大豆异黄酮转化菌株的分离及相关转化酶基因克隆研究进展
Advances in Isolating of Isoflavone Biotransforming Bacteria and Cloning of Genes Encoding Relative Biotransforming Enzymes
DOI: 10.12677/bp.2012.22016, PDF, HTML, XML, 下载: 3,921  浏览: 14,642  国家自然科学基金支持
作者: 张红蕾, 于秀梅, 王秀伶:河北农业大学生命科学学院,保定
关键词: 大豆异黄酮微生物转化菌株分离基因克隆Soy Isoflavones; Microbial Biotransformation; Bacteria Isolation; Gene Cloning
摘要: 大量流行病学研究表明,大豆异黄酮具有明显的抗癌、抗氧化、抗炎、防护心脑血管以及预防骨质疏松等多种生理功能。被人和其他哺乳动物摄入体内的大豆异黄酮在胃肠道菌群作用下可被降解为二氢黄豆苷原、二氢染料木素、去氧甲基安哥拉紫檀素、雌马酚等不同代谢产物。体内及体外研究结果均表明,大豆异黄酮代谢产物具有比大豆异黄酮更高、更广的生物学活性。迄今,已有大量大豆异黄酮代谢产物产生菌从不同动物胃肠道微生物菌群中被分离出来。目前,人们正专注于从已分离的大豆异黄酮转化菌株中克隆相关转化酶基因。本文将对大豆异黄酮转化菌株分离及相关转化酶基因克隆现状作一综述。
Abstract: Epidemiological studies have shown that soy isoflavones have many important physiological activities, such as anticarcinogenic, antioxidant, antiinflammation, protection of cardiovascular diseases, prevention of osteoporosis etc. Isoflavones can be converted to different metabolites, including dihydrodaidzein (DHD), dihydrogenistein (DHG), O-desmethylangolensin (O-Dma), equol etc., by gastrointestinal microflora of humans and other mammals. Both in vitro and in vivo studies have indicated that isoflavone metabolites are of stronger and wider bioactivity than that of isoflavones themselves. To date, many specific bacterial strains capable of biotransforming isoflavones have been isolated from the microflora living in gastrointestinal tract of different animals. At present, researchers are focusing on cloning of genes encoding different biotransforming enzymes from isolated bacterial strains responsible for biotransforming isoflavones. This paper will review the isolated bacterial strains for biotransforming isoflavones and cloning of genes encoding for relative biotransforming enzymes.
文章引用:张红蕾, 于秀梅, 王秀伶. 大豆异黄酮转化菌株的分离及相关转化酶基因克隆研究进展[J]. 生物过程, 2012, 2(2): 98-104. http://dx.doi.org/10.12677/bp.2012.22016

参考文献

[1] J. B. Harborne, C. A. Williams. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6): 481-504.
[2] K. D. Setchell, S. P. Borriello, P. Hulme, et al. Nonsteroidal estrogens of dietary origin: Possible roles in hormone-dependent disease. American Journal of Clinical Nutrition, 1984, 40(3): 569-578.
[3] A. Arora, M. G. Nair and G. M. Strasburg. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Archives of Biochemistry and Biophysics, 1998, 356(2): 133-141.
[4] P. J. Magee, I. R. Row-land. Phyto-oestrogens, their mechanism of action: Current evidence for a role in breast and prostate cancer. British Journal of Nutrition, 2004, 91(4): 513-531.
[5] H. Adlercreutz, Y. Mousavi, J. Clark, et al. Dietary phytoestrogens and cancer: In vitro and in vivo studies. Journal of Steroid Biochemistry and Molecular Biology, 1992, 41(3-8): 331-337.
[6] V. Beck, U. Rohr and A. Jungbauer. Phytoestrogens derived from red clover: An alternative to estrogen replacement therapy? Journal of Steroid Biochemistry and Molecular Biology, 2005, 94(5): 499-518.
[7] J. J. B. Anderson, S. C. Garner. The effects of phytoestrogens on bone. Nutrition Research, 1997, 17(10): 1617-1632.
[8] J. Hwang, J. Wang, P. Morazzoni, et al. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide pro- duction: An antioxidant mechanism for cell-mediated LDL mo- dification. Free Radical Biology and Medicine, 2003, 34(10): 1271-1282.
[9] N. Sathyamoorthy, T. T. Wang. Differential effects of dietary phytooestrogens daidzein and equol on human breast cancer MCF-7 cells. European Journal of Cancer, 1997, 33(14): 2384- 2389.
[10] J. P. Chin-Dusting, L. J. Fisher, T. V. Lewis, et al. The vascular activity of some isoflavone metabolites: Implications for a car- dioprotective role. British Journal of Pharmacology, 2001, 133(4): 595-605.
[11] F. Jiang, G. T. Jones, A. J. Husband, et al. Cardiovascular protective effects of synthetic isoflavones derivatives in apolipoprotein E-deficient mice. Journal of Vascular Research, 2003, 40(3): 276-284.
[12] X. L. Liang, X. L. Wang, Z. Li, et al. Improved in vitro assays of superoxide anion and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity of isoflavones and isoflavone me- tabolites. Journal of Agricultural and Food Chemistry, 2010, 58(22): 11548-11552.
[13] S. Uchiyama, U. Tomomi and T. Suzuki. Identification of a newly isolated equol-producing lactic acid bacterium from the human feces. Journal of Enteric Bacteria, 2007, 21: 217-220.
[14] Y. Shimada, S. Yasuda, M. Takahashi, et al. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92. Applied and Environmental Microbiology, 2010, 76(17): 5892-5901.
[15] 于飞, 王世英, 李佳等. 兼性肠球菌Enterococcus hirae AUH-HM195对黄豆苷原的开环转化[J]. 微生物学报, 2009, 49(4): 479-484.
[16] H. G. Hur, J. J. Lay, F. Rafii, et al. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Archives of Microbiology, 2000, 174(6): 422-428.
[17] X. L. Wang, K. H. Shin, H. G. Hur, et al. Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium. Journal of Biotechnology, 2005, 115(3): 261-269.
[18] M. Tamura, T. Tsushida and K. Shinohara. Isolation of an isoflavone-metabolizing, clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe, 2007, 13(1): 32-35.
[19] X. L. Wang, H. G. Hur, J. H. Lee, et al. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Applied and Environmental Microbiology, 2005, 71(1): 214-219.
[20] K. Minamida, M. Tanaka and A. Abe. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. Journal of Bioscience and Bioengineering, 2006, 102(3): 247-250.
[21] H. G. Hur, R. D. Beger, F. Rafii, et al. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isofla- vonoid daidzein. Archives of Microbiology, 2002, 178(1): 8-12.
[22] L. Schoefer, R. Mohan, A. Braune, et al. Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiology Letters, 2002, 208(2): 197-202.
[23] T. Maruo, M. Sakamoto, C. Ito, et al. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(5): 1221-1227.
[24] J. S. Jin, M. Kitahara, M. Sakamoto, et al. Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(8): 1721-1724.
[25] X. L. Wang, K. T. Kim, J. H. Lee, et al. C-ring cleavage of isoflavones daidzein and genistein by a newly isolated human intestinal bacterium Eubacterium ramulus Julong 601. Journal of Microbiology and Biotechnology, 2004, 14(4): 766-771.
[26] A. Matthies, T. Clavel, M. Gütschow, et al. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Applied and Environmental Microbiology, 2008, 74(15): 4847-4852.
[27] Z. T. Yu, W. Yao and W. Y. Zhu. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiology Letters, 2008, 282(1): 73-80.
[28] S. Yokoyama, T. Suzuki. Isolation and characterization of a novel equol-producing bacterium from human feces. Bioscience, Biotechnology, and Biochemistry, 2008, 72(10): 2660-2666.
[29] K. Minamida, K. Ota, M. Nishimukai, et al. Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(5): 1238-1240.
[30] A. Matthies, M. Blaut and A. Braune. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Applied and Environmental Microbiology, 2009, 75(6): 1740- 1744.
[31] J. S. Jin, T. Nishihata, N. Kakiuchi, et al. Biotransformation of C-glucosylisoflavone puerar into estrogenic (3S)-equol in co- culture of two human intestinal bacteria. Biological and Pharmaceutical Bulletin, 2008, 31(8): 1621-1625.
[32] I. Rowland, H. Wiseman, T. Sanders, et al. Metabolism of oestrogens and phytoestrogens: Role of the gut microflora. Biochemical Society Transactions, 1999, 27(2): 304-308.
[33] S. Heinonen, K. Wahala and H. Adlercreutz. Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6’-OH- O-dma and cis-4-OH-equol in human urine by gas chromatography mass spectroscopy using authentic reference compounds. Analytical Biochemistry, 1999, 274(2): 211-219.
[34] Y. C. Chang, M. G. Nair. Metabolism of daidzein and genistein by intestinal bacteria. Journal of Natural Products, 1995, 58(12): 1892-1896.
[35] G. E. Joannou, G. E. Kelly, A. Y. Reeder, et al. A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. Journal of Steroid Biochemistry and Molecular Biology, 1995, 54(3-4): 167-184.
[36] N. G. Coldham, L. C. Howells, A. Santi, et al. Biotransformation of genistein in the rat: Elucidation of metabolite structure by product ion mass fragmentology. Journal of Steroid Biochemistry and Molecular Biology, 1999, 70(4-6): 169-184.
[37] Y. Shimada, M. Takahashi, N. Miyazawa, et al. Identification of two novel reductases involved in equol biosynthesis in Lactococcus strain 20-92. Journal of Molecular Microbiology and Biotechnology, 2011, 21(3-4): 160-172.
[38] H. Tsuji, K. Moriyama, K. Nomoto, et al. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS. Applied and Environmental Microbiology, 2012, 78(4): 1228-1236.
[39] S. Yokoyama, K. Oshima, I. Nomura, et al. Complete genomic sequence of the Equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine. Journal of Bacteriology, 2011, 193(19): 5570-5571.
[40] S. Yokoyama, K. Oshima, I. Nomura, et al. Complete genomic sequence of the O-desmethylangolensin-producing bacterium Clostridium rRNA cluster XIVa strain SY8519, isolated from adult human intestine. Journal of Bacteriology, 2011, 193(19): 5568-5569.