基于CRCS的空管安全风险指数评估
Air Traffic Control Safety Risk Index Assessment Based on CRCS
DOI: 10.12677/OJTT.2023.124040, PDF, 下载: 144  浏览: 281 
作者: 李佳珉, 王一帆, 黄洪运, 李梓珂, 蔡幽娜, 严欣怡:中国民航大学,空中交通管理学院,天津
关键词: 空中交通管制安全风险评估CRCS模糊综合评价Air Traffic Control Risk Assessment CRCS Fuzzy Comprehensive Evaluation
摘要: 空中交通管制对保障飞行安全至关重要,科学的空管安全风险评估可以有效提升安全风险管理能力,是保证航空事业安全发展的必要前提。在欧控组织(EUROCONTROL)提出的ERCS评价体系的基础上,运用模糊综合评价方法对其严重程度的评估过程进行优化,建立CRCS安全风险评估模型;通过近年空管安全报告的实例对管制运行风险的评价结果进行分析,空管和机组原因造成的事件得分较高且危险事件较多,占全部样本中危险事件约90%,认为空管原因是影响运行安全的主要因素,其次机组自身原因也存在较大隐患。CRCS综合考虑主客观因素,平衡了原本数据两极分化严重的现象。根据安全风险评价的结果可有效监控空管部门的安全风险态势,并为其制定的预防对策提供科学分析依据。
Abstract: Air traffic control is very important to ensure flight safety. Scientific air traffic control safety risk assessment can effectively improve the ability of safety risk management, which is a necessary prerequisite to ensure the safe development of aviation. On the basis of ERCS evaluation system proposed by EUROCONTROL, the fuzzy comprehensive evaluation method is used to optimize the evaluation process of its severity, and the CRCS safety risk assessment model is established. Through the examples of air traffic control safety reports in recent years, the evaluation results of the risk of control operation are analyzed. It is found that the incidents caused by air traffic control and the air traffic control unit have higher scores and more dangerous incidents, accounting for about 90% of all the dangerous incidents in the samples. It is believed that the air traffic control reason is the main factor affecting the operation safety, and then the air traffic control unit itself also has a big hidden danger. CRCS takes subjective and objective factors into consideration and balances the serious polarization of the original data. According to the results of safety risk assessment, the safety risk situation of air traffic control department can be effectively monitored and scientific analysis basis can be provided for its prevention countermeasures.
文章引用:李佳珉, 王一帆, 黄洪运, 李梓珂, 蔡幽娜, 严欣怡. 基于CRCS的空管安全风险指数评估[J]. 交通技术, 2023, 12(4): 364-376. https://doi.org/10.12677/OJTT.2023.124040

参考文献

[1] Flavior, L. and Camargo, J.J.B.A. (2011) Safety Assessment Methodology Applied to CNS/ATM-Based Air Traffic Control System. Reliability Engineering & System Safety, 96, 727-738.
https://doi.org/10.1016/j.ress.2011.02.007
[2] Valdés, R.M.A. Comendador, V.F.G., Sanz, L.P. and Sanz, A.R. (2018) Prediction of Aircraft Safety Incidents Using Bayesian Inference and Hierarchical Structures. Safety Science, 104, 216-230.
https://doi.org/10.1016/j.ssci.2018.01.008
[3] Ma, L., Li, W.A. and Geng, Z.X. (2019) Air Traffic Safety Risk Assessment Based on Rough Set and BP Neural Network. Proceedings of the 13th International Conference on Software Technologies, Porto, Portugal, 26-28 July 2018, 863-870.
https://doi.org/10.5220/0006889008970904
[4] 姚登凯, 王晴昊, 甘旭升. 改进模糊Petri网在空管安全风险评估中的应用[J]. 安全与环境学报, 2018, 18(2): 413-417.
[5] 廖勇. 空管概率风险评估模型研究[J]. 兵器装备工程学报, 2022, 43(4): 257-264.
[6] 杨越, 马博凯, 曹宇轩. 国外空管不安全事件中的人误风险分析[J]. 中国安全科学学报, 2022, 32(12): 38-45.
[7] 陈芳, 沈芮宇, 杨诗琪. 基于毕达哥拉斯模糊和改进TOPSIS的管制员人为风险评估[J]. 安全与环境学报, 2021, 21(5): 2093-2100.
[8] 倪晓梅, 王华伟, 熊明兰, 王峻洲. 基于文本挖掘的民航事件风险评估[J]. 湖南大学学报(自然科学版), 2022, 49(6): 73-79.
[9] Eurocontrol, A. (2020) The Common European Risk Classification Scheme. Official Journal of the European Union, 416, 4-10.
[10] 中国民用航空局空管行业管理办公室. 民航空管安全管理体系建设指导手册(第二版) [EB/OL]. http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201511/t20151102_7979.html, 2009-08-05.
[11] 匡雅, 邹树梁, 唐德文, 陈骥, 黎欢. 基于模糊FMEA法的乏燃料剪切机剪切装置风险评估[J]. 安全与环境学报, 2016, 16(5): 15-20.
https://doi.org/10.13637/j.issn.1009-6094.2016.05.003
[12] 李冠臻. 基于模糊控制器的跟驰模型实验研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
https://doi.org/10.27272/d.cnki.gshdu.2020.004175