( y ) | d y , (1)

其中,B为Rn中的球体。相应地,给定一个局部可积函数b,由b和 M α 生成的交换子定义为

[ b , M α ] f ( x ) = M α ( b f ) ( x ) b ( x ) M α f ( x ) = sup x B 1 | B | 1 α n B | f ( y ) | [ b ( x ) b ( y ) ] d y . (2)

1 < p q < ,Rn上的非负局部可积函数 w ( x ) 称为 A ( p , q ) 权,如果存在常数 C > 0 ,使得

sup B ( 1 | B | B w ( x ) q d x ) 1 q ( 1 | B | B w ( x ) p d x ) 1 p C < . (3)

定义1 [13] BMO空间定义为

BMO = { f L loc 1 ( R n ) : f BMO < } , (4)

其中

f BMO = sup x B 1 | B | B | f ( x ) f B | d x ,

f BMO 时,对任意的 1 p < ,有

f BMO = f * sup B ( 1 | B | B | f ( x ) f B | p d x ) 1 p . (5)

定义2 [4] 设 1 p < λ 1 , λ 2 R ,f为可测函数,加权Morrey空间定义为

L p , ( λ 1 , λ 2 ) ( w ) = { f : f L p , ( λ 1 , λ 2 ) ( w ) = sup x R n , r > 0 ( 1 r λ 1 w ( B ( x , r ) ) λ 2 n B ( x , r ) | f ( y ) | p w ( y ) d y ) 1 p < } , (6)

其中, B ( x , r ) 表示球心为x、半径为r的球; w ( B ( x , r ) ) 表示的是非负局部可积函数w在 B ( x , r ) 上的积分。

定义3 [4] 设 1 p < λ 1 , λ 2 R ,f为可测函数,弱加权Morrey空间定义为

W L p , ( λ 1 , λ 2 ) ( w ) = { f : f W L p , ( λ 1 , λ 2 ) ( w ) = sup t > 0 , r > 0 ( t p w ( { y B ( x , r ) : | f ( y ) | > t } ) r λ 1 w ( B ( x , r ) ) λ 2 n ) 1 p < } , (7)

2. 主要定理

定理1 设 0 α < n M α 由式(2)所定义,那么当 1 < p < α n 1 p 1 q = α n ,并且 w A ( p , q ) λ 2 < 0 时,存在一个与f无关的常数C,使得

M α ( f ) L q , ( q ( λ 1 + λ 2 ) p λ 2 , λ 2 ) ( w q ) C f L p , ( λ 1 , λ 2 ) ( w p ) .

定理2 设 0 α < n M α 由式(2)所定义,那么当 1 < p < α n 1 p 1 q = α n ,并且 w A ( p , q ) λ 2 < 0 时,存在一个与f无关的常数C,使得

M α ( f ) W L q , ( q ( λ 1 + λ 2 ) p λ 2 , λ 2 ) ( w q ) C f L p , ( λ 1 , λ 2 ) ( w p ) .

定理3 设 0 α < n , , [ b , M α ] 由式(3)所定义,那么当 1 < p 1 < n α p 1 < p 2 < 1 q = 1 p 1 + 1 p 2 α n 1 t = 1 p 1 α n 1 p = 1 p 1 + 1 p 2 ,并且 b BMO ( R n ) w A ( p , q ) 1 + λ 2 q n 1 p 1 时,存在一个与f无关的常数C,使得

[ b , M α ] ( f ) L q , ( q ( λ 1 + λ 2 ) p 1 + q n p 2 λ 2 , λ 2 ) ( w q ) C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) .

本文中, p 表示p的共轭,即 1 p + 1 p = 1 χ E 代表集合E的特征函数;C是和主要函数和参量无关的常数,在不同行中甚至在同一行中可以不同。

3. 定理的证明

在证明定理之前,先给出以下引理。

引理1 [8] 设 0 α < n 1 < p < n α 1 p 1 q = α n ,当 w A ( p , q ) 时,存在一个与f无关的常数C,使得

M α ( f ) L q ( w q ) C f L p ( w p ) .

引理2 [8] 设 0 α < n 1 p < n α 1 p 1 q = α n ,当 w A ( p , q ) 时,对任意的 λ > 0 ,存在一个与f无关的常数C,使得

( { x R n : M α f ( x ) > λ } w ( x ) q d x ) 1 q C λ ( R n | f ( x ) w ( x ) | p d x ) 1 p .

引理3 [14] 如果 w A q ,则对任意的 k Z + l > 1 以及任意球 B R n ,当 1 q < 时,有

w ( l B ) C l n q w ( B ) .

定理1的证明 设 f L p , ( λ 1 , λ 2 ) ( w p ) 为局部可积函数,给定任意的球 B ( x , r ) ,分解f为 f = f 1 + f 2 ,其中 f 1 = f χ 2 B f 2 = f χ ( 2 B ) c ,则

M α ( f ) L q , ( q ( λ 1 + λ 2 ) p λ 2 , λ 2 ) ( w q ) M α ( f 1 ) L q , ( q ( λ 1 + λ 2 ) p λ 2 , λ 2 ) ( w q ) + M α ( f 2 ) L q , ( q ( λ 1 + λ 2 ) p λ 2 , λ 2 ) ( w q ) : = A 1 + A 2 .

对于 A 1 ,利用引理1,有

A 1 = ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n B ( M α f 1 ( x ) ) q w q ( x ) d x ) 1 q C ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n R n ( M α f 1 ( x ) ) q w q ( x ) d x ) 1 q C ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n ) 1 q ( R n f 1 ( x ) p w p ( x ) d x ) 1 p C ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n ) 1 q ( 2 B f ( x ) p w p ( x ) d x ) 1 p C r λ 1 p w p ( 2 B ) λ 2 n p ( r q ( λ 1 + λ 2 ) p λ 2 w q ( B ) λ 2 n ) 1 q f L p , ( λ 1 , λ 2 ) ( w p ) .

利用Hölder不等式,当 1 p < q < 时,有

w p ( B ) ( w q ( B ) ) p q | B | 1 p q . (8)

通过式(8),不难得到

w p ( 2 B ) ( w q ( 2 B ) ) p q r n ( 1 p q ) . (9)

显然

r λ 1 p w p ( 2 B ) λ 2 n p ( r q ( λ 1 + λ 2 ) p λ 2 w q ( B ) λ 2 n ) 1 q ( w q ( 2 B ) w q ( B ) ) λ 2 q n 1 , (10)

所以

A 1 C f L p , ( λ 1 , λ 2 ) ( w p ) . (11)

同理,对于 A 2 ,利用引理1,有

A 2 = ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n B ( M α f 2 ( x ) ) q w q ( x ) d x ) 1 q C ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n R n ( M α f 2 ( x ) ) q w q ( x ) d x ) 1 q C ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n ) 1 q ( R n f 2 ( x ) p w p ( x ) d x ) 1 p C ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n ) 1 q ( ( 2 B ) c f ( x ) p w p ( x ) d x ) 1 p

C ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n ) 1 q ( j = 1 2 j + 1 B \ 2 j B f ( x ) p w p ( x ) d x ) 1 p C ( 1 r q ( λ 1 + λ 2 ) p λ 2 ( w q ( B ) ) λ 2 n ) 1 q ( j = 1 2 j + 1 B f ( x ) p w p ( x ) d x ) 1 p C r λ 1 p j = 1 w p ( 2 j + 1 B ) λ 2 n p ( r q ( λ 1 + λ 2 ) p λ 2 w q ( B ) λ 2 n ) 1 q f L p , ( λ 1 , λ 2 ) ( w p ) ( j = 1 w q ( 2 j + 1 B ) w q ( B ) ) λ 2 q n f L p , ( λ 1 , λ 2 ) ( w p ) .

利用 λ 2 < 0 、引理3,有

A 2 C f L p , ( λ 1 , λ 2 ) ( w p ) . (12)

结合式(11)、(12),定理1证毕。

定理2的证明 结合定理1的证明,我们只需考虑 p = 1 的情况便可证明定理2。对局部可积函数 f L 1 , ( λ 1 , λ 2 ) ( w ) ,给定任意的球 B ( x 0 , r ) ,分解f为 f = f 1 + f 2 ,其中 f 1 = f χ 2 B f 2 = f χ ( 2 B ) c ,则 M α f ( x ) M α f 1 ( x ) + M α f 2 ( x ) ,从而

{ x B : M α f ( x ) > t } w q ( x ) d x { x B : M α f 1 ( x ) > t 2 } w q ( x ) d x + { x B : M α f 2 ( x ) > t 2 } w q ( x ) d x ,

显然,

M α ( f ) W L q , ( q ( λ 1 + λ 2 ) λ 2 , λ 2 ) ( w q ) = ( t q { x B : M α f ( x ) > t } w q ( x ) d x r q ( λ 1 + λ 2 ) λ 2 ( w q ( B ) ) λ 2 n ) 1 q C ( t q { x B : M α f 1 ( x ) > t 2 } w q ( x ) d x r q ( λ 1 + λ 2 ) λ 2 ( w q ( B ) ) λ 2 n ) 1 q + C ( t q { x B : M α f 2 ( x ) > t 2 } w q ( x ) d x r q ( λ 1 + λ 2 ) λ 2 ( w q ( B ) ) λ 2 n ) 1 q : = B 1 + B 2 .

对于 B 1 ,利用引理2,有

B 1 C ( t q { x R n : M α f 1 ( x ) > t 2 } w q ( x ) d x r q ( λ 1 + λ 2 ) λ 2 ( w q ( B ) ) λ 2 n ) 1 q C ( ( R n f 1 ( x ) w ( x ) d x ) q r q ( λ 1 + λ 2 ) λ 2 ( w q ( B ) ) λ 2 n ) 1 q 2 B f ( x ) w ( x ) d x r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n

C r λ 1 ( 2 B w ( x ) d x ) λ 2 n r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n f L 1 , ( λ 1 , λ 2 ) ( w ) C r λ 1 ( w ( 2 B ) ) λ 2 n r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n f L 1 , ( λ 1 , λ 2 ) ( w ) C r ( λ 1 + λ 2 ) λ 2 q ( w q ( 2 B ) ) λ 2 q n r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n f L 1 , ( λ 1 , λ 2 ) ( w )

利用 λ 2 < 0 、引理3,得到

B 1 C f L p 1 , ( λ 1 , λ 2 ) ( w ) . (13)

对于 B 2 ,利用引理2,有

B 2 C ( t q { x R n : M α f 2 ( x ) > t 2 } w q ( x ) d x r q ( λ 1 + λ 2 ) λ 2 ( w q ( B ) ) λ 2 n ) 1 q C ( ( R n f 2 ( x ) w ( x ) d x ) q r q ( λ 1 + λ 2 ) λ 2 ( w q ( B ) ) λ 2 n ) 1 q ( 2 B ) c f ( x ) w ( x ) d x r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n C r λ 1 ( j = 1 2 j + 1 B \ 2 j B w ( x ) d x ) λ 2 n r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n f L 1 , ( λ 1 , λ 2 ) ( w )

C r λ 1 ( j = 1 2 j + 1 B w ( x ) d x ) λ 2 n r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n f L 1 , ( λ 1 , λ 2 ) ( w ) C r λ 1 ( j = 1 w ( 2 j + 1 B ) ) λ 2 n r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n f L 1 , ( λ 1 , λ 2 ) ( w ) C r ( λ 1 + λ 2 ) λ 2 q ( j = 1 w q ( 2 j + 1 B ) ) λ 2 q n r ( λ 1 + λ 2 ) λ 2 q ( w q ( B ) ) λ 2 q n f L 1 , ( λ 1 , λ 2 ) ( w ) .

利用 λ 2 < 0 、引理3,得到

B 2 C f L p 1 , ( λ 1 , λ 2 ) ( w ) . (14)

结合式(13)、(14),定理2证毕。

定理3的证明 同理,分解f为 f = f 1 + f 2 ,其中 f 1 = f χ 2 B f 2 = f χ ( 2 B ) c ,则

[ b , M α ] ( f ) ( x ) L q , ( q ( λ 1 + λ 2 ) p 1 + q n p 2 λ 2 , λ 2 ) ( w q ) = ( 1 r q ( λ 1 + λ 2 ) p 1 λ 2 + q n p 2 ( w q ( B ) ) λ 2 n B | [ b , M α ( f ) ( x ) ] | q w q ( x ) d x ) 1 q 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B | [ b , M α ( f 1 ) ( x ) ] | q w q ( x ) d x ) 1 q + 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B | [ b , M α ( f 2 ) ( x ) ] | q w q ( x ) d x ) 1 q : = E 1 + E 2 .

对于 E 1 ,有

E 1 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B | b ( x ) b B | q | M α ( f 1 ) ( x ) | q w q ( x ) d x ) 1 q + 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B | M α ( f 1 ( b b B ) ) ( x ) | q w q ( x ) d x ) 1 q : = E 11 + E 12 .

对于 E 11 ,利用Hölder不等式、引理1,有

E 11 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B | b ( x ) b B | p 2 d x ) 1 p 2 ( B | M α ( f 1 ) ( x ) | t w t ( x ) d x ) 1 t | B | 1 p 2 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( 1 | B | B | b ( x ) b B | p 2 d x ) 1 p 2 ( B | M α ( f 1 ) ( x ) | t w t ( x ) d x ) 1 t C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q ( w q ( B ) ) λ 2 q n b * ( 2 B | f ( x ) | p 1 w p 1 ( x ) d x ) 1 p 1 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) r λ 1 p 1 w p 1 ( 2 B ) λ 2 n p 1 r ( λ 1 + λ 2 ) p 1 λ 2 q ( w q ( B ) ) λ 2 q n C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) w q ( 2 B ) λ 2 q n w q ( B ) λ 2 q n .

利用 λ 2 < 0 、引理3,得到

E 11 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) . (15)

对于 E 12 ,利用引理1、Hölder不等式,有

E 12 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( 2 B | ( b ( x ) b B ) f ( x ) | p w p ( x ) d x ) 1 p C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( 2 B | b ( x ) b B | p 2 d x ) 1 p 2 ( 2 B | f ( x ) | p 1 w p 1 ( x ) d x ) 1 p 1 C r λ 1 p 1 w p 1 ( 2 B ) λ 2 n p 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( 2 B | b ( x ) b B | p 2 d x ) 1 p 2 f L p 1 , ( λ 1 , λ 2 ) ( w p 1 )

C r λ 1 p 1 w p 1 ( 2 B ) λ 2 n p 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) ( ( 2 B | b ( x ) b 2 B | p 2 d x ) 1 p 2 + | b 2 B b B | | 2 B | 1 p 2 ) C r λ 1 p 1 w p 1 ( 2 B ) λ 2 n p 1 | 2 B | 1 p 2 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) ( ( 1 | 2 B | 2 B | b ( x ) b 2 B | p 2 d x ) 1 p 2 + | b 2 B b B | ) C w q ( 2 B ) λ 2 q n w q ( B ) λ 2 q n f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) b * .

注意到 λ 2 < 0 ,结合引理3,有

E 12 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) . (16)

对于 E 2 ,首先

| [ b , M α ] ( f 2 ) ( x ) | q C ( 1 | B | 1 α n B | b ( x ) b ( y ) | | f 2 ( y ) | d y ) q C ( 1 | B | 1 α n B | f 2 ( y ) | ( | b ( x ) b B | + | b B b ( y ) | ) d y ) q C ( 1 | B | 1 α n B | f 2 ( y ) | d y ) q | b ( x ) b B | q + C ( 1 | B | 1 α n B | f 2 ( y ) | | b ( y ) b B | d y ) q

因此,有

E 2 C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B ( 1 | B | 1 α n B | f 2 ( y ) | d y ) q | b ( x ) b B | q w q ( x ) d x ) 1 q + C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B ( 1 | B | 1 α n B | f 2 ( y ) | | b ( y ) b B | d y ) q w q ( x ) d x ) 1 q : = E 21 + E 22

对于 E 21 ,利用Minkowski不等式、Hölder不等式,有

E 21 C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B ( 1 | B | 1 α n B | f 2 ( y ) | d y ) q | b ( x ) b B | q w q ( x ) d x ) 1 q C 1 | B | 1 α n r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n [ sup x B w ( x ) ] j = 1 2 j + 1 B \ 2 j B | f ( y ) | ( B | b ( x ) b B | q d x ) 1 q d y C 1 | B | 1 α n r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n [ inf x B w ( x ) ] j = 1 2 j + 1 B | f ( y ) | ( B | b ( x ) b B | p 2 d x ) 1 p 2 ( B d x ) 1 t d y

C | B | 1 p 2 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n w ( B ) | B | b * j = 1 2 j + 1 B | B | 1 t | f ( y ) | d y C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q ( w q ( B ) ) λ 2 q n | B | 1 q 1 t 1 p 2 | B | 1 α n b * j = 1 w ( 2 j + 1 B ) | 2 j + 1 B | | 2 j + 1 B | 1 t 2 j + 1 B | f ( y ) | d y C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q ( w q ( B ) ) λ 2 q n | B | 1 q 1 t 1 p 2 | B | 1 α n j = 1 b * | B | 1 t ( 2 j + 1 B | f ( y ) | p 1 w p 1 ( y ) d y ) 1 p 1 | 2 j + 1 B | 1 1 p 1

C j = 1 r λ 1 p 1 w p 1 ( 2 j + 1 B ) λ 2 n p 1 r ( λ 1 + λ 2 ) p 1 λ 2 q ( w q ( B ) ) λ 2 q n b * | B | 1 q 1 p 2 | B | 1 α n | 2 j + 1 B | 1 1 p 1 ( 1 r λ 1 w p 1 ( 2 j + 1 B ) λ 2 n 2 j + 1 B | f ( y ) | p 1 w p 1 ( y ) d y ) 1 p 1 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 w q ( 2 j + 1 B ) λ 2 q n w q ( B ) λ 2 q n | B | 1 q 1 p 2 | B | 1 α n | 2 j + 1 B | 1 1 p 1 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 | 2 j + 1 | 1 1 p 1 + λ 2 q n | B | 1 q 1 p 1 1 p 2 + α n C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 | 2 j + 1 | 1 1 p 1 + λ 2 q n

利用 1 + λ 2 q n 1 p 1 ,得

E 21 C b * f L p 1 , ( λ 1 , λ 2 ) . (17)

同理,对于 E 22 ,利用Minkowski不等式、Hölder不等式,有

E 22 C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n ( B ( 1 | B | 1 α n B | f 2 ( y ) | | b ( y ) b B | d y ) q w q ( x ) d x ) 1 q C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n j = 1 2 j + 1 B \ 2 j B | f ( y ) | | b ( y ) b B | ( B w q ( x ) d x ) 1 q d y C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n [ sup x B w ( x ) ] j = 1 2 j + 1 B | f ( y ) | | b ( y ) b B | d y | B | 1 t | B | ( 1 q t ) 1 q

C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n [ inf x B w ( x ) ] j = 1 | B | 1 q 2 j + 1 B | f ( y ) | | b ( y ) b 2 j + 1 B | d y + C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n [ inf x B w ( x ) ] j = 1 | B | 1 q 2 j + 1 B | f ( y ) | | b 2 j + 1 B b B | d y : = F 1 + F 2

对于 F 1 ,利用Hölder不等式,有

F 1 C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n [ inf x B w ( x ) ] j = 1 | B | 1 q 2 j + 1 B | f ( y ) | | b ( y ) b 2 j + 1 B | d y C | B | 1 p 2 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n + 1 p 2 w ( B ) | B | j = 1 | B | 1 q 2 j + 1 B | f ( y ) | | b ( y ) b 2 j + 1 B | d y C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q ( w q ( B ) ) λ 2 q n j = 1 | B | 1 q | B | 1 α n + 1 p 2 b * | 2 j + 1 B | 1 p 2 ( 2 j + 1 B | f ( y ) | p 1 w p 1 ( y ) d y ) 1 p 1 | 2 j + 1 B | 1 1 p 1 1 p 2

C j = 1 r λ 1 p 1 w p 1 ( 2 j + 1 B ) λ 2 n p 1 r ( λ 1 + λ 2 ) p 1 λ 2 q ( w q ( B ) ) λ 2 q n b * | B | 1 q | B | 1 α n + 1 p 2 ( 1 r λ 1 w p 1 ( 2 j + 1 B ) λ 2 n 2 j + 1 B | f ( y ) | p 1 w p 1 ( y ) d y ) 1 p 1 | 2 j + 1 B | 1 1 p 1 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 w q ( 2 j + 1 B ) λ 2 q n w q ( B ) λ 2 q n | B | 1 q | B | 1 α n + 1 p 2 | 2 j + 1 B | 1 1 p 1 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 | 2 j + 1 | 1 1 p 1 + λ 2 q n | B | 1 q 1 p 1 1 p 2 + α n C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 | 2 j + 1 | 1 1 p 1 + λ 2 q n .

根据 1 + λ 2 q n 1 p 1 ,结合引理3,有

F 1 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) . (18)

对于 F 2 ,由于

| b 2 j + 1 B b B | j k = 0 | b 2 k + 1 B b 2 k B | C j k = 0 ( 1 | 2 k + 1 B | 2 k + 1 B | b ( y ) b 2 k + 1 B | p 2 d y ) 1 p 2 C ( j + 1 ) b * .

因此,利用Hölder不等式,有

F 2 C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n [ inf x B w ( x ) ] j = 1 | B | 1 q 2 j + 1 B | f ( y ) | | b 2 j + 1 B b B | d y C 1 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n 1 | B | 1 α n w ( B ) | B | j = 1 | B | 1 q | b 2 j + 1 B b B | 2 j + 1 B | f ( y ) | d y C | B | 1 p 2 r ( λ 1 + λ 2 ) p 1 λ 2 q + n p 2 ( w q ( B ) ) λ 2 q n | B | 1 q | B | 1 α n + 1 p 2 j = 1 ( j + 1 ) b * ( 2 j + 1 B | f ( y ) | p 1 w p 1 ( y ) d y ) 1 p 1 | 2 j + 1 B | 1 1 p 1

C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 ( j + 1 ) | B | 1 q | B | 1 α n + 1 p 2 r λ 1 p 1 w p 1 ( 2 j + 1 B ) λ 2 n p 1 r ( λ 1 + λ 2 ) p 1 λ 2 q ( w q ( B ) ) λ 2 q n | 2 j + 1 B | 1 1 p 1 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 ( j + 1 ) | B | 1 q | B | 1 α n + 1 p 2 w q ( 2 j + 1 B ) λ 2 q n w q ( B ) λ 2 q n | 2 j + 1 B | 1 1 p 1 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 ( j + 1 ) | 2 j + 1 | 1 1 p 1 + λ 2 q n | B | 1 q 1 p 1 1 p 2 + α n C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) j = 1 | 2 j + 1 | 1 1 p 1 + λ 2 q n .

根据 1 + λ 2 q n 1 p 1 ,利用引理3,有

F 2 C b * f L p 1 , ( λ 1 , λ 2 ) ( w p 1 ) . (19)

结合式(15)~(19),定理3证毕。

参考文献

[1] Morrey, C.B. (1938) On the Solutions of Quasi-Linear Elliptic Partial Differential Equations. Transactions of the American Mathematical Society, 43, 126-166.
https://doi.org/10.1090/S0002-9947-1938-1501936-8
[2] Muckenhoupt, B. and Wheeden, R. (1974) Weighted Norm Inequalities for Fractional Integrals. Transactions of the American Mathematical Society, 192, 261-274.
https://doi.org/10.1090/S0002-9947-1974-0340523-6
[3] Chiarenza, F. and Frasca, M. (1987) Morrey Spaces and Hardy-Littlewood Maximal Function. Rendiconti del Seminario Matematico della Università di Padova, 7, 273-279.
[4] 丁勇. 一类粗糙极大算子交换子的加权有界性[J]. 科学通报, 1996, 41(5): 385-388.
[5] Wang, Z.J. and Zhu, Y.P. (2016) Boundness of Fractional Maximal Operator on Weighted Lebesgue Spaces with Variable Exponents. Journal of Nan Jing University Mathematical Biquarterly, 33, 469-584.
[6] Duoandikoetxea, J. and Rosenthal, M. (2020) Boundedness Properties in a Family of Weighted Morrey Spaces with Emphasis on Power Weights. Journal of Functional Analysis, 279, Article ID: 108687.
https://doi.org/10.1016/j.jfa.2020.108687
[7] Zhou, J. and Zhao, F.Y. (2022) Boundedness of the Fractional Hardy-Littlewood Maximal Operator on Weighted Morrey Spaces. Analysis and Mathematical Physics, 12, Article No. 87.
https://doi.org/10.1007/s13324-022-00695-5
[8] Tanaka, H. (2010) Morrey Spaces and Fractional Operators. Journal of the Australian Mathematical Society, 88, 247-259.
https://doi.org/10.1017/S1446788709000457
[9] Perez, C. (1994) Two Weighted Inequalities for Potential and Fractional Type Maximal Operators. Indiana University Mathematics Journal, 43, 663-683.
https://doi.org/10.1512/iumj.1994.43.43028
[10] Sawano, Y., Sugano, S. and Tanaka, H. (2011) Generalized Fractional Integral Operators and Fractional Maximal Operators in the Framework of Morrey Spaces. Transactions of the American Mathematical Society, 363, 6481-6503.
https://doi.org/10.1090/S0002-9947-2011-05294-3
[11] Nakamura, S. (2016) Generalized Weighted Morrey Spaces and Classical Operators. Mathematische Nachrichten, 289, 2235-2262.
https://doi.org/10.1002/mana.201500260
[12] 陶双平, 高荣. 多线性分数次积分和极大算子在Morrey空间上的加权估计[J]. 山东大学学报(理学版), 2018, 53(6): 30-37.
[13] Stein, E.M. and Murphy, T.S. (1993) Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, 115-125.
https://doi.org/10.1515/9781400883929
[14] Yu, X., Zhang, H.H. and Zhao, G.P. (2016) Weighted Boundedness of Some Integral Operators on Weighted λ-Central Morrey Spaces. Applied Mathematics: A Journal of Chinese Universities, 31, 331-342.
https://doi.org/10.1007/s11766-016-3348-5