驱动基因阴性晚期非小细胞肺癌免疫检查点抑制剂一线单药及联合化疗治疗进展
Progress of Immune Checkpoint Inhibitors as First-Line Monotherapy and Combined Chemotherapy for Advanced Non-Small Cell Lung Cancer with Negative Driver Genes
DOI: 10.12677/ACM.2023.1381815, PDF, HTML, XML, 下载: 220  浏览: 345 
作者: 张学文, 陈 杰, 郑凯曼:青海大学研究生院,青海 西宁;姜 军*:青海大学附属医院肿瘤内科,青海 西宁
关键词: 驱动基因阴性非小细胞肺癌免疫检查点抑制剂化疗Driver Genes Were Negative Non-Small Cell Lung Cancer Immune Checkpoint Inhibitors Chemotherapy
摘要: 我国是肺癌的第一大国,发病率和死亡率居所有恶性肿瘤之首。非小细胞肺癌在肺癌中最为常见,约占所有肺癌的80~85%。EGFR突变阴性及ALK重排阴性等驱动基因阴性的晚期或转移性非小细胞肺癌(NSCLC)的治疗仍面临挑战,随着免疫治疗时代帷幕的拉开,免疫检查点抑制剂进入我们的视线,现有许多围绕其开展的大型III期临床试验汇报了它在此类患者中的疗效,且大部分研究都在一定程度上改善了患者预后,同时也为患者带来了不同于传统治疗模式的治疗相关不良反应。本文聚焦于驱动基因阴性的晚期非小细胞肺癌免疫检查点抑制剂一线治疗的疗效及安全性,以期为后续临床免疫治疗策略提供思路和线索。
Abstract: Lung cancer is the most common disease in China, and its morbidity and mortality rank the first among all malignant tumors. Non-small cell lung cancer (NSCLC) is the most common lung cancer, accounting for about 80%~85% of all lung cancers. The treatment of advanced or metastatic non-small cell lung cancer (NSCLC) with negative driver genes such as EGFR mutation and ALK re-arrangement is still facing challenges. With the opening of the immunotherapy era, immune checkpoint inhibitors have come into our attention. Many large Phase III clinical trials have been conducted to report its efficacy in such patients, and most of the studies have improved patient outcomes to some extent, while also bringing about treatment-related adverse effects in patients that are different from traditional treatment modalities. This review focuses on the efficacy and safety of immune checkpoint inhibitors in the first-line treatment of advanced NSCLC with negative driver genes, in order to provide ideas and clues for the subsequent optimization of clinical immu-notherapy strategies.
文章引用:张学文, 陈杰, 郑凯曼, 姜军. 驱动基因阴性晚期非小细胞肺癌免疫检查点抑制剂一线单药及联合化疗治疗进展[J]. 临床医学进展, 2023, 13(8): 12959-12970. https://doi.org/10.12677/ACM.2023.1381815

1. 引言

肺癌(lung cancer)是临床常见恶性肿瘤之一。根据世界卫生组织国际癌症研究机构(IARC)发布的2020年全球最新癌症负担数据,全球新发癌症病例约1930万、死亡病例约1000万,而中国在新发病例(457万)及死亡病例(300万)方面均居于世界第一,我国已成为癌症负担大国;肺癌新发约220万例(11.4%);死亡病例中,肺癌是最主要的死因(180万,18%) [1] [2] 。而约85%的肺癌患者病理类型为非小细胞肺癌(non-small-cell lung cancer, NSCLC),由于早期NSCLC无特异性临床表现,故较大比例的患者在确诊时即为中晚期,可手术R0切除几率较小,因此其5年生存率仅为15%~17% [3] 。目前NSCLC的一线治疗方案仍然基于细胞毒性化疗,虽在一定程度上为患者带来了生存获益但不可避免地出现中度至重度的毒副反应,Ingrand等研究显示 [4] ,化疗导致约44.5% (41.4~47.5)的患者发生严重治疗相关不良反应,特别是当患者暴露于拓扑异构酶II抑制剂,比如依托泊苷和博莱霉素(69.2%)、长春新碱(66.7%)、拓扑异构酶I抑制剂(54.5%)和铂类药物(52.0%)时,严重不良反应发生率最高。这些毒副反应会导致患者在治疗过程中依从性变差,进而中断治疗致使病情进展,这也是时至今日单纯放化疗不能明显改善患者生存率的原因之一 [5] 。靶向治疗的出现对于此局面稍有改善,据研究显示亚洲大约有50%的肺癌患者存在基因突变阳性,如表皮生长因子受体(EGFR)突变和间变性淋巴瘤激酶(ALK)易位。这部分患者可接受EGFR-TKI及ALK-TKI靶向治疗 [5] [6] 。但靶向治疗仍有一定局限性——耐药性的出现 [7] 。而免疫治疗的出现,为无驱动基因突变的晚期非小细胞肺癌患者带来曙光,并对NSCLC患者的治疗策略产生了较大影响。抗程序性细胞死亡蛋白-1 (PD-1)及其配体(PD-L1)抗体为肿瘤患者带来了较大的生存获益 [8] [9] [10] [11] 。本文综述了一线抗PD-1/PD-L1治疗驱动基因阴性晚期非小细胞肺癌的试验结果。

2. 免疫检查点抑制剂机制

免疫检查点(Immune Checkpoint)是在免疫细胞上表达的一些具有免疫抑制功能的蛋白分子,它们能够防止自身免疫过程的过度激活 [12] 。PD-1 (在效应T细胞上表达)与PD-L1 (在肿瘤细胞和肿瘤微环境相关的髓系细胞上表达)的相互作用能够抑制T细胞激活过程中所必需的基因及细胞因子的转录和翻译 [13] ,并通过抑制干扰素-γ (interferon-γ, IFN-γ)、肿瘤坏死因子-α (TNF-α)和白细胞介素-2 (IL-2)的产生进而负向调控T细胞活性并导致效应T细胞衰竭 [14] 。一些研究显示,PD-1/PD-L1通路有助于形成抑制性肿瘤微环境和促进肿瘤免疫逃逸,这也是恶性肿瘤所具备的特征 [15] 。细胞毒性T细胞抗原4 (cytotoxic T-lymphocyte-associated antigen 4, CTLA4)同属于抑制性免疫检查点。CTLA-4的表达在活化的T细胞中上调,并与抗原提呈细胞(APCs)上表达的共刺激分子CD80/86竞争,从而下调T细胞的活化水平 [12] [16] [17] 。其他抑制性受体,如:CD160、CD244、CTLA4、LAG-3、PD1、TIGIT和TIM3表达的增加也会导致效应性T细胞活性的下降 [18] 。而作用于相应的免疫检查点的某些单抗类药物就被称作为免疫检查点抑制剂(immune checkpoint inhibitors, ICIs),它并不会对肿瘤细胞产生直接杀伤作用,它与免疫检查点结合后可以解除肿瘤细胞对T细胞的免疫抑制,从而重新增强内源性抗肿瘤活性,发挥抗肿瘤的作用 [19] 。

3. 免疫检查点抑制剂单药治疗

近十数年间,无驱动基因突变的晚期NSCLC患者的一线免疫治疗取得了实质性进展,多项达到主要终点及次要终点的临床研究汇报了免疫单药在患者中的疗效,如KEYNOTE-001、KEYNOTE-024、KEYNOTE-042、CheckMate-012、CheckMate-026、BIRCH、JAVELIN Lung 100、IMpower-110、JAVELIN Lung 100、EMPOWER-Lung 01等等,皆在一定程度上优于传统化疗。

3.1. 帕博利珠单抗(Pembrolizumab)

KEYNOTE-001 (NCT01295827)虽是一项I期临床试验,但却是首个在晚期非小细胞肺癌(NSCLC)患者中评估帕博利珠单抗的临床研究,共纳入495例非小细胞肺癌患者(剂量:2 mg/kg或10 mg/kg,每3周一次或10 mg/kg,每2周一次)。结果显示:免疫单药组患者ORR为19.4%,中位PFS为3.7个月,中位OS为12.0个月。在PD-L1 ≥ 50%患者中,ORR为51.9%,12个月的PFS为54%,12个月的OS为85% [20] 。基于该研究的结果,2015年10月,FDA批准帕博利珠单抗用于PD-L1阳性且接受含铂化疗、EGFR/ALK靶向治疗失败的晚期NSCLC患者。在2019年ASCO进一步更新了Keynote-001的5年生存随访数据。在101名初治患者和449名经治患者中,随访中位数为60.6个月。初治患者的中位数OS为22.3个月(95%CI,17.1至32.3个月),经治患者为10.5个月(95%CI,8.6至13.2个月)。未接受治疗的患者5年OS为23.2%,以前接受治疗的患者为15.5%。在PD-L1表达 ≥ 50%的患者中,5年OS率在初治和经治患者中分别为29.6%和25.0%。≥3TRAE主要为高血压、葡萄糖不耐受和超敏反应 [21] 。

III期随机KEYNOTE-024试验(NCT02142738)比较了帕博利珠单抗与标准化疗(AP、GP或TP)作为一线治疗在PD-L1表达 ≥ 50%且无表皮生长因子受体(EGFR)突变或间变淋巴瘤激酶(ALK)重排的晚期NSCLC患者中的相对疗效 [22] 。主要结局标准为无进展生存期(PFS),次要标准为ORR、OS和安全性。其5年生存随访数据显示:随机分配305名患者,帕博利珠单抗组154例,接受化疗组151例。中位随访时间为59.9 (55.1~68.4)个月。帕博利珠单抗的中位OS为26.3个月(95%CI,18.3至40.4),化疗为13.4个月(9.4~18.3) (HR,0.62;95%CI,0.48至0.81)。Kaplan-Meier预估5年OS率中帕博利珠单抗组为31.9%,化疗组为16.3%。帕博利珠单抗治疗的全级别免疫相关AEs (IRAEs)的总发生率为29.2%,其中9.7%为3/4级,主要为肺(2.6%)、皮肤(3.9%)和胃肠道(1.3%) [22] 。研究显示与化疗相比,Pembrolizumab作为PD-L1 ≥ 50%的转移性非小细胞肺癌的一线治疗提供了持久OS益处 [23] 。

另一项大型、多中心III期随机对照试验KEYNOTE-042试验(NCT02220894)共纳入了1274名患者,PD-L1 ≥ 1%的患者随机分配到帕博利珠单抗组(n = 637)或化疗组(n = 637)。患者根据地区(亚洲或其他国家)、组织学和PD-L1表达进行分层(PD-L1 ≥ 50%、≥20%、≥1%)。主要结局指标为OS。599人(47%) TPS表达 ≥ 50%,818名患者(64%)的TPS ≥ 20%。在三个TPS分层人群中,帕博利珠单抗组的总体生存率明显长于化疗组(≥50% HR 0.69,95%CI 0.56~0.85,p = 0.0003;≥20% 0.77,0.64~0.92,p = 0.0020,和≥1% 0.81,0.71~0.93,p = 0.0018)。帕博利珠单抗组636名接受治疗的患者中有113人(18%)和化疗组615名患者中有252名(41%)发生了3级或更严重的治疗相关不良事件,分别导致13名(2%)和14名(2%)患者死亡 [24] 。

3.2. 纳武单抗(Nivolumab)

CheckMate-012 (NCT01454102)为Ib期临床试验,该研究评估Nivolumab单药,与联合Ipilimumab治疗初治晚期非小细胞肺癌患者的安全性(主要终点)、客观缓解率(ORR) (次要终点)。纳武单抗单药治疗臂(52例)用量为3 mg/kg,每2周给药一次。19%的患者发生3/4级AEs,6例因毒性而停止治疗。在PD-L1 < 1%、>1%、≥50%组中,O药单药治疗非小细胞肺癌的ORR分别为14%、28%、50% [25] 。

III期CheckMate-026试验(NCT02041533)汇报了nivolumab与以铂类为基础的化疗在423例PD-L1 ≥ 5%的晚期NSCLC患者中的疗效。nivolumab的中位PFS为4.2个月,而化疗为5.9个月(HR 1.15; 95%CI: 0.91~1.45; p = 0.25),中位OS为14.4个月比13.2个月(HR 1.02; 95%CI: 0.80~1.30)。nivolumab组71%的患者发生了治疗相关不良事件化疗组为92%。在PD-L1表达水平 ≥ 5%、既往未接受过治疗的晚期NSCLC患者中,纳武利尤单抗组的无进展生存期未显著超过化疗组,但纳武利尤单抗具有更好的安全性。该试验未能取得显著阳性结果的原因之一可能在于研究者未对PD-L1 ≥ 50%的患者进行随机化分层,其化疗组明显高于单抗组(74.1% vs 53.2%) [26] 。

3.3. 阿特珠单抗(Atezolizumab)

II期BIRCH研究(NCT02031458)纳入659名TC或ICPD-L1 ≥ 5%晚期NSCLC患者。atezolizumab一线治疗队列(139例)主要终点为ORR,次要终点为PFS、OS和DOR。在12个月的随访后,ORR为22%,PD-L1强表达(TC3或IC3)患者ORR为31%。中位PFS为5.4个月,中位OS持续23.5个月,41%的患者出现3/4级毒性,其中26%停止治疗 [27] 。

IMpower-110 (NCT02409342)评估阿替利珠单抗与含铂化疗在所纳入的572例PD-L1 ≥ 1%晚期或局部转移的NSCLC患者的相对疗效。PD-L1高表达患者(205例)中,阿替利珠单抗组对比化疗组中位OS [20.2个月vs 13.1个月;HR = 0.59 (0.4~0.89)]及中位PFS [8.1个月vs 5.0个月;HR = 0.63 (0.45~0.88)]临床获益明显 [27] 。在所有可以进行安全性评估的患者中,90.2%的atezolizumab组患者和94.7%的化疗组患者发生了不良事件;30.1%和52.5%的患者发生了3级或4级不良事件。在具有高血基肿瘤突变负担的亚群中,整体和无进展的生存有利于阿替佐利珠单抗。无论组织学类型如何,在PD-L1表达高的非小细胞肺癌患者中,Aetzolizumab治疗的总体生存期明显长于铂基化疗 [28] 。

3.4. 阿维鲁单抗Avelumab

JAVELIN Lung 100试验(NCT02576574)的第一阶段扩展队列中,未经治疗的156名非小细胞肺癌的患者,给予静脉注射10毫克/千克阿维鲁单抗每2周1次。终点包括最佳整体反应、反应持续时间(DOR)、无进展生存(PFS)、总生存(OS)和安全性。

随访中位持续时间为18.6个月(15至23个月)。客观响应率为19.9% (95%CI,13.9至27.0)。DOR中位数为12.0个月(95%CI, 6.9-NR)。中位PFS为4.0个月(95%CI,2.7至5.4),中位OS为14.1个月(95%CI, 11.3~16.9)。107例(68.6%)患者发生了治疗相关不良事件(trae),其中≥3级trae 19例(12.2%)。这项研究显示,与化疗相比,Avelumab在一线治疗晚期NSCLC具有良好的有效性和可耐受的安全性 [29] 。

3.5. 西米普利单抗Cemiplimab

EMPOWER-Lung 01 (NCT03088540)是一项多中心、开放标签、全球性的III期临床研究,共纳入710例NSCLC患者。在PD-L1 ≥ 50%的晚期非小细胞肺癌患者中,与化疗相比,Cemiplimab单药治疗显著改善了总生存期和无进展生存期——PFS [中位PFS:8.2个月vs 5.7个月;HR = 0.54 (0.43~0.68)]和OS [终点未达到vs 14.2个月;HR = 0.57 (0.42~0.77)]。西米普利单抗组报告的3级~4级TRAE发生率低于化疗组(28% vs 39%) [30] 。最近,FDA和EMA批准西米普利单抗作为PD-L1 ≥ 50% m NSCLC患者的一线治疗。

4. 抗PD-1/PD-L1联合一线化疗的临床研究

4.1. 机制

研究表明,细胞毒性化疗可增强肿瘤的免疫原性,如肿瘤细胞破坏后树突状细胞抗原交叉递呈的增强,从而增加细胞毒性淋巴细胞/调节性t细胞比值,阻断STAT6通路,增强树突状细胞的活性 [31] 。化疗可诱导肿瘤细胞表达PD-L1,增强ICIs疗效。因此,免疫治疗与化疗联合可以协同增强抗pd-1和抗pd-l1的抗癌活性。在黑色素瘤、NSCLC和HL等实体肿瘤中免疫检查点抑制剂疗效显著 [32] ,但免疫治疗并不能为所有的肿瘤患者都带来较大的客观临床获益,目前恶性肿瘤的治疗仍是以化疗联合放疗为主。故免疫检查点抑制剂在一定程度上是对传统放疗与化疗治疗模式的补充。

4.1.1. 帕博利珠单抗Pembrolizumab

帕博利珠单抗是第一个在与一线化疗联合显著改善患者临床获益的抗pd-1抗体,在三项临床试验中得以体现:KEYNOTE-021cohort G试验(NCT02039674)、KEYNOTE-407、KEYNOTE-189和KEYNOTE-189 Japan Study。

KEYNOTE-021 (NCT02039674) cohort G中,无论程序性死亡配体1状态如何,一线派姆单抗联合培美曲塞卡铂与单独化疗相比,在毒性可控的情况下显著提高了客观缓解率(58% vs 33%)和无进展生存期(中位数:24.5 vs 9.9个月;HR:0.54;95%CI:0.35~0.83)。cohort G所纳入的患者(123名)为初治且无EGFR或ALK突变的晚期非鳞状NSCLC患者,干预组(60名)给予帕博利珠单抗200 mg每3周一次。研究显示随访49.4个月后,中位总生存期分别为34.5个月和21.1个月(HR: 0.71; 95%CI: 0.45~1.12)。39%接受派姆单抗联合治疗的患者和31%接受化疗的患者发生3~5级治疗相关不良事件。派姆单抗组的主要IRAEs为甲状腺功能减退(15%)、甲状腺功能亢进(8%)和间质性肺炎(5%) [33] 。一线pembrolizumab联合培美曲塞卡铂治疗晚期非小细胞肺癌,疗效和生存率均有所改善。基于这些结果,FDA批准使用派姆单抗联合化疗(卡铂–培美曲塞)治疗无EGFR突变或ALK重排的晚期非鳞状非小细胞肺癌,无论PD-L1状态如何,并进行Ⅲ期验证试验。

KEYNOTE-189 (NCT02578680)及KEYNOTE-189 Japan Study III期试验亦取得了相似的结果。KEYNOTE-189纳入了616名无EGFR突变或ALK重排的非鳞癌NSCLC患者(2:1随机分组),治疗方式为卡铂–培美曲塞联合或不联合帕博单抗。主要结局指标为PFS和OS。派姆单抗组患者的无进展生存期比对照组长3.9个月(8.8个月vs 4.9个月;HR 0.52;95%CI:0.43~0.64;p < 0.001)。在PD-L1 < 1%的患者中PFS获益无显著统计学差异(HR 0.75; 95%CI: 0.53~1.05),但OS延长(HR 0.59; 95%CI: 0.38~0.92)。派姆单抗组的ORR为46.7%,对照组仅为18.9% (p < 0.001)。派姆单抗组和对照组的3/4级AE率分别为67.3%和65.2%。3/4级irae为间质性肺炎(2.7%)、皮肤反应(2%)和肾病(1.5%) [34] 。KEYNOTE-189 Japan Study的疗效和安全性结果与全球研究的结果相似,中位随访时间为18.5个月(14.7~38.2个月),派姆单抗 + 培美曲塞–铂组的中位OS未达到;安慰剂 + 培美曲塞–铂组的中位OS为25.9个月(HR 0.29; 95%CI: 0.07~1.15)。中位PFS为16.5个月vs 7.1个月(HR 0.62; 95%CI: 0.27~1.42)。派姆单抗组与安慰剂组的3/4级AE发生率分别为72% vs 60% [35] 。这些结果导致FDA最终批准一线派姆单抗联合卡铂–培美曲塞化疗治疗非鳞状NSCLC。

以上聚焦于非鳞NSCLC患者,对于鳞癌患者,在KEYNOTE-407 (NCT0277435) III期试验比较了一线帕博利珠单抗200 mg联合化疗(卡铂–紫杉醇或卡铂-nab-紫杉醇)与单独化疗相对疗效。主要结局指标为PFS和OS,次要终点为PD-L ≥ 1%患者的OS和PFS。共计纳入559名患者并以2:1的比例随机分配。研究显示,无论PD-L1表达情况如何,派姆单抗与化疗组相比OS显著延长(15.9个月vs 11.3个月;HR 0.64;95%CI:0.49~0.85;p = 0.0008),中位PFS (6.4 vs 4.8个月;HR 0.56;95%CI:0.45~0.70;p < 0.001),ORR增加(57.9% vs 38.4%)。两组的安全性相同,3/4级AE率(69.8% vs 68.2%)相差无几 [36] 。

4.1.2. 阿特珠单抗(Atezolizumab)

随机Ⅲ期IMPOWER131研究(NCT02367794)比较阿替唑珠单抗与铂类化疗治疗IV期鳞状非小细胞肺癌的疗效。1021例患者按1:1:1随机分配至阿特珠单抗 + 卡铂 + 紫杉醇(A + CP) (n = 338)、阿特珠单抗 + 卡铂 + nab紫杉醇(A + CnP) (n = 343)或卡铂 + nab紫杉醇(CnP) (n = 340)治疗,终点是无进展生存率(PFS)和总生存率(OS)。次要终点包括PD-L1亚组的PFS、OS和安全性。研究显示A + CnP较CnP改善了PFS (中位PFS,6.3比5.6个月;HR 0.71,95%CI:0.60~0.85;p为0.0001)。ITT组A + CnP组和CnP组的中位OS无统计学意义,分别为14.2和13.5个月(HR 0.88, 95%CI: 0.73~1.05; p = 0.16)。与治疗相关的3、4级不良事件和严重不良事件分别为68.0%和47.9% (A + CnP)和57.5%和28.7% (CnP)。因此,阿替唑珠单抗在铂类化疗的基础上,能显著改善一线鳞状非小细胞肺癌患者的PFS;但OS无显著差异 [37] 。结果支持Keynote-407试验结果,显示化疗–免疫联合治疗对鳞状非小细胞肺癌有PFS益处。

而IMpower-130 (NCT02367781)研究阿替利珠单抗–卡铂–白蛋白结合型紫杉醇(atezolizumab-carboplatin-nab-paclitaxel, ACnP)方案与化疗在非鳞癌NSCLC中的疗效,ACnP组改善了OS [HR = 0.79(0.64~0.98); p = 0.033]和PFS [HR = 0.64 (0.54~0.77); p < 0.0001],化疗组有60%患者因疾病进展而接受ICI治疗。在所有PD-L1分层中,ACnP组的PFS获益显著。相比之下,根据PD-L1分层,atezolizumab + 化疗组的OS在数值上更佳,但差异无统计学意义。此外,与化疗相比,atezolizumab + 化疗并未改善EGFR突变肿瘤的结局。最常见的3级或更严重治疗相关不良事件是中性粒细胞减少(atezolizumab + 化疗组473例中有152例[32%],而化疗组232例中有65例[28%])、贫血(138例[29%],47例[20%])和中性粒细胞计数下降(57例[12%],19例[8%])。IMPOWER130显示,在安全性可控的前提下,与化疗相比,阿替唑珠单抗联合化疗作为一线治疗IV期无ALK或EGFR突变非鳞状非小细胞肺癌患者的总生存率和无进展生存率有显著和临床意义的改善 [38] 。

III期临床试验IMpower 132 (NCT02657434)的研究对象为晚期非鳞状细胞肺癌(NSCLC),治疗方式为每3周接受4或6个周期的卡铂或顺铂加培美曲塞(PP)或APP,随后用atezolizumab加培美曲塞或培美曲塞单独维持治。主要终点是总生存期(OS)和无进展生存期(PFS)。该研究最终分析显示:在578名患者(APP, n = 292; PP, n = 286)中,APP组显著改善了患者的PFS (HR, 0.60 [0.49~0.72]; p < 0.0001),APP组的OS在数值上更好,但在统计学上差异并不显著OS [HR = 0.81 (0.64~1.03); p = 0.0797]。3级或4级治疗相关不良事件发生率分别为54.6% (APP)和40.1% (PP);5级治疗相关事件发生率分别为3.8%和2.9% [39] 。

4.1.3. 信迪利单抗Sintilimab

III期随机对照临床试验ORIENT-11及ORIENT-12分别研究了一线信迪利单抗在鳞癌与非鳞癌中的疗效。在ORIENT-11 (NCT03607539)研究中,信迪利单抗 + 培美曲塞铂与安慰剂 + 培美曲塞铂相比,显著改善了晚期转移性非鳞非小细胞肺癌(AMnsqNSCLC)患者的PFS。该研究共随机分配397名未经治疗的无驱动基因突变晚期患者,266例患者使用信迪利单抗 + 培美曲塞铂,131例患者使用安慰剂 + 培美曲塞铂。主要终点为PFS,OS为次要终点。在最终OS分析中显示:中位随访时间为30.8个月,信迪利单抗组:151例[57%]与安慰剂组:92例[70%]观察到主要结局指标。辛替利单抗组中位OS为24.2个月,安慰剂组中位OS为16.8个月(HR: 0.65 [95%CI: 0.50, 0.85]) [40] 。ORIENT-12 (NCT03629925)纳入了357名EGFR敏感突变或ALK重排的局部晚期或转移性无sqNSCLC患者。在中位随访期12.9个月后Sintilimab与铂和吉西他滨(GP)联合(n = 179)作为一线治疗药物,继续显示PFS的改善(HR 0.536; 95%CI: 0.422~0.681; p < 0.00001)。信迪利单抗组有86.6%的患者发生3级或3级以上的治疗相关不良事件,与安慰剂组(83.1%)无明显差异。所以对于局部进展期或转移性sqNSCLC患者,信迪利单抗联合GP作为一线治疗比GP单独治疗疗效更佳 [41] 。

4.1.4. 卡瑞利珠单抗Camrelizumab

同样的,CameL及CameL-Sq也分别探讨了卡瑞利珠单抗在鳞癌与非鳞癌中的疗效。在CameL III期研究(NCT03134872)中,在一线化疗中加入卡瑞利珠单抗显著提高了IIIB-IV期非鳞状非小细胞肺癌患者的无进展生存率。在随访43.9个月过程中,卡瑞利珠单抗联合化疗(n = 205)与单纯化疗(n = 207)相比的总生存率显著提高(中位数27.1对19.8;危险0.72 [95%CI, 0.57~0.92])。卡瑞利珠单抗加化疗组33例完成2年治疗。客观应答率为97.0%,持续应答17例(53.1%) [42] 。CameL-Sq (NCT03668496)是一项双盲随机III期试验(NCT03668496)。将389例IIIB-IV期鳞状非小细胞肺癌患者随机分配(1:1)接受卡铂加紫杉醇联合卡瑞利珠单抗(193例)或安慰剂(196例) (每3周) 4~6个周期,随后接受卡瑞利珠单抗或安慰剂维持治疗。结果显示,与安慰剂化疗相比,卡瑞利珠单抗联合化疗的无进展生存率(中位PFS 8.5 vs 4.9个月;p < 0.0001)和总生存率(中位OS,NR VS 14.5个月;p < 0.0001)显著延长。两组均未观察到意外的治疗免疫相关不良事件。因此,在非小细胞肺癌的治疗中,卡瑞利珠单抗亦成为一种毒性可控且疗效显著的治疗方案 [43] 。

4.1.5. 替雷利珠单抗tislelizumab

开放标签Ⅲ期试验RATIONALE 304 (NCT03663205)纳入组织学证实为IIIB期或IV期nsq-NSCLC患者332例。随机接受tislelizumab + 铂(卡铂或顺铂) + 培美曲塞每3周(Q3W) (n = 222)或铂 + 培美曲塞单药Q3W诱导治疗(n = 110),随后静脉维持培美曲塞Q3W。主要终点是无进展生存期(PFS),次要终点是临床反应和安全性。中位随访时间为9.8个月,与单独化疗相比,tislelizumab加化疗的PFS显著延长(中位PFS:9.7 vs 7.6个月;HR 0.645;95%CI:0.462~0.902;p = 0.0044)。且联合治疗的反应率更高,反应持续时间更长。血液学不良事件(AEs)在两个治疗组中都很常见;最多的AEs为1~2级。≥3级AEs与化疗相关,为中性粒细胞减少症(44.6%; 35.5%) [44] 。为评价替利单抗联合化疗联合单独化疗作为一线治疗晚期sq-NSCLC患者的疗效及安全性。RATIONALE 307 (NCT03594747)纳入355例未经治疗IIIB/IV期sq-NSCLC患者,随机分配后,A组患者应用tislelizumab (200 mg) + 紫杉醇(175mg/m2)和卡铂;B组患者使用tislelizumab + nab-紫杉醇(100 mg/m2)和卡铂;C组为常规化疗。主要终点是由独立审查委员会(IRC)评估的无进展生存期(PFS)。研究显示:随访8.6个月后,tislelizumab加化疗可显著改善PFS (A组,7.6个月;B组,7.6个月) vs单独化疗(C组,5.5个月;HR 0.524 (95%CI, 0.370~0.742; p < 0.001 [A vs C])和0.478 (95% CI, 0.336~0.679; p < 0.001 [B vs C])。在A组ORR最高,为72.5%,反应持续时间最长,为8.2个月;B (74.8%;8.6个月) vs C (49.6%;4.2个月)。PD-L1表达与PFS或ORR之间没有观察到关联。在每组中,最常见的3级或3级以上的AE是中性粒细胞水平下降。因此,可以看出,与单独化疗相比,替利单抗加化疗可以改善晚期NSCLC患者的临床结局 [45] 。

4.2. 纳武利尤单抗(Nivolumab)和伊匹木单抗(Ipilimumab)

CheckMate 227 (NCT02477826)将PD-L1 ≥ 1%的IV期或复发性NSCLC患者按1:1:1的比例随机分配至纳武利尤单抗 + 伊匹木单抗、纳武利尤单抗单药或化疗三组。主要终点是纳武利尤单抗 + 伊匹木单抗组的总生存率。与化疗相比,纳武利尤单抗 + 伊匹单抗组延长中位OS 2.2个月(17.1个月VS 14.9个月),2年总生存率分别为40.0%和32.8%。纳武利尤单抗 + 伊匹单抗组3级或4级治疗相关不良事件在总人群中的比例为32.8%低于化疗组36.0%的发生率 [46] 。在随机、开放标签的3期试验CheckMate 9LA (NCT03215706)中,招募了年龄为18岁及以上,未接受治疗、组织学证实为IV期或复发性NSCLC患者719例,其中361名患者(62.5%)接受纳武单抗 + 伊匹单抗 + 2个周期化疗,358例患者接受4个周期单纯化疗。主要终点是所有随机分配患者的总生存期。实验组所有随机分配患者的总生存期明显长于对照组(中位14.1个月;95%CI:13.2~16.2 vs 10.7个月9.5~12.4]。试验组发生严重治疗相关不良事件106例(30%),对照组发生严重治疗相关不良事件62例(18%) [47] 。因此,与化疗相比,纳武利尤单抗 + 伊匹木单抗一线治疗在非小细胞肺癌患者中获得了更长的总生存期。

5. 免疫检查点抑制剂的局限性

目前,已被美国食品药品监督管理局(Food and Drug Administration, FDA)批准的免疫检查点抑制剂共有三种:帕博利珠单抗、西米普利单抗和阿特珠单抗 [48] 。虽然免疫检查点抑制剂在恶性肿瘤的治疗方面取得了较大的突破,进一步改善了患者的预后,在一定程度上弥补了传统治疗模式的不足,但仍面临着诸多挑战。第一,免疫治疗相关不良事件在患者中发生率较高。研究显示约54%~76%接受免疫治疗的患者会导致irAE的发生,虽大多数患者仅表现为1~2级不良反应,但亦需引起临床医生的重视 [49] 。第二,对于免疫治疗疗效预测及预后的生物标志物不充足。Doroshow等认为PD-L1能够作为一种生物标志物以指导临床患者的选择 [50] 。一项Meta分析汇总了8项高质量临床试验,分析了接受免疫检查点抑制剂治疗的PD-L1表达阳性和阴性患者的相对疗效。研究显示,部分PD-L1表达阴性的患者亦可取得长久的临床获益。故Shen等认为,单独的PD-L1表达不足以成为免疫检查点抑制剂的疗效预测标记物 [51] 。第三,原发性及获得性耐药。虽然免疫检查点抑制剂提升了肿瘤患者的长期生存率,但只有部分患者在治疗后获得了持久的反应。即便是在存在较高肿瘤突变负荷与新抗原负荷的非小细胞肺癌、黑色素瘤患者中,60%~70%的患者没有观察到对免疫检查点治疗的长期有效反应。在这些患者中,20%~30%的患者最终会出现肿瘤复发和进展 [52] 。

6. 总结与展望

随着恶性肿瘤免疫治疗的应用日趋成熟,免疫检查点抑制剂在非小细胞肺癌治疗中的作用,已逐渐展现出来。但如何为患者制定具体的免疫联合化疗治疗方案,如何选择适合免疫检查点抑制剂治疗的患者,如何为患者进行个体化精准治疗,如何提高抗肿瘤治疗疗效,如何降低患者的治疗成本,需要我们进一步探究。目前,许多临床试验正在开展,如双免治疗、免疫联合抗血管治疗等,期待这些临床试验的结果,必定为肿瘤患者带来胜利的曙光。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Siegel, R.L., Miller, K.D. and Jemal, A. (2020) Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 7-30.
https://doi.org/10.3322/caac.21590
[3] 元玫雯, 王宏昊, 段如菲, 徐坤鹏, 胡尚英, 乔友林, 张勇, 赵方辉. 2016年中国归因于人乳头瘤病毒感染的肿瘤发病与死亡分析[J]. 中华流行病学杂志, 2022, 43(5): 702-708.
[4] Ingrand, I., Defossez, G., Lafay-Chebassier, C., Chavant, F., Ferru, A., Ingrand, P. and Pérault-Pochat, M.C. (2020) Serious Adverse Effects Occurring after Chemotherapy: A General Cancer Registry-Based Incidence Sur-vey. British Journal of Clinical Pharmacology, 86, 711-722.
https://doi.org/10.1111/bcp.14159
[5] Planchard, D., Popat, S., Kerr, K., Van Schil, P.E., Hellmann, M.D., Peters, S., et al. (2019) Metastatic Non-Small Cell Lung Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 30, 863-870.
https://doi.org/10.1093/annonc/mdy474
[6] Abdel, K.N. and Kelly, K. (2019) Role of Targeted Therapy and Im-mune Checkpoint Blockers in Advanced Non-Small Cell Lung Cancer: A Review. The Oncologist, 24, 1270-1284.
https://doi.org/10.1634/theoncologist.2018-0112
[7] Camidge, D.R., Pao, W. and Sequist, L.V. (2014) Acquired Resistance to TKIs in Solid Tumours: Learning from Lung Cancer. Nature Reviews Clinical Oncology, 11, 473-481.
https://doi.org/10.1038/nrclinonc.2014.104
[8] Brahmer, J., Reckamp, K.L., Baas, P., Crinò, L., Eberhardt, W.E.E., Poddubskaya, E., et al. (2015) Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 373, 123-135.
https://doi.org/10.1056/NEJMoa1504627
[9] Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D.R., Steins, M., Ready, N.E., et al. (2015) Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 373, 1627-1639.
https://doi.org/10.1056/NEJMoa1507643
[10] Fehrenbacher, L., Spira, A., Ballinger, M., Kowanetz, M., Vansteenk-iste, J., Mazieres, J., et al. (2016) Atezolizumab versus Docetaxel for Patients with Previously Treated Non-Small-Cell Lung Cancer (POPLAR): A Multicentre, Open-Label, Phase 2 Randomised Controlled Trial. The Lancet, 387, 1837-1846.
https://doi.org/10.1016/S0140-6736(16)00587-0
[11] Herbst, R.S., Baas, P., Kim, D.W., Felip, E., Pérez-Gracia, J.L., Han, J.Y., et al. (2015) Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomized Controlled Trial. The Lancet, 387, 1540-1550.
https://doi.org/10.1016/S0140-6736(15)01281-7
[12] Sundar, R., Cho, B.C., Brahmer, J.R. and Soo, R.A. (2015) Nivolumab in NSCLC: Latest Evidence and Clinical Potential. Therapeutic Advances in Medical Oncology, 7, 85-96.
https://doi.org/10.1177/1758834014567470
[13] Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T. and Honjo, T. (2001) PD-1 Immunoreceptor Inhibits B Cell Receptor-Mediated Signaling by Recruiting Src Homology 2-Domain-Containing Tyrosine Phosphatase 2 to Phosphotyrosine. Proceedings of the National Academy of Sciences of the United States of America, 98, 13866-13871.
https://doi.org/10.1073/pnas.231486598
[14] Chauhan, D.S., Mudaliar, P., Basu, S., Aich, J. and Paul, M.K. (2022) Tumor-Derived Exosome and Immune Modulation. In: Paul, M.K., Eds., Extracellular Vesicles, IntechOpen.
https://doi.org/10.5772/intechopen.103718
[15] Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[16] Genova, C., Dellepiane, C., Carrega, P., Sommariva, S., Ferlazzo, G., Pronzato, P., et al. (2022) Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade. Frontiers in Immunology, 12, Article 799455.
https://doi.org/10.3389/fimmu.2021.799455
[17] Francisco, L.M., Sage, P.T. and Sharpe, A.H. (2010) The PD-1 Pathway in Tolerance and Autoimmunity. Immunological Reviews, 236, 219-242.
https://doi.org/10.1111/j.1600-065X.2010.00923.x
[18] Lahiri, A., Maji, A., Potdar, P.D., Singh, N., Parikh, P., Bisht, B., Mukherjee, A. and Paul, M.K. (2023) Lung Cancer Immunotherapy: Progress, Pitfalls, and Promises. Molecu-lar Cancer, 22, Article No. 40.
https://doi.org/10.1186/s12943-023-01740-y
[19] 高磊, 俞阳, 李晓梅, 刘乾, 尹振宇, 陈昊. 化疗与免疫检查点抑制剂联用对肿瘤治疗的作用[J/OL]. 解放军医学杂志: 1-11[2022-07-25].
https://kns.cnki.net/kcms2/article/abstract?v=KTWJcyGkBkCExXube66KZJbWU0ZvgXrwIMSz0aPwu94OKXxfieUWvVq1eInQpSk7uX2WXoDM7OLUBz2rTGplyA5seopv-fouuYvHD7gTa4JuXQVr6d4xfFDfUhF-cy8ScKryRlsHl60=&uniplatform=NZKPT&language=CHS
[20] Garon, E.B., Rizvi, N.A., Hui, R., Leighl, N., Balmanoukian, A.S., Eder, J.P., et al. (2015) Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 372, 2018-2028.
https://doi.org/10.1056/NEJMoa1501824
[21] Garon, E.B., Hellmann, M.D., Rizvi, N.A., Carcereny, E., Leighl, N.B., Ahn, M.J., Eder, J.P., Balmanoukian, A.S., Aggarwal, C., Horn, L., Patnaik, A., Gubens, M., Ramalingam, S.S., Felip, E., Goldman, J.W., Scalzo, C., Jensen, E., Kush, D.A. and Hui, R. (2019) Five-Year Overall Survival for Patients with Advanced Non-Small-Cell Lung Cancer Treated with Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. Journal of Clinical Oncology, 37, 2518-2527.
https://doi.org/10.1200/JCO.19.00934
[22] Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 375, 1823-1833.
https://doi.org/10.1056/NEJMoa1606774
[23] Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., Gottfried, M., Peled, N., Tafreshi, A., Cuffe, S., O’Brien, M., Rao, S., Hotta, K., Leal, T.A., Riess, J.W., Jensen, E., Zhao, B., Pietanza, M.C. and Brahmer, J.R. (2021) Five-Year Outcomes with Pembrolizumab versus Chem-otherapy for Metastatic Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score ≥ 50%. Journal of Clinical Oncology, 39, 2339-2349.
https://doi.org/10.1200/JCO.21.00174
[24] Mok, T.S.K., Wu, Y.L., Kudaba, I., Kowalski, D.M., Cho, B.C., Turna, H.Z., Castro Jr, G., Srimuninnimit, V., Laktionov, K.K., Bondarenko, I., Kubota, K., Lubiniecki, G.M., Zhang, J., Kush, D., Lopes, G. and KEYNOTE-042 Investigators. (2019) Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. The Lancet, 393, 1819-1830.
[25] Gettinger, S., Rizvi, N.A., Chow, L.Q., Bor-ghaei, H., Brahmer, J., Ready, N., et al. (2016) Nivolumab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 34, 2980-2987.
https://doi.org/10.1200/JCO.2016.66.9929
[26] Carbone, D.P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., Felip, E., van den Heuvel, M.M., Ciuleanu, T.E., Badin, F., Ready, N., Hiltermann, T.J.N., Nair, S., Juergens, R., Peters, S., Minenza, E., Wrangle, J.M., Rodriguez-Abreu, D., Borghaei, H., Blumenschein Jr, G.R., Villaruz, L.C., Havel, L., Krejci, J., Corral Jaime, J., Chang, H., Geese, W.J., Bhagavatheeswaran, P., Chen, A.C., Socinski, M.A. and CheckMate 026 Investigators (2017) First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 376, 2415-2426.
https://doi.org/10.1056/NEJMoa1613493
[27] Peters, S., Gettinger, S., Johnson, M.L., Jänne, P.A., Garassino, M.C., Christoph, D., et al. (2017) Phase II Trial of Atezolizumab as First-Line Orsubsequent Therapy for Patients with Programmed Death-Ligand 1-Selected Advanced Non-Small-Cell Lung Cancer (BIRCH). Journal of Clinical Oncology, 35, 2781-2789.
https://doi.org/10.1200/JCO.2016.71.9476
[28] Herbst, R.S., Giaccone, G., de Marinis, F., et al. (2020) Atezoli-zumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. The New England Journal of Medicine, 383, 1328-1339.
https://doi.org/10.1056/NEJMoa1917346
[29] Verschraegen, C.F., Jerusalem, G., McClay, E.F., Ian-notti, N., Redfern, C.H., Bennouna, J., Chen, F.L., Kelly, K., Mehnert, J., Morris, J.C., Taylor, M., Spigel, D., Wang, D., Grote, H.J., Zhou, D., Munshi, N., Bajars, M. and Gulley, J.L. (2020) Efficacy and Safety of First-Line Avelumab in Pa-tients with Advanced Non-Small Cell Lung Cancer: Results from a Phase Ib Cohort of the JAVELIN Solid Tumor Study. Journal for ImmunoTherapy of Cancer, 8, e001064.
https://doi.org/10.1136/jitc-2020-001064
[30] Sezer, A., Kilickap, S., Gümüş, M., Bondarenko, I., Özgüroğlu, M., Gogishvili, M., Turk, H.M., Cicin, I., Bentsion, D., Gladkov, O., Clingan, P., Sriuranpong, V., Rizvi, N., Gao, B., Li, S., Lee, S., McGuire, K., Chen, C.I., Makharadze, T., Paydas, S., Nechaeva, M., Seebach, F., Weinreich, D.M., Yancopou-los, G.D., Gullo, G., Lowy, I. and Rietschel, P. (2021) Cemiplimab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer with PD-L1 of at Least 50%: A Multicentre, Open-Label, Global, Phase 3, Randomised, Controlled Trial. The Lancet, 397, 592-604.
https://doi.org/10.1016/S0140-6736(21)00228-2
[31] Rapoport, B.L. and Anderson, R. (2019) Realizing the Clini-cal Potential of Immunogenic Cell Death in Cancer Chemotherapy and Radiotherapy. International Journal of Molecular Sciences, 20, Article 959.
https://doi.org/10.3390/ijms20040959
[32] 于颖彦. 免疫检查点及其抑制剂的发展[J]. 内科理论与实践, 2022, 17(1): 48-52.
https://doi.org/10.16138/j.1673-6087.2022.01.009
[33] Langer, C.J., Gadgeel, S.M., Borghaei, H., Papadimi-trakopoulou, V.A., Patnaik, A., Powell, S.F., et al. (2016) Carboplatin and Pemetrexed with or without Pembrolizumab for Advanced, Non-Squamous Non-Small-Cell Lung Cancer: A Randomised, Phase 2 Cohort of the Open-Label KEYNOTE-021 Study. The Lancet Oncology, 17, 1497-1508.
https://doi.org/10.1016/S1470-2045(16)30498-3
[34] Gandhi, L., Rodríguez-Abreu, D., Gadgeel, S., Esteban, E. and Felip, E. (2018) Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 378, 2078-2092.
https://doi.org/10.1056/NEJMoa1801005
[35] Horinouchi, H., Nogami, N., Saka, H., Nishio, M., Tokito, T., Takahashi, T., Kasahara, K., Hattori, Y., Ichihara, E., Adachi, N., Noguchi, K., Souza, F. and Kurata, T. (2021) Pem-brolizumab plus Pemetrexed-Platinum for Metastatic Nonsquamous Non-Small-Cell Lung Cancer: KEYNOTE-189 Ja-pan Study. Cancer Science, 112, 3255-3265.
https://doi.org/10.1111/cas.14980
[36] Paz-Ares, L., Vicente, D., Tafreshi, A., Robinson, A., Soto Parra, H., Mazières, J., Hermes, B., Cicin, I., Medgyasszay, B., Rodríguez-Cid, J., Okamoto, I., Lee, S., Ramlau, R., Vladimirov, V., Cheng, Y., Deng, X., Zhang, Y., Bas, T., Piperdi, B. and Halmos, B. (2020) A Randomized, Placebo-Controlled Trial of Pembrolizumab plus Chemotherapy in Patients with Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-407. Journal of Thoracic Oncology, 15, 1657-1669.
https://doi.org/10.1016/j.jtho.2020.06.015
[37] Jotte, R., Cappuzzo, F., Vynnychenko, I., Stroyakovskiy, D., Rodríguez-Abreu, D., Hussein, M., Soo, R., Conter, H.J., Kozuki, T., Huang, K.C., Graupner, V., Sun, S.W., Hoang, T., Jes-sop, H., McCleland, M., Ballinger, M., Sandler, A. and Socinski, M.A. (2020) Atezolizumab in Combination with Car-boplatin and Nab-Paclitaxel in Advanced Squamous NSCLC (IMpower131): Results from a Randomized Phase III Trial. Journal of Thoracic Oncology, 15, 1351-1360.
https://doi.org/10.1016/j.jtho.2020.03.028
[38] West, H., McCleod, M., Hussein, M., Morabito, A., Rittmeyer, A., Conter, H.J.., Kopp, H.G., Daniel, D., McCune, S., Mekhail, T., Zer, A., Reinmuth, N., Sadiq, A., Sandler, A., Lin, W., Ochi Lohmann, T., Archer, V., Wang, L., Kowanetz, M. and Cappuzzo, F. (2019) Atezolizumab in Combination with Carboplatin plus Nab-Paclitaxel Chemotherapy Compared with Chemotherapy Alone as First-Line Treatment for Meta-static Non-Squamous Non-Small-Cell Lung Cancer (IMpower130): A Multicentre, Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 20, 924-937.
https://doi.org/10.1016/S1470-2045(19)30167-6
[39] Nishio, M., Barlesi, F., West, H., Ball, S., Bordoni, R., Co-bo, M., Longeras, P.D., Goldschmidt Jr, J., Novello, S., Orlandi, F., Sanborn, R.E., Szalai, Z., Ursol, G., Mendus, D., Wang, L., Wen, X., McCleland, M., Hoang, T., Phan, S. and Socinski, M.A. (2021) Atezolizumab plus Chemotherapy for First-Line Treatment of Nonsquamous NSCLC: Results From the Randomized Phase 3 IMpower132 Trial. Journal of Thoracic Oncology, 16, 653-664.
https://doi.org/10.1016/j.jtho.2020.11.025
[40] Zhang, L., Wang, Z., Fang, J., Yu, Q., Han, B., Cang, S., Chen, G., Mei, X., Yang, Z., Stefaniak, V., Lin, Y., Wang, S., Zhang, W., Sun, L. and Yang, Y. (2022) Final Overall Survival Data of Sintilimab plus Pemetrexed and Platinum as First-Line Treatment for Locally Advanced or Metastatic Nonsquamous NSCLC in the Phase 3 ORIENT-11 Study. Lung Cancer, 171, 56-60.
https://doi.org/10.1016/j.lungcan.2022.07.013
[41] Zhou, C., Wu, L., Fan, Y., Wang, Z., Liu, L., Chen, G., Zhang, L., Huang, D., Cang, S., Yang, Z., Zhou, J., Zhou, C., Li, B., Li, J., Fan, M., Cui, J., Li, Y., Zhao, H., Fang, J., Xue, J., Hu, C., Sun, P., Du, Y., Zhou, H., Wang, S. and Zhang, W. (2021) Sintilimab plus Platinum and Gemcitabine as First-Line Treatment for Advanced or Metastatic Squamous NSCLC: Results from a Randomized, Double-Blind, Phase 3 Trial (ORIENT-12). Journal of Thoracic Oncology, 16, 1501-1511.
https://doi.org/10.1016/j.jtho.2021.04.011
[42] Zhou, C., Chen, G., Huang, Y., Zhou, J., Lin, L., Feng, J., Wang, Z., Shu, Y., Shi, J., Hu, Y., Wang, Q., Cheng, Y., Wu, F., Chen, J., Lin, X., Wang, Y., Huang, J., Cui, J., Cao, L., Liu, Y., Zhang, Y., Pan, Y., Zhao, J., Wang, L., Chang, J., Chen, Q., Ren, X., Zhang, W., Fan, Y., He, Z., Fang, J., Gu, K., Dong, X., Jin, F., Gao, H., An, G., Ding, C., Jiang, X., Xiong, J., Zhou, X., Hu, S., Lu, P., Liu, A., Guo, S., Huang, J., Zhu, C., Zhao, J., Gao, B., Chen, Y., Hu, C., Zhang, J., Zhang, H., Zhao, H., Tai, Y., Ma, X., Shi, W. and CameL Study Group (2023) Camrelizumab plus Carboplatin and Pemetrexed as First-Line Treatment for Advanced Nonsquamous NSCLC: Extended Follow-Up of CameL Phase 3 Trial. Journal of Thoracic Oncology, 18, 628-639.
https://doi.org/10.1016/j.jtho.2022.12.017
[43] Ren, S., Chen, J., Xu, X., Jiang, T., Cheng, Y., Chen, G., Pan, Y., Fang, Y., Wang, Q., Huang, Y., Yao, W., Wang, R., Li, X., Zhang, W., Zhang, Y., Hu, S., Guo, R., Shi, J., Wang, Z., Cao, P., Wang, D., Fang, J., Luo, H., Geng, Y., Xing, C., Lv, D., Zhang, Y., Yu, J., Cang, S., Yang, Z., Shi, W., Zou, J., Zhou, C. and CameL-sq Study Group (2022) Camrelizumab plus Carboplatin and Paclitaxel as First-Line Treatment for Advanced Squamous NSCLC (CameL-Sq): A Phase 3 Trial. Journal of Thoracic Oncology, 17, 544-557.
https://doi.org/10.1016/j.jtho.2021.11.018
[44] Lu, S., Wang, J., Yu, Y., Yu, X., Hu, Y., Ai, X., Ma, Z., Li, X., Zhuang, W., Liu, Y., Li, W., Cui, J., Wang, D., Liao, W., Zhou, J., Wang, Z., Sun, Y., Qiu, X., Gao, J., Bao, Y., Liang, L. and Wang, M. (2021) Tislelizumab plus Chemotherapy as First-Line Treatment for Locally Advanced or Metastatic Nonsquamous NSCLC (RATIONALE 304): A Randomized Phase 3 Trial. Journal of Thoracic Oncology, 16, 1512-1522.
https://doi.org/10.1016/j.jtho.2021.05.005
[45] Wang, J., Lu, S., Yu, X., Hu, Y., Sun, Y., Wang, Z., Zhao, J., Yu, Y., Hu, C., Yang, K., Feng, G., Ying, K., Zhuang, W., Zhou, J., Wu, J., Leaw, S.J., Zhang, J., Lin, X., Liang, L. and Yang, N. (2021) Tislelizumab plus Chemotherapy vs Chemotherapy Alone as First-line Treatment for Ad-vanced Squamous Non-Small-Cell Lung Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncology, 7, 709-717.
https://doi.org/10.1001/jamaoncol.2021.0366
[46] Paz-Ares, L.G., Ramalingam, S.S., Ciuleanu, T.E., Lee, J.S., Urban, L., Caro, R.B., Park, K., Sakai, H., Ohe, Y., Nishio, M., Audigier-Valette, C., Burgers, J.A., Pluzanski, A., Sangha, R., Gallardo, C., Takeda, M., Linardou, H., Lupinacci, L., Lee, K.H., Caserta, C., Provencio, M., Carcereny, E., Otterson, G.A., Schenker, M., Zurawski, B., Alexandru, A., Vergnenegre, A., Raimbourg, J., Feeney, K., Kim, S.W., Borghaei, H., O’Byrne, K.J., Hellmann, M.D., Memaj, A., Nathan, F.E., Bushong, J., Tran, P., Brahmer, J.R. and Reck, M. (2022) First-Line Nivolumab plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes from the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial. Journal of Thoracic Oncology, 17, 289-308.
https://doi.org/10.1016/j.jtho.2021.09.010
[47] Paz-Ares, L., Ciuleanu, T.E., Cobo, M., Schenker, M., Zurawski, B., Menezes, J., Richardet, E., Bennouna, J., Felip, E., Juan-Vidal, O., Alexandru, A., Sakai, H., Lingua, A., Salman, P., Souquet, P.J., De Marchi, P., Martin, C., Pérol, M., Scherpereel, A., Lu, S., John, T., Carbone, D.P., Mead-ows-Shropshire, S., Agrawal, S., Oukessou, A., Yan, J. and Reck, M. (2021) First-Line Nivolumab plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (CheckMate 9LA): An In-ternational, Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 22, 198-211.
https://doi.org/10.1016/S1470-2045(20)30641-0
[48] Huang, Q., Kemnade, J., Cornwell, L., et al. (2022) Non-Small Cell Lung Cancer in the Era of Immunotherapy. Seminars in Oncology, 49, 337-343.
https://doi.org/10.1053/j.seminoncol.2022.06.009
[49] 李光韬, 张卓莉. 自身免疫性疾病与发热[J]. 中国实用内科杂志, 2016, 36(12): 1032-1035.
[50] Doroshow, D.B., Bhalla, S., Beasley, M.B., Sholl, L.M., Kerr, K.M., Gnjatic, S., Wistuba, I.I., Rimm, D.L., Tsao, M.S. and Hirsch, F.R. (2021) PD-L1 as a Biomarker of Response to Im-mune-Checkpoint Inhibitors. Nature Reviews Clinical Oncology, 18, 345-362.
https://doi.org/10.1038/s41571-021-00473-5
[51] Shen, X. and Zhao, B. (2018) Efficacy of PD-1 or PD-L1 Inhib-itors and PD-L1 Expression Status in Cancer: Meta-Analysis. The BMJ, 362, k3529.
https://doi.org/10.1136/bmj.k3529
[52] Bagchi, S., Yuan, R. and Engleman, E.G. (2021) Immune Checkpoint In-hibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual Review of Pathology: Mechanisms of Disease, 16, 223-249.
https://doi.org/10.1146/annurev-pathol-042020-042741