碳化硅增强铝基复合材料研究进展
Research Progress in Silicon Carbide Reinforced Aluminum Matrix Composites
DOI: 10.12677/MS.2023.138078, PDF, 下载: 263  浏览: 547  国家自然科学基金支持
作者: 赵志伟, 朱晓松, 刘传志, 刘家宇, 高 飞:河北工程大学材料科学与工程学院,河北 邯郸;刘晓艳:河北工程大学材料科学与工程学院,河北 邯郸;河北省稀土永磁材料与应用工程研究中心,河北 邯郸
关键词: 铝基复合材料碳化硅制备技术增强机制 Aluminum Matrix Composite Material Silicon Carbide Preparation Technology Reinforcement Mechanism
摘要: 碳化硅铝基复合材料(Aluminum Matrix Composites, AMCs)具有弹性模量高、尺寸稳定性高等优点被多领域广泛地应用。碳化硅(SiC)作为增强体有着不同的形态,主要有碳化硅颗粒(SiCp)、碳化硅晶须(SiCw)以及碳纳米管(CNT)。近年来,SiC作为强化相增强铝基复合材料成为了新的研究热点。本文从碳化硅增强铝合金的研究出发,概述了碳化硅增强铝基复合材料的国内外研究现状,从制备技术和增强机制等方面,分析了该材料发展过程中存在的一些问题以及相应的改进措施,并且指出了该材料今后发展的方向。
Abstract: Silicon carbide aluminum matrix composites (AMCs) are widely used in various fields due to their high elastic modulus and high dimensional stability. Silicon carbide (SiC) has different forms as reinforcement, mainly including silicon carbide particles (SiCp), silicon carbide whiskers (SiCw), and carbon nanotubes (CNTs). In recent years, SiC as a strengthening phase reinforced aluminum matrix composite material has become a new research hotspot. Starting from the research on silicon carbide reinforced aluminum alloy, this article summarizes the current research status of silicon carbide reinforced aluminum matrix composites at home and abroad. From the aspects of preparation technology and reinforcement mechanism, it analyzes some problems and corresponding improvement measures in the development process of this material, and points out the future development direction of this material.
文章引用:赵志伟, 刘晓艳, 朱晓松, 刘传志, 刘家宇, 高飞. 碳化硅增强铝基复合材料研究进展[J]. 材料科学, 2023, 13(8): 718-725. https://doi.org/10.12677/MS.2023.138078

参考文献

[1] Liu, J.H., Khan, U., Coleman, J., Fernandez, B., Rodriguez, P., Naher, S. and Brabazon, D. (2016) Graphene Oxide and Graphene Nanosheet Reinforced Aluminium Matrix Composites: Powder Synthesis and Prepared Composite Character-istics. Materials & Design, 94, 87-94.
https://doi.org/10.1016/j.matdes.2016.01.031
[2] Michael Rajan, H.B., Ramabalan, S., Dinaharan, I. and Vijay, S.J. (2012) Synthesis and Characterization of in situ Formed Titanium Diboride Particulate Reinforced AA7075 Aluminum Alloy Cast Composites. Materials and Design, 44, 438-445.
https://doi.org/10.1016/j.matdes.2012.08.008
[3] Hartaj, S., Kapil, S., Sachit, V. and Sanjay, M. (2022) A Com-prehensive Review on the New Developments Consideration in a Stir Casting Processing of Aluminum Matrix Compo-sites. Materials Today: Proceedings, 60, 974-981.
https://doi.org/10.1016/j.matpr.2021.12.359
[4] Rahman, H. and Al Rashed, H.M.M. (2014) Characterization of Silicon Carbide Reinforced Aluminum Matrix Composites. Procedia Engineering, 90, 103-109.
https://doi.org/10.1016/j.proeng.2014.11.821
[5] X.J, Xu, Jiang, Z., Tabie, V., Mao, Q., Zhang, T.C., Cheng, H., Liu, Q.J., Zhang, X., Liu, Y.G., Xiao, Y.S. and Wang, H. (2019) Effect of SiCw Volume Fraction and Cold Pressure on Microstructure and Mechanical Properties of Aluminum Matrix Composites. Materials Research Express, 6, Article ID: 126597.
https://doi.org/10.1088/2053-1591/ab5b48
[6] Ren, S.B., He, X.B., Qu, X.H. and Li, Y. (2007) Effect of Controlled Interfacial Reaction on the Microstructure and Properties of the SiCp/Al Composites Prepared by Pressureless Infiltration. Journal of Alloys and Compounds, 455, 424-431.
https://doi.org/10.1016/j.jallcom.2007.01.127
[7] 谢敬佩, 王行, 王爱琴, 郝世明, 刘舒. 真空热压SiC_p/2024Al复合材料力学性能与显微结构[J]. 材料热处理学报, 2015, 36(1): 22-26.
https://doi.org/10.13289/j.issn.1009-6264.2015.01.005
[8] 郝世明, 谢敬佩. SiC颗粒增强铝基复合材料的制备工艺和性能研究[J]. 粉末冶金工业, 2014, 24(5): 38-43.
https://doi.org/10.13228/j.boyuan.issn1006-6543.20140008
[9] 刘丽娜, 田晓光, 申勤兵. 碳化硅颗粒增强镁铝基复合材料的组织和性能研究[J]. 热加工工艺, 2018, 47(14): 104-106.
https://doi.org/10.14158/j.cnki.1001-3814.2018.14.026
[10] 傅定发, 彭克成, 陈爽, 刘海洋, 滕杰, 蒋福林, 张辉. SiC颗粒增强6013铝基复合材料时效析出行为及力学性能[J]. 湖南大学学报(自然科学版), 2023, 50(6): 137-143.
https://doi.org/10.16339/j.cnki.hdxbzkb.2023301
[11] 许晓静, 戈晓岚. SiC晶须增强铝基复合材料超塑性[J]. 复合材料学报, 2003, 20(3): 127-131.
https://doi.org/10.13801/j.cnki.fhclxb.2003.03.026
[12] 何宗霖, 连慧峰. 热轧温度对喷射沉积SiC_p/Al基复合材料组织和致密度的影响[J]. 热加工工艺, 2018, 47(20): 126-128.
https://doi.org/10.14158/j.cnki.1001-3814.2018.20.031
[13] Dong, S.L., Zhang, B., Zhan, Y.L., Liu, X., Xin, L., Yang, W.S. and Wu, G.H. (2019) Effect of Extrusion Temperature on the Microstructure and Mechanical Properties of SiCnw/2024Al Composite. Materials, 12, Article 2769.
https://doi.org/10.3390/ma12172769
[14] 李早, 王狂飞, 南红艳, 等. 真空搅拌铸造SiC_P/ZL101A复合材料显微组织及力学性能研究[J]. 热加工工艺, 2018, 47(14): 107-110, 116.
https://doi.org/10.14158/j.cnki.1001-3814.2018.14.027
[15] 许志月. 搅拌铸造(SiCp + SiCw)/Al复合材料热挤压组织与性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020.
https://doi.org/10.27061/d.cnki.ghgdu.2020.003503
[16] 陈振华, 张豪, 刘秋林, 陈刚, 孙章明, 杨伏良. 多层喷射共沉积法制备6066铝合金/SiC颗粒复合材料[J]. 中国有色金属学报, 1996, 6(4): 83-86.
https://doi.org/10.19476/j.ysxb.1004.0609.1996.04.018
[17] 唐彬彬. 喷射沉积17 vol.% SiCp/7055 Al复合材料变形行为研究[D]: [博士学位论文]. 重庆: 西南大学, 2021.
https://doi.org/10.27684/d.cnki.gxndx.2021.004781
[18] 薛海华, 张全. 压力浸渗SiCp/ZL101铝基复合材料的组织和性能[J]. 特种铸造及有色合金, 2022, 42(3): 355-359.
https://doi.org/10.15980/j.tzzz.2022.03.016
[19] Zhang, X., Xu, X.J., Jiang, Z., Mao, Q., Zhang, T.C., Cheng, H., Liu, Q.J. and Wang, H. (2019) Effect of SiCw Volume Fraction on Microstructure and Properties of SiCw/Al Composite Fabricated by Hot Isostatic Pressing-Hot Pressing. Materials Research Express, 6, Article ID: 1165f4.
https://doi.org/10.1088/2053-1591/ab3aba
[20] 贺毅强, 李俊杰, 周海生, 冯立超, 陈志钢. 喷射沉积SiCp/Al基复合材料致密化及其显微组织与力学性能[J].中国有色金属学报, 2017, 27(7): 1352-1360.
https://doi.org/10.19476/j.ysxb.1004.0609.2017.07.05
[21] 王浩. SiCw增强高合金化7000系铝基复合材料的制备与组织性能研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2019.
[22] Pu, B.W., Lin, X.B., Li, B.W., Chen, X.F., He, C.N. and Zhao, N.Q. (2020) Effect of SiC Nanoparticles on the Precipitation Behavior and Mechanical Properties of 7075Al Alloy. Journal of Materials Science, 55, 6145-6160.
https://doi.org/10.1007/s10853-020-04381-4
[23] 何玉松, 高文理, 陆政, 张辉. 喷射沉积7075Al/SiCp铝基复合材料板材的高温拉伸变形行为[J]. 中国有色金属学报, 2007(9): 1516-1520.
https://doi.org/10.19476/j.ysxb.1004.0609.2007.09.022
[24] 才庆魁, 贺春林, 赵明久, 毕敬, 刘常升. 亚微米级SiC颗粒增强铝基复合材料的拉伸性能与强化机制[J]. 金属学报, 2003, 39(8): 865-869.
[25] 徐金城, 邓小燕, 张成良, 田亮亮. 碳化硅增强铝基复合材料界面改善对力学性能的影响[J]. 材料导报, 2009, 23(2): 25-27.