|
[1]
|
He, C., Cheng, J., Zhang, X., et al. (2019) Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews, 119, 4471-4568.
[Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zheng, C.H., Shen, J.L., Zhang, Y.X., et al. (2017) Quantitative Assessment of Industrial VOC Emissions in China: Historical Trend, Spatial Distribution, Uncertainties, and Projection. Atmospheric Environment, 150, 116-125.
[Google Scholar] [CrossRef]
|
|
[3]
|
Klett, C., Duten, X., Tieng, S., et al. (2014) Acetaldehyde Removal Using an Atmospheric Non-Thermal Plasma Combined with a Packed Bed: Role of the Adsorption Process. Journal of Hazardous Materials, 279, 356-364.
[Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Liang, X.M., Chen, X.F., Zhang, J.N., et al. (2017) Reactivity-Based Industrial Volatile Organic Compounds Emission Inventory and Its Implications for Ozone Control Strategies in China. Atmospheric Environment, 162, 115-126.
[Google Scholar] [CrossRef]
|
|
[5]
|
Li, X.Q., Zhang, L.Q., Yang, Z.Q., et al. (2020) Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Separation and Purification Technology, 235, Article ID: 116213. [Google Scholar] [CrossRef]
|
|
[6]
|
Bhatia, S. (2020) Zeolite Catalysts: Principles and Applications. CRC Press, Boca Raton.
[Google Scholar] [CrossRef]
|
|
[7]
|
Kim, K.J. and Ahn, H.G. (2012) The Effect of Pore Structure of Zeolite on the Adsorption of VOCs and Their Desorption Properties by Microwave Heating. Microporous and Mesoporous Materials, 152, 78-83.
[Google Scholar] [CrossRef]
|
|
[8]
|
Song, J.W., Dai, L., Ji, Y.Y., et al. (2006) Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1. Chemistry of Materials, 18, 2775-2777. [Google Scholar] [CrossRef]
|
|
[9]
|
Ye, T., Chen, Z., Chen, Y., et al. (2022) Green Synthesis of ZSM-5 Zeolite for Selective Catalytic Reduction of NO via Template-Free Method from Tailing Residue. Journal of Environmental Chemical Engineering, 10, Article Number 107766. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhang, L., Liu, S.L., Xie, S.J., et al. (2012) Organic Template-Free Synthesis of ZSM-5/ZSM-11 Co-Crystalline Zeolite. Microporous and Mesoporous Materials, 147, 117-126. [Google Scholar] [CrossRef]
|
|
[11]
|
Wu, Z.F., Song, J.W., Ji, Y.Y., et al. (2008) Organic Template-Free Synthesis of ZSM-34 Zeolite from an Assistance of Zeolite L Seeds Solution. Chemistry of Materials, 20, 357-359. [Google Scholar] [CrossRef]
|
|
[12]
|
Zhang, L., Yang, C.G., Meng, X.J., et al. (2010) Organotemplate-Free Syntheses of ZSM-34 Zeolite and Its Heteroatom-Substituted Analogues with Good Catalytic Performance. Chemistry of Materials, 22, 3099-3107.
[Google Scholar] [CrossRef]
|
|
[13]
|
Zhang, H.Y., Guo, Q., Ren, L.M., et al. (2011) Organotemplate-Free Synthesis of High-Silica Ferrierite Zeolite Induced by CDO-Structure Zeolite Building Units. Journal of Materials Chemistry, 21, 9494-9497.
[Google Scholar] [CrossRef]
|
|
[14]
|
Xie, B., Song, J.W., Ren, L.M., et al. (2008) Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 20, 4533-4535. [Google Scholar] [CrossRef]
|
|
[15]
|
Xie, B., Zhang, H.Y., Yang, C.G., et al. (2011) Seed-Directed Synthesis of Zeolites with Enhanced Performance in the Absence of Organic Templates. Chemical Communications, 47, 3945-3947. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, H.Y., Yang, C.G., Zhu, L.F., et al. (2012) Organotemplate-Free and Seed-Directed Synthesis of Levyne Zeolite. Microporous and Mesoporous Materials, 155, 1-7. [Google Scholar] [CrossRef]
|
|
[17]
|
Cundy, C.S. and Cox, P.A. (2003) The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103, 663-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Grose, R.W. and Flanigen, E.M. (1977) Crystalline Silica. Patent US, 4: 06-12.
|
|
[19]
|
Shiralkar, V.P. and Clearfield, A. (1989) Synthesis of the Molecular Sieve ZSM-5 without the Aid of Templates. Zeolites, 9, 363-370. [Google Scholar] [CrossRef]
|
|
[20]
|
Berak, J.M. and Mostowicz, R. (1985) Crystallization of ZSM-5 Type Zeolites from Reaction Mixtures Free of Organic Cations. Studies in Surface Science and Catalysis, 24, 47-54. [Google Scholar] [CrossRef]
|
|
[21]
|
Majano, G., Delmotte, L., Valtchev, V., et al. (2009) Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template. Chemistry of Materials, 21, 4184-4191. [Google Scholar] [CrossRef]
|
|
[22]
|
Meng, X. and Xiao, F.S. (2014) Green Routes for Synthesis of Zeolites. Chemical Reviews, 114, 1521-1543.
[Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kamimura, Y., Chaikittisilp, W., Itabashi, K., et al. (2010) Critical Factors in the Seed-Assisted Synthesis of Zeolite Beta and “Green Beta” from OSDA-Free Na+-Aluminosilicate Gels. Chemistry—An Asian Journal, 5, 2182-2191.
[Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rubin, M.K., Rosinski, E.J. and Plank, C.J. (1978) Hydrocarbon Conversion with Crystalline Zeolite ZSM-34.
|
|
[25]
|
Vartuli, J.C., Kennedy, G.J., Yoon, B.A., et al. (2000) Zeolite Syntheses Using Diamines: Evidence for in Situ Directing Agent Modification. Microporous and Mesoporous Materials, 38, 247-254.
[Google Scholar] [CrossRef]
|
|
[26]
|
Mei, J., Duan, A. and Wang, X. (2021) A Brief Review on Solvent-Free Synthesis of Zeolites. Materials, 14, 788.
[Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xu, W.Y., Dong, J.X., Li, J.P., et al. (1990) A Novel Method for the Preparation of Zeolite ZSM-5. Journal of the Chemical Society, Chemical Communications, 9, 755-756. [Google Scholar] [CrossRef]
|
|
[28]
|
Rao, P.R.H. and Matsutaka, M. (1996) Dry-Gel Conversion Technique for Synthesis of Zeolite BEA. Chemical Communications, No. 12, 1441-1442. [Google Scholar] [CrossRef]
|
|
[29]
|
Wu, Q.M., Liu, X.L., Zhu, L.F., et al. (2015) Solvent-Free Synthesis of Zeolites from Anhydrous Starting Raw Solids. Journal of the American Chemical Society, 137, 1052-1055. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bian, C.Q., Zhang, C.S., Pan, S.X., et al. (2017) Generalized High-Temperature Synthesis of Zeolite Catalysts with Unpredictably High Space-Time Yields (STYs). Journal of Materials Chemistry A, 5, 2613-2618.
[Google Scholar] [CrossRef]
|
|
[31]
|
Sheng, N., Chu, Y.Y., Xin, S.H., et al. (2016) Insights of the Crystallization Process of Molecular Sieve AlPO4-5 Prepared by Solvent-Free Synthesis. Journal of the American Chemical Society, 138, 6171-6176.
[Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wu, Q.M., Wang, X., Qi, G.D., et al. (2014) Sustainable Synthesis of Zeolites without Addition of both Organotemplates and Solvents. Journal of the American Chemical Society, 136, 4019-4025. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ren, L.M., Wu, Q.M., Yang, C.G., et al. (2012) Solvent-Free Synthesis of Zeolites from Solid Raw Materials. Journal of the American Chemical Society, 134, 15173-15176. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhai, H., Bian, C., Yu, Y., et al. (2019) Sustainable Route for Synthesis of All-Silica SOD Zeolite. Crystals, 9, 338.
[Google Scholar] [CrossRef]
|
|
[35]
|
Gao, W., Amoo, C.C., Zhang, G., et al. (2019) Insight into Solvent-Free Synthesis of MOR Zeolite and Its Laboratory Scale Production. Microporous and Mesoporous Materials, 280, 187-194.
[Google Scholar] [CrossRef]
|
|
[36]
|
Tomita, J., Elangovan, S.P., Itabashi, K., et al. (2022) OSDA-Free Synthesis of Zeolite Beta: Broadening the Methodology for a Successful Use of the Product as a Seed. Advanced Powder Technology, 33, Article ID: 103741.
[Google Scholar] [CrossRef]
|
|
[37]
|
Liu, P., Wu, Q., Yan, K., et al. (2023) Solvent-Free Synthesis of FAU Zeolite from Coal Fly Ash. Dalton Transactions, 52, 24-28. [Google Scholar] [CrossRef]
|
|
[38]
|
Nada, M.H., Larsen, S.C. and Gillan, E.G. (2019) Mechanochemically-Assisted Solvent-Free and Template-Free Synthesis of Zeolites ZSM-5 and Mordenite. Nanoscale Advances, 1, 3918-3928. [Google Scholar] [CrossRef]
|
|
[39]
|
Yang, C.T., Miao, G., Pi, Y.H., et al. (2019) Abatement of Various Types of VOCs by Adsorption/Catalytic Oxidation: A Review. Chemical Engineering Journal, 370, 1128-1153. [Google Scholar] [CrossRef]
|
|
[40]
|
Li, X., Zhang, L., Yang, Z., et al. (2020) Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Separation and Purification Technology, 235, Article ID: 116213.
[Google Scholar] [CrossRef]
|
|
[41]
|
Cosseron, A.F., Daou, T.J., Tzanis, L., et al. (2013) Adsorption of Volatile Organic Compounds in Pure Silica CHA, *BEA, MFI and STT-Type Zeolites. Microporous and Mesoporous Materials, 173, 147-154.
[Google Scholar] [CrossRef]
|
|
[42]
|
Brodu, N., Sochard, S., Andriantsiferana, C., et al. (2015) Fixed-Bed Adsorption of Toluene on High Silica Zeolites: Experiments and Mathematical Modelling Using LDF Approximation and a Multisite Model. Environmental Technology, 36, 1807-1818. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Beerdsen, E., Dubbeldam, D., Smit, B., et al. (2003) Simulating the Effect of Nonframework Cations on the Adsorption of Alkanes in MFI-Type Zeolites. The Journal of Physical Chemistry B, 107, 12088-12096.
[Google Scholar] [CrossRef]
|
|
[44]
|
Nigar, H., Navascués, N., De La Iglesia, O., et al. (2015) Removal of VOCs at Trace Concentration Levels from Humid Air by Microwave Swing Adsorption, Kinetics and Proper Sorbent Selection. Separation and Purification Technology, 151, 193-200. [Google Scholar] [CrossRef]
|
|
[45]
|
Beerdsen, E., Smit, B. and Calero, S. (2002) The Influence of Non-Framework Sodium Cations on the Adsorption of Alkanes in MFI- and MOR-Type Zeolites. The Journal of Physical Chemistry B, 106, 10659-10667.
[Google Scholar] [CrossRef]
|
|
[46]
|
Li, X., Wang, J., Guo, Y., et al. (2021) Adsorption and Desorption Characteristics of Hydrophobic Hierarchical Zeolites for the Removal of Volatile Organic Compounds. Chemical Engineering Journal, 411, Article ID: 128558.
[Google Scholar] [CrossRef]
|
|
[47]
|
Xu, L., Li, Y.H., Zhu, J., et al. (2019) Removal of Toluene by Adsorption/Desorption Using Ultra-Stable Y Zeolite. Transactions of Tianjin University, 25, 312-321. [Google Scholar] [CrossRef]
|
|
[48]
|
Bhatia, S., Abdullah, A.Z. and Wong, C.T. (2009) Adsorption of Butyl Acetate in Air over Silver-Loaded Y and ZSM-5 Zeolites: Experimental and Modelling Studies. Journal of Hazardous Materials, 163, 73-81.
[Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, R., Chong, S., Altaf, N., et al. (2019) Synthesis of ZSM-5/Siliceous Zeolite Composites for Improvement of Hydrophobic Adsorption of Volatile Organic Compounds. Frontiers in Chemistry, 7, Article No. 505.
[Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wang, S., Bai, P., Wei, Y., et al. (2019) Three-Dimensional-Printed Core-Shell Structured MFI-Type Zeolite Monoliths for Volatile Organic Compound Capture under Humid Conditions. ACS Applied Materials & Interfaces, 11, 38955- 38963. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Yin, T., Meng, X., Wang, S., et al. (2022) Study on the Adsorption of Low-Concentration VOCs on Zeolite Composites Based on Chemisorption of Metal-Oxides under Dry and Wet Conditions. Separation and Purification Technology, 280, Article ID: 119634. [Google Scholar] [CrossRef]
|
|
[52]
|
Yin, T., Meng, X., Jin, L., et al. (2020) Prepared Hydrophobic Y Zeolite for Adsorbing Toluene in Humid Environment. Microporous and Mesoporous Materials, 305, Article ID: 110327. [Google Scholar] [CrossRef]
|
|
[53]
|
Lu, S., Liu, Q., Han, R., et al. (2021) Core-Shell Structured Y Zeolite/Hydrophobic Organic Polymer with Improved Toluene Adsorption Capacity under Dry and Wet Conditions. Chemical Engineering Journal, 409, Article ID: 128194.
[Google Scholar] [CrossRef]
|
|
[54]
|
Wang, B., Zhu, Y., Qin, Q., et al. (2021) Development on Hydrophobic Modification of Aluminosilicate and Titanosilicate Zeolite Molecular Sieves. Applied Catalysis A: General, 611, Article ID: 117952.
[Google Scholar] [CrossRef]
|
|
[55]
|
Han, X., Wang, L., Li, J., et al. (2011) Tuning the Hydrophobicity of ZSM-5 Zeolites by Surface Silanization Using Alkyltrichlorosilane. Applied Surface Science, 257, 9525-9531. [Google Scholar] [CrossRef]
|
|
[56]
|
Cho, M.W., Kim, J., Jeong, J.M., et al. (2020) Excellent Toluene Removal via Adsorption by Honeycomb Adsorbents under High Temperature and Humidity Conditions. Environmental Engineering Research, 25, 171-177.
[Google Scholar] [CrossRef]
|
|
[57]
|
Yamauchi, H., Kodama, A., Hirose, T., et al. (2007) Performance of VOC Abatement by Thermal Swing Honeycomb Rotor Adsorbers. Industrial & Engineering Chemistry Research, 46, 4316-4322. [Google Scholar] [CrossRef]
|
|
[58]
|
Yu, S., Yan, J., Lin, W., et al. (2021) Effects of Lanthanum Incorporation on Stability, Acidity and Catalytic Performance of Y Zeolites. Catalysis Letters, 151, 698-712. [Google Scholar] [CrossRef]
|
|
[59]
|
Liu, F., Zhang, H., Yan, Y., et al. (2020) Preparation and Characterization of Cu and Mn Modified Beta Zeolite Membrane Catalysts for Toluene Combustion. Materials Chemistry and Physics, 241, Article ID: 122322.
[Google Scholar] [CrossRef]
|
|
[60]
|
Zhang, Z., Xu, L., Wang, Z., et al. (2010) Pd/Hβ-Zeolite Catalysts for Catalytic Combustion of Toluene: Effect of SiO2/Al2O3 Ratio. Journal of Natural Gas Chemistry, 19, 417-421. [Google Scholar] [CrossRef]
|
|
[61]
|
Zhang, R., Zhang, B., Shi, Z., et al. (2015) Catalytic Behaviors of Chloromethane Combustion over the Metal-Modified ZSM-5 Zeolites with Diverse SiO2/Al2O3 Ratios. Journal of Molecular Catalysis A: Chemical, 398, 223-230.
[Google Scholar] [CrossRef]
|
|
[62]
|
Zhou, J., Zhao, L., Huang, Q., et al. (2009) Catalytic Activity of Y Zeolite Supported CeO2 Catalysts for Deep Oxidation of 1,2-Dichloroethane (DCE). Catalysis Letters, 127, 277-284. [Google Scholar] [CrossRef]
|
|
[63]
|
Zhang, L., Peng, Y., Zhang, J., et al. (2016) Adsorptive and Catalytic Properties in the Removal of Volatile Organic Com- pounds over Zeolite-Based Materials. Chinese Journal of Catalysis, 37, 800-809.
[Google Scholar] [CrossRef]
|
|
[64]
|
Asgari, N., Haghighi, M. and Shafiei, S. (2013) Synthesis and Physicochemical Characterization of Nanostructured CeO2/Clinoptilolite for Catalytic Total Oxidation of Xylene at Low Temperature. Environmental Progress & Sustainable Energy, 32, 587-597. [Google Scholar] [CrossRef]
|
|
[65]
|
Huang, H., Ye, X., Huang, W., et al. (2015) Ozone-Catalytic Oxidation of Gaseous Benzene over MnO2/ZSM-5 at Ambient Temperature: Catalytic Deactivation and Its Suppression. Chemical Engineering Journal, 264, 24-31.
[Google Scholar] [CrossRef]
|
|
[66]
|
Zhang, J., Xu, X., Zhao, S., et al. (2023) Recent Advances of Zeolites in Catalytic Oxidations of Volatile Organic Compounds. Catalysis Today, 410, 56-67. [Google Scholar] [CrossRef]
|
|
[67]
|
Peng, X., Liu, L., Shen, B., et al. (2023) Insight into the Catalytic Oxidation of Toluene over M/ZSM-5 (M = Cu, Mn, Fe, Ce, Ti) Catalysts. Journal of Fuel Chemistry and Technology, 51, 841-851.
[Google Scholar] [CrossRef]
|
|
[68]
|
Peng, Y.X., Zhang, L., Chen, L., et al. (2017) Catalytic Performance for Toluene Abatement over Al-Rich Beta Zeolite Supported Manganese Oxides. Catalysis Today, 297, 182-187. [Google Scholar] [CrossRef]
|
|
[69]
|
Su, Y., Fu, K., Zheng, Y., et al. (2021) Catalytic Oxidation of Dichloromethane over Pt-Co/HZSM-5 Catalyst: Synergistic Effect of Single-Atom Pt, Co3O4, and HZSM-5. Applied Catalysis B: Environmental, 288, Article ID: 119980.
[Google Scholar] [CrossRef]
|
|
[70]
|
Chen, Z., Situ, D., Zheng, J., et al. (2019) Y-Modified MCM-22 Supported PdOx Nanocrystal Catalysts for Catalytic Oxidation of Toluene. Catalysts, 9, 902. [Google Scholar] [CrossRef]
|
|
[71]
|
Fan, J., Niu, X., Teng, W., et al. (2020) Highly Dispersed Fe-Ce Mixed Oxide Catalysts Confined in Mesochannels toward Low-Temperature Oxidation of Formaldehyde. Journal of Materials Chemistry A, 8, 17174-17184.
[Google Scholar] [CrossRef]
|
|
[72]
|
Yang, P., Li, J.R. and Zuo, S.F. (2017) Promoting Oxidative Activity and Stability of CeO2 Addition on the MnOx Modified Kaolin-Based Catalysts for Catalytic Combustion of Benzene. Chemical Engineering Science, 162, 218-226.
[Google Scholar] [CrossRef]
|
|
[73]
|
Yang, P., Shi, Z.N., Tao, F., et al. (2015) Synergistic Performance between Oxidizability and Acidity/Texture Properties for 1,2-Dichloroethane Oxidation over (Ce,Cr)xO2/Zeolite Catalysts. Chemical Engineering Science, 134, 340-347.
[Google Scholar] [CrossRef]
|
|
[74]
|
Lv, X.L., Cai, S.C., Chen, J., et al. (2021) Tuning the Degradation Activity and Pathways of Chlorinated Organic Pollutants over CeO2 Catalyst with Acid Sites: Synergistic Effect of Lewis and Brønsted Acid Sites. Catalysis Science & Technology, 11, 4581-4595. [Google Scholar] [CrossRef]
|