miRNA在结核病中对巨噬细胞免疫反应影响的研究进展
Research Progress on the Effect of miRNA on the Immune Response of Macrophages in Tuberculosis
DOI: 10.12677/ACM.2023.1381829, PDF, HTML, XML, 下载: 258  浏览: 426 
作者: 黄飞扬:青海大学研究生院,青海 西宁;久 太:青海大学附属医院呼吸与危重症学科,青海 西宁
关键词: 结核病miRNA先天免疫细胞反应M1/M2型巨噬细胞生物标志物Tuberculosis miRNA Innate Immune Cell Response M1/M2 Macrophages Biomarker
摘要: 结核分枝杆菌(Mycobacterium tuberculosis, Mtb)是结核病(Tuberculosis, TB)的病原菌,侵入人体后巨噬细胞是结核分枝杆菌主要固有免疫细胞,巨噬细胞(Macrophage, Mø)具有高度的异质性和可塑性,在不同的刺激下可极化成M1、M2型巨噬细胞。外泌体作为细胞及器官间通讯的介质,将其内包含的microRNA等信号因子传递到各个细胞或器官影响其功能活动,有研究表明微小RNA (mi-croRNA, miRNA)参与了抑制细胞凋亡、自噬及细胞因子分泌等先天免疫细胞反应,同时miRNA可通过调节巨噬细胞极化趋势,影响结核杆菌的清除效率。本综述描述了结核分枝杆菌感染后外泌体来源的miRNA参与机体免疫反应,包括参与炎症、细胞凋亡、自噬以及调节巨噬细胞极化对结核杆菌影响的研究进展,还阐述了外泌体miRNA作为诊断或治疗结核病的一种新型标志物的潜力性。
Abstract: Mycobacterium tuberculosis (Mtb) is the pathogen of tuberculosis (TB). Macrophages are the main innate immune cells of Mycobacterium tuberculosis after invading human body. Macrophages are highly heterogeneous and plastic, and can be polarized into M1 and M2 macrophages under differ-ent stimuli. As a communication medium between cells and organs, exosomes transmit signal fac-tors such as microRNA to various cells or organs, which affects their functional activities. Studies have shown that MicroRNA is involved in inhibiting innate immune cell reactions such as apoptosis, autophagy and cytokine secretion, and at the same time, miRNA can affect the clearance efficiency of Mycobacterium tuberculosis by regulating the polarization trend of macrophages. This review describes the progress of research on the role of exosome-derived miRNA in the immune response to Mycobacterium tuberculosis infection, including inflammation, apoptosis, autophagy, and regula-tion of macrophage polarization on Mycobacterium tuberculosis. It also describes the potential of exosomal miRNA as a new marker for the diagnosis or treatment of tuberculosis.
文章引用:黄飞扬, 久太. miRNA在结核病中对巨噬细胞免疫反应影响的研究进展[J]. 临床医学进展, 2023, 13(8): 13057-13066. https://doi.org/10.12677/ACM.2023.1381829

1. 引言

TB是由结核分枝杆菌引起的一种可治愈和预防的具有较高传染性的疾病,结核分支杆菌通过飞沫进入机体后引起一系列呼吸道等免疫反应。世界卫生组织在《2021年全球结核病报告》中指出,我国2020年结核病发病率为59/10万(2019年58/10万),成为目前全球第二大结核病高负担国家 [1] ,在冠状病毒(COVID-19)流行病之前,结核病是单一感染源致死的主要原因,估计2020年新增990例结核病患者,相当于每10万人中有127例 [2] ,对全人类生命健康造成重大威胁。世界上大约四分之一的居民感染了结核分枝杆菌 [1] ,但只有5%~10%的感染者患病出现临床症状,发展为活动性结核,但其相关发病机制尚不明确。因此,探索TB发病机制为早期诊治提供证据是有需要的。

2. 巨噬细胞

巨噬细胞是结核分枝杆菌的主要宿主细胞,例如肺泡巨噬细胞(AMs),单核细胞衍生巨噬细胞(MDMs)和间质巨噬细胞(IMs),在Mtb通过呼吸道进入肺泡内时,通常肺泡巨噬细胞(AMs)是首先遇到Mtb感染的细胞之一 [3] ,目前认为巨噬细胞的主要作用有:1) 吞噬病原体、碎片和死亡细胞;2) 抗原处理和呈递;3) 产生不同类型的细胞因子来激活或抑制适应性免疫细胞 [4] ,通过这些作用,巨噬细胞发挥着其独特的免疫反应,以此来防御病菌。巨噬细胞在体内普遍存在但又有细微差别的免疫细胞群体,不仅有血液中循环的单核细胞,还在大多数器官中可以找到特异性巨噬细胞,例如:肝血窦内的肝巨噬细胞(Kupffer cells)、皮肤中的兰氏细胞(Langerhans cells)、大脑中的小胶质细胞、脾红髓巨噬细胞、肺泡巨噬细胞、脂肪组织巨噬细胞和破骨细胞 [5] ,不同器官的巨噬细胞在吞噬作用的基础上还发挥着独特的免疫作用。外周血中单核细胞是巨噬细胞前体,单核细胞/巨噬细胞的活化受到微环境刺激、细胞因子的诱导以及暴露的持续时间等的调节,具体表现为特定的巨噬细胞亚群在感染部位聚集,进而分化为具有特定功能的极化状态,如经典活化巨噬细胞M1型和替代活化巨噬细胞M2型 [3] 。巨噬细胞M1和M2在大多数病理状态下处于动态平衡。

2.1. 巨噬细胞极化机制

M1/M2巨噬细胞极化的分子机制目前暂不十分明确,但已知主要相关通路有JAK/STAT [6] 、JNK信号通路 [7] 、MAPK/NF-κB [8] 和PI3K/Akt信号通路 [9] 等。已确定的主要途径之一是JAK/STAT途径,JAK-STAT通路传导主要由3部分构成:酪氨酸激酶相关受体、非受体酪氨酸激酶(Janus激酶,JAKs)和信号传导及转录激活因子(Signal Transducers and Activators of Transcription, STATs)。目前已经确定的 JAKs有4种:JAK1、JAK2、JAK3和酪氨酸激酶2 (tyrosine kinase 2, TYK2),STATs由6个成员构成,即STAT1-STAT6 [10] 。JAK-STAT基本信号传导过程如下:当信号分子与细胞表面受体结合后,受体分子发生二聚化,促进JAKs聚合和磷酸化,激活的JAKs可与STATs的SH2结构域相结合,STATs磷酸化修饰后激活,启动下游靶基因,进而发挥其细胞生物功能的调控作用。每种细胞因子可通过不同路径诱导巨噬细胞极化,但巨噬细胞极化的途径和调节过程并不是那么简单,更甚至可随环境变化而发生极化转化。

2.2. JAK/STAT信号通路介导巨噬细胞极化M1\M2

注:KLF4,Kruppel样因子4;SOCS,细胞因子信号抑制物;→,促进;↛,抑制

Figure 1. JAK/STAT signaling pathway mediates M1 polarization of macrophages

图1. JAK/STAT信号通路介导巨噬细胞M1极化

JAK/STAT途径中,其中脂多糖(Lipopolysaccharides, LPS)、干扰素-γ (Interferon-γ, IFN-γ)和粒细胞–巨噬细胞集落刺激因子(Granulocyte-macrophage Colony Stimulating Factor, GM-CSF)参与M1极化,而白介素-4 (Interleukin-4, IL-4)和IL-13主要介导M2极化。IFN-γ与对应受体相结合,可促进JAK1与JAK2聚合和磷酸化,下一步诱导STAT1磷酸化和二聚体形成,促进M1极化 [11] ,分泌促炎因子参与抗感染。LPS与巨噬细胞膜上Toll样受体(Toll-like Receptors, TLR)结合,下游髓分化因子88 (Recombinant Myeloid Differentiation Factor 88, MyD88)、含Toll-白细胞介素1 (toll-interleukin 1 receptor, TIR)受体结构域衔蛋白发出适当的信号,通过两条途径激活M1,① 激活JAK2-STAT1/STAT3路径 [12] ;② 激活核转录因子-kappaB (Nuclear Factor-kappaB, NF-κB) [13] ;两种途径均可促使M1极化(如图1)。IL-4激活巨噬细胞中JAK1/JAK3-STAT6信号通路,诱导M2极化,并参与肌腱骨的愈合 [14] 。STAT6主要受IL-4和IL-13刺激(如图2)。

Figure 2. JAK/STAT signaling pathway mediates M2 polarization of macrophages

图2. JAK/STAT信号通路介导巨噬细胞M2极化

2.3. 促炎性M1型巨噬细胞

M1型巨噬细胞可由单独的LPS、IFN-γ或GM-CSF刺激巨噬细胞极化而成,极化成M1的巨噬细胞可产生活性氧(reactive oxygen species, ROS)和一氧化氮(NO)以及大量的促炎细胞因子如白介素-6 (IL-6)、白介素-12 (IL-12)、IL-23,肿瘤坏死因子-α (Tumor Necrosis Factor, TNF-α)和环氧合酶2等,M1细胞还可分泌大量的趋化因子,如CCL2、CXCL10、CXCL11等诱导附近的免疫细胞 [15] ,M1展示出吞噬消灭病原菌、促炎和诱导TH1免疫反应的能力。M1极化已被证明有助于宿主控制细菌感染,包括单核细胞增生李斯特菌(Listeria monocytogenes)、鼠伤寒沙门氏菌、结核分枝杆菌和衣原体感染 [16] 。

2.4. 抗炎性M2型巨噬细胞

抗炎细胞因子IL-4、IL-13和IL-10介导巨噬细胞向M2型方向极化,该过程又与表面分子Dectin-1、DC-SIGN、清道夫受体A和甘露糖受体CD206上调相关,可根据表面分子的表达进行鉴定M2型巨噬细胞。M2型Mφ通过释放高水平抗炎细胞因子IL-10和转化生长因子(Transforming Growth Factor-β, TGF-β)等,使其具有抗炎、血管生成和Th2免疫负性调节特性 [3] 。通常情况下M2极化状态下的特征是不分泌或极少分泌促炎因子,分泌抗炎因子,加强细胞清除能力,促进损伤组织的修复和重塑 [16] 。认为M2型巨噬细胞又可分为四种亚型,即M2a、M2b、M2c、和M2d,以及M4、Mhem和Mox [17] 。

在感染早期巨噬细胞为了保护机体,通常选择具有灭菌和促炎能力的M1型极化,然而结核分枝杆菌拥有着防止M1样极化或推动极化向M2表型的能力,以此来逃避宿主的免疫反应。巨噬细胞极化在耐多药结核病/广泛耐药结核发病过程中,我们发现M1型巨噬细胞表达水平较低,而M2型方向极化的巨噬细胞表达量较高,机体免疫反应被抑制,结核分枝杆菌表现为免疫逃逸情况,在宿主细胞内存活 [18] 。巨噬细胞主要表现为向M2型方向极化不仅存在肺结核等感染性疾病中,还存在于在肺部小细胞肺癌 [19] 、肝癌 [20] 、结肠癌 [21] 中,表现为促进肿瘤的进展。

3. microRNA

miRNA是可以塑造细胞基因表达模式的小调节RNA [22] 。微小RNA是一类小的(≈22个核苷酸长)单链非编码RNA,可与靶mRNA的3′非翻译区(3′UTR)互补序列结合,致使mRNA降解或翻译抑制,以控制基因表达产生巨大的生物学效应 [23] 。微小RNA在受体细胞中的功能一般可分为两种类型:一种是常规,即通过RNA干扰转录水平实现负调节并使靶基因表达水平发生特征性改变;一种是新型,通过与Toll样受体结合激活免疫细胞 [22] ,如miR-21和miR-29a [24] 。

3.1. miRNA来源于外泌体

Pan和Johnstone在研究绵羊网织红细胞成熟过程时首次观察到外泌体,他们称之为囊泡,后来被定义为“外泌体” [25] 。外泌体被认为是一种独特的囊泡群体,是自身细胞内的多囊泡体与细胞膜融合后以外分泌的形式释放到细胞外的纳米囊泡 [26] ,其大小与微泡不同,外泌体定义为30~100 nm范围内的脂质双分子层囊泡,该双分子层围绕着高度异质性的物质,该物质是由蛋白质、脂质、核酸和microRNA等组成,外泌体已被证明可以将包含的物质传递出细胞,这种特性决定了外泌体能够介导细胞间或者器官间通讯,调节细胞的功能或活动,比如炎症、干细胞维持和组织修复和免疫反应等 [27] 。

3.2. 外泌体中microRNA可作为肺结核生物标志物

外泌体miRNA在癌症、心血管疾病、自身免疫性疾病和传染病等疾病中可作为新型生物标志物 [28] 。外泌体脂质双分子层十分稳定,使包含在内的物质不易被酶降解,保护囊泡内miRNA使其相对稳定保存生物学信号,同时外泌体存在生物体各种体液中 [22] ,被外泌体包裹的miRNA可以即准确又稳定的反应疾病信息。在结核病方面,李晓燕等人通过荟萃分析的结果表明,miRNA-155是可以作为识别活动性结核病的有效生物标志物,并且该生物标志物在儿童中的准确性和有效性是高于成人 [29] 。Kim J等人研究发现miR-199b-3p、miR-6886a-3p、miR-6856-3p、miR-16-5p、miR-374-5p和miR-199c-3p,在活动性肺结核(Active Pulmonary Tuberculosis, ATB)患者血液中显著上调,其中特别是miR-199a-3p和miR-6886-3p可用作检测TB感染和区分ATB和潜伏期肺结核(latent tuberculosisInfection, LTBI)的生物标志物 [30] 。Alipoor等人对结核病患者血清外泌体的miRNA谱进行了揭示,表明miR-484、miR-425和miR-96在结核病中显著上调,并与结核感染水平相关 [31] 。结核病患者血液中miR-29a-3p表达上调被证实是区分活动性结核病和潜伏期肺结核的有价值的候选生物标志物,也是诊断结核病的有效生物标志物 [32] 。

3.3. MTB感染后分泌的外泌体miRNA作为重要的免疫调节因子

在结核病的进展中外泌体miRNA起着关键作用。有研究表明结核分枝杆菌进化出多种机制逃避机体的免疫清除,包括参与控制生物过程的宿主miRNA的表达 [33] 。外泌体miRNA表达可以通过诱导先天免疫细胞反应,如调控细胞凋亡、自噬体的形成及成熟和自噬、细胞因子分泌参与结核分枝杆菌的杀伤或逃逸 [34] (如表1)。

miRNA还可以通过调节转录因子来改变微环境来控制巨噬细胞极化方向,影响促炎和抗炎因子的分泌。在结核分枝杆菌入侵体内后,结核分枝杆菌常通过调整一些系列机制来促使巨噬细胞朝着M2方向极化,以此来逃避免疫反应。通常认为Kruppel样转录因子(Kruppel-like Factors, KLF)家族中KLF4激活促进M2极化 [56] ,KLF6激活促进M1极化作用 [57] ,有团队观察到miR-26a在结核分枝杆菌感染期间下调,引起KLF4的上调,通过诱导M2极化和抑制结核分枝杆菌向溶酶体的运输而导致MTB存活 [58] 。Bi J等人发现,miR-181a通过直接靶向抑制KLF6促进M2巨噬细胞极化 [59] 。在一篇研究中,提出在结核感染后上调的miR-27a/b和miR-135a-5p分别通过干扰素调节因子4 (Interferon Regulatory Factor 4, IRF4)和STAT6诱导M2极化,相反下调的miR-155通过抑制SOCS1促进M1极化 [60] 。miRNA影响巨噬细胞的极化方向在其他疾病中也有体现,如:肺腺癌(Lung Adenocarcinoma, LUAD)-LUAD细胞通过外泌体miR-3153的传递,激活JNK信号通路,诱导M2型巨噬细胞极化,从而促进LUAD的进展 [7] ;结直肠癌–结直肠癌相关巨噬细胞来源的miRNA-934表达上调,通过下调PTEN表达和激活PI2K/AKT信号通路促进M2极化,以此促进结直肠癌肝转移 [61] 。糖尿病-miR-130b也通过抑制PPAR-γ使其极化偏向M1表型,促进糖尿病组织炎症及胰岛素抵抗 [62] 。这些发现为我们在基因方面控制和消除肺结核提供了新思路,可定向敲除或诱导对应的miRNA,调控巨噬细胞极化,使其发挥对应的促炎及抗炎作用。

Table 1. miRNA-mediated immunomodulation in tuberculosis

表1. 结核病中miRNA介导免疫调节

注:miRNA,microRAN;express,表达;targets,靶标;biological function,生物学功能;ref,参考;ATG,自噬相关基因;LAMP,溶酶体相关膜蛋白;LC3,微管相关蛋白1轻链;FOXO,叉头盒转录因子O类;TFEB,转录因子EB;AMPK,腺苷单磷酸活化蛋白激酶;TWEAK,TNF样弱细胞凋亡诱导剂;VPS,液泡蛋白分选;iNOS,一氧化氮合酶;CACNA2D3,钙电压门控通道辅助亚基α2δ3;ULK,丝氨酸/苏氨酸蛋白激酶;STAT,信号换能器和转录激活剂;TNFRSF-4,TNF受体超家族成员-4;ROCK1,Rho相关螺旋形成蛋白激酶1;FSTL1,卵泡抑素样蛋白1;TNFAIP7,TNFα诱导蛋白3;Fas,凋亡相关因子重组蛋白;Mcl,髓样细胞白血病分化蛋白;Bag2,Bcl-2结合抗凋亡基因2;DRAM2,DNA损伤调节自噬调节剂2;Bmf,Bcl修饰因子;JNK,Jun N-末端激酶;↑,上调;↓,下调。

4. 结论与展望

结核分枝杆菌入侵人体后,大多数人不会活动性发病,细菌在体内长期潜伏着,然而目前大多数手段对于潜伏期结核诊断困难,且对于早期活动性肺结核诊断也较复杂及漫长,为降低肺结核传播,研究便捷的新型生物标志物迫在眉睫。此时,外泌体miRNA不仅可作为肺结核等疾病的诊断生物标志物,还可作为基因治疗的载体。虽然miRNA在结核病的发病机制及生物标志物探查方面取得了有目共睹的成果,但仍需要大量的前瞻性研究明确其作为生物标志物的潜力,并为开发新的免疫疗法扫清障碍。

巨噬细胞存在全身各个组织细胞并承担着极为重要角色,巨噬细胞极化方向在一定程度上决定着疾病的进展:恢复或加重。但关于肺结核感染后miRNA调节巨噬细胞极化还需要大量的实验性研究明确其可靠性。重塑巨噬细胞极化可能是一种有前途的新型治疗方式。

参考文献

[1] World Health Organization (2021) Global Tuberculosis Report 2021.
https://www.who.int/publications/digital/global-tuberculosis-report-2021
[2] 卢春容, 房宏霞, 陆普选, 等. WHO 2021年全球结核病报告: 全球与中国关键数据分析[J]. 新发传染病电子杂志, 2021, 6(4): 368-372.
[3] Ahmad, F., Rani, A., Alam, A., et al. (2022) Macrophage: A Cell with Many Faces and Functions in Tu-berculosis. Frontiers in Immunology, 13, Article ID: 747799.
https://doi.org/10.3389/fimmu.2022.747799
[4] Epelman, S., Lavine, K.J. and Randolph, G.J. (2014) Origin and Functions of Tissue Macrophages. Immunity, 41, 21-35.
https://doi.org/10.1016/j.immuni.2014.06.013
[5] Atri, C., Guerfali, F.Z. and Laouini, D. (2018) Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International Journal of Molecular Sciences, 19, 1801.
https://doi.org/10.3390/ijms19061801
[6] Zeng, H., Zhao, B., Zhang, D., et al. (2022) Viola Yedoensis Makino Formula Alleviates DNCB-Induced Atopic Dermatitis by Activating JAK2/STAT3 Signaling Pathway and Promoting M2 Macrophages Polarization. Phytomedicine, 103, Article ID: 154228.
https://doi.org/10.1016/j.phymed.2022.154228
[7] Xu, L., Wang, L., Yang, R., et al. (2023) Lung Adenocarcinoma Cell-Derived Exosomes Promote M2 Macrophage Polarization through Transmission of miR-3153 to Activate the JNK Signaling Pathway. Human Molecular Genetics, 32, 2162-2176.
https://doi.org/10.1093/hmg/ddad052
[8] Li, G.L., Tang, J.F., Tan, W.L., et al. (2023) The Anti-Hepatocellular Carcinoma Effects of Polysaccharides from Ganoderma lucidum by Regulating Macrophage Polarization via the MAPK/NF-κB Signaling Pathway. Food & Function, 14, 3155-3168.
https://doi.org/10.1039/D2FO02191A
[9] Wang, Y., Zhang, X., Wang, J., et al. (2023) Inflammatory Periodontal Ligament Stem Cells Drive M1 Macrophage Polarization via Exosomal miR-143-3p-Mediated Regulation of PI3K/AKT/NF-κB Signaling. Stem Cells, 41, 184-199.
https://doi.org/10.1093/stmcls/sxac087
[10] 赵九洲, 姜晓旭, 李宏伟, 等. JAK-STAT信号通路与巨噬细胞炎症调控的研究进展[J]. 癌变∙畸变∙突变, 2020, 32(5): 402-404.
[11] Niehues, H., Rösler, B., van der Krieken, D.A., et al. (2019) STAT1 Gain-of-Function Compromises Skin Host Defense in the Context of IFN-γ Signaling. Journal of Al-lergy and Clinical Immunology, 143, 1626-1629.e5.
https://doi.org/10.1016/j.jaci.2018.11.033
[12] Oh, H., Park, S.H., Kang, M.K., et al. (2019) Asaronic Acid Atten-uates Macrophage Activation toward M1 Phenotype through Inhibition of NF-κB Pathway and JAK-STAT Signaling in Glucose-Loaded Murine Macrophages. Journal of Agricultural and Food Chemistry, 67, 10069-10078.
https://doi.org/10.1021/acs.jafc.9b03926
[13] Luan, G., Pan, F., Bu, L., et al. (2021) Butorphanol Promotes Mac-rophage Phenotypic Transition to Inhibit Inflammatory Lung Injury via κ Receptors. Frontiers in Immunology, 12, Arti-cle ID: 692286.
https://doi.org/10.3389/fimmu.2021.692286
[14] Liu, Y., Wang, L., Li, S., et al. (2022) Mechanical Stimulation Improves Rotator Cuff Tendon-Bone Healing via Activating IL-4/JAK/STAT Signaling Pathway Mediated Macrophage M2 Polarization. Journal of Orthopaedic Translation, 37, 78-88.
https://doi.org/10.1016/j.jot.2022.08.008
[15] Essandoh, K., Li, Y., Huo, J., et al. (2016) MiRNA-Mediated Mac-rophage Polarization and Its Potential Role in the Regulation of Inflammatory Response. Shock, 46, 122-131.
https://doi.org/10.1097/SHK.0000000000000604
[16] Labonte, A.C., Tosello-Trampont, A.C. and Hahn, Y.S. (2014) The Role of Macrophage Polarization in Infectious and Inflammatory Diseases. Molecules and Cells, 37, 275-285.
https://doi.org/10.14348/molcells.2014.2374
[17] Koh, Y.C., Yang, G., Lai, C.S., et al. (2018) Chemopreventive Effects of Phytochemicals and Medicines on M1/M2 Polarized Macrophage Role in Inflammation-Related Diseases. In-ternational Journal of Molecular Sciences, 19, Article No. 2208.
https://doi.org/10.3390/ijms19082208
[18] Cho, H.J., Lim, Y.J., Kim, J., et al. (2020) Different Macrophage Polarization between Drug-Susceptible and Multi-drug-Resistant Pulmonary Tuberculosis. BMC Infectious Diseases, 20, Article No. 81.
https://doi.org/10.1186/s12879-020-4802-9
[19] Rao, X., Zhou, X., Wang, G., et al. (2022) NLRP6 Is Required for Cancer-Derived Exosome-Modified Macrophage M2 Polarization and Promotes Metastasis in Small Cell Lung Can-cer. Cell Death & Disease, 13, Article No. 891.
https://doi.org/10.1038/s41419-022-05336-0
[20] Kong, Y. and Guo, L. (2023) Sunitinib Suppresses M2 Polariza-tion of Macrophages in Tumor Microenvironment to Regulate Hepatocellular Carcinoma Progression. Journal of Bio-chemical and Molecular Toxicology, 16, e23333.
https://doi.org/10.1002/jbt.23333
[21] Cheruku, S., Rao, V., Pandey, R., et al. (2023) Tumor-Associated Macro-phages Employ Immunoediting Mechanisms in Colorectal Tumor Progression: Current Research in Macrophage Re-polarization Immunotherapy. International Immunopharmacology, 116, Article ID: 109569.
https://doi.org/10.1016/j.intimp.2022.109569
[22] Purghè, B., Manfredi, M., Ragnoli, B., et al. (2021) Exosomes in Chronic Respiratory Diseases. Biomedicine & Pharmacotherapy, 144, Article ID: 112270.
https://doi.org/10.1016/j.biopha.2021.112270
[23] 冯真, 张博, 邓思齐, 等. 血浆外泌体miR-26a-5p和miR-151a-3p在结核病中的表达及诊断价值[J]. 安徽医科大学学报, 2022, 57(12): 1979-1984.
[24] Fabbri, M., Paone, A., Calore, F., et al. (2012) MicroRNAs Bind to Toll-Like Receptors to Induce Prometastatic Inflammatory Re-sponse. Proceedings of the National Academy of Sciences of the United States of America, 109, E2110-E2116.
https://doi.org/10.1073/pnas.1209414109
[25] Pan, B.T., Teng, K., Wu, C., et al. (1985) Electron Microscopic Ev-idence for Externalization of the Transferrin Receptor in Vesicular Form in Sheep Reticulocytes. Journal of Cell Biology, 101, 942-948.
https://doi.org/10.1083/jcb.101.3.942
[26] 高舒颖, 梁爽, 刘永军, 等. 外泌体在基因递送系统中的研究进展[J]. 中国医药工业杂志, 2023, 54(3): 295-303.
[27] Rashed, M., Bayraktar, E., Helal, G., et al. (2017) Exosomes: From Garbage Bins to Promising Therapeutic Targets. International Journal of Molecular Sciences, 18, Article No. 538.
https://doi.org/10.3390/ijms18030538
[28] Alipoor, S.D., Mortaz, E., Garssen, J., et al. (2016) Exosomes and Ex-osomal miRNA in Respiratory Diseases. Mediators of Inflammation, 2016, Article ID: 5628404.
https://doi.org/10.1155/2016/5628404
[29] Li, X., He, J., Wang, G., et al. (2021) Diagnostic Value of mi-croRNA-155 in Active Tuberculosis: A Systematic Review and Meta-Analysis. Medicine (Baltimore), 100, e27869.
https://doi.org/10.1097/MD.0000000000027869
[30] Kim, J., Park, H., Park, S.B., et al. (2022) Identification of MicroRNAs as Potential Blood-Based Biomarkers for Diagnosis and Therapeutic Monitoring of Active Tuberculosis. Diagnostics (Basel), 12, Article No. 369.
https://doi.org/10.3390/diagnostics12020369
[31] Alipoor, S.D., Tabarsi, P., Varahram, M., et al. (2019) Serum Exosomal miRNAs Are Associated with Active Pulmonary Tuberculosis. Disease Markers, 2019, Article ID: 1907426.
https://doi.org/10.1155/2019/1907426
[32] Ndzi, E.N., Nkenfou, C.N., Mekue, L.M., et al. (2019) MicroRNA hsa-miR-29a-3p Is a Plasma Biomarker for the Differential Diagnosis and Monitoring of Tuberculosis. Tuberculosis (Edinb), 114, 69-76.
https://doi.org/10.1016/j.tube.2018.12.001
[33] Sinigaglia, A., Peta, E., Riccetti, S., et al. (2020) Tuberculo-sis-Associated MicroRNAs: From Pathogenesis to Disease Biomarkers. Cells, 9, Article No. 2160.
https://doi.org/10.3390/cells9102160
[34] Liang, S., Ma, J., Gong, H., et al. (2022) Immune Regulation and Emerging Roles of Noncoding RNAs in Mycobacterium tuberculosis Infection. Frontiers in Immunology, 13, Article ID: 987018.
https://doi.org/10.3389/fimmu.2022.987018
[35] Ouimet, M., Koster, S., Sakowski, E., et al. (2016) Mycobacte-rium tuberculosis Induces the miR-33 Locus to Reprogram Autophagy and Host Lipid Metabolism. Nature Immunology, 17, 677-686.
https://doi.org/10.1038/ni.3434
[36] Chen, D.Y., Chen, Y.M., Lin, C.F., et al. (2020) Mi-croRNA-889 Inhibits Autophagy to Maintain Mycobacterial Survival in Patients with Latent Tuberculosis Infection by Targeting TWEAK. mBio, 11, e03045-19.
https://doi.org/10.1128/mBio.03045-19
[37] Tu, H., Yang, S., Jiang, T., et al. (2019) Elevated Pulmonary Tuber-culosis Biomarker miR-423-5p Plays Critical Role in the Occurrence of Active TB by Inhibiting Autophago-some-Lysosome Fusion. Emerging Microbes & Infections, 8, 448-460.
https://doi.org/10.1080/22221751.2019.1590129
[38] Gu, X., Gao, Y., Mu, D.G., et al. (2017) MiR-23a-5p Mod-ulates Mycobacterial Survival and Autophagy during Mycobacterium tuberculosis Infection through TLR2/MyD88/NF-κB Pathway by Targeting TLR2. Experimental Cell Research, 354, 71-77.
https://doi.org/10.1016/j.yexcr.2017.03.039
[39] Dong, W., Wang, G., Feng, J., et al. (2022) MiR-25 Blunts Au-tophagy and Promotes the Survival of Mycobacterium tuberculosis by Regulating NPC1. iScience, 25, Article ID: 104279.
https://doi.org/10.1016/j.isci.2022.104279
[40] Liu, F., Chen, J., Wang, P., et al. (2018) MicroRNA-27a Controls the Intracellular Survival of Mycobacterium tuberculosis by Regulating Calcium-Associated Autophagy. Nature Communications, 9, Article No. 4295.
https://doi.org/10.1038/s41467-018-06836-4
[41] Liu, K., Hong, D., Zhang, F., et al. (2020) MicroRNA-106a In-hibits Autophagy Process and Antimicrobial Responses by Targeting ULK1, ATG7, and ATG16L1 During Mycobacte-rial Infection. Frontiers in Immunology, 11, Article ID: 610021.
https://doi.org/10.3389/fimmu.2020.610021
[42] Wang, Y., Chen, C., Xu, X.D., et al. (2020) Levels of miR-125a-5p Are Altered in Mycobacterium avium-Infected Macrophages and Associate with the Triggering of an Au-tophagic Response. Microbes and Infection, 22, 31-39.
https://doi.org/10.1016/j.micinf.2019.07.002
[43] Li, W.T. and Zhang, Q. (2019) MicroRNA-708-5p Regulates Mycobacterial Vitality and the Secretion of Inflammatory Factors in Mycobacterium tuberculosis-Infected Macrophages by Targeting TLR4. European Review for Medical and Pharmacological Sciences, 23, 8028-8038.
[44] Singh, Y., Kaul, V., Mehra, A., et al. (2013) Mycobacterium tuberculosis Controls microRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity. Journal of Biological Chemistry, 288, 5056-5061.
https://doi.org/10.1074/jbc.C112.439778
[45] Liu, F., Dong, Z., Lin, Y., et al. (2021) MicroRNA-502-3p Pro-motes Mycobacterium tuberculosis Survival in Macrophages by Modulating the Inflammatory Response by Targeting ROCK1. Molecular Medicine Reports, 24, Article No. 753.
https://doi.org/10.3892/mmr.2021.12393
[46] Zhang, Z.M., Zhang, A.R., Xu, M., et al. (2017) TLR-4/miRNA-32-5p/FSTL1 Signaling Regulates Mycobacterial Survival and Inflammatory Responses in Mycobacterium tuberculosis-Infected Macrophages. Experimental Cell Research, 352, 313-321.
https://doi.org/10.1016/j.yexcr.2017.02.025
[47] Vereecke, L., Beyaert, R. and van Loo, G. (2009) The Ubiquitin-Editing Enzyme A20 (TNFAIP3) Is a Central Regulator of Immunopathology. Trends in Immunology, 30, 383-391.
https://doi.org/10.1016/j.it.2009.05.007
[48] Fu, B., Lin, X., Tan, S., et al. (2021) MiR-342 Controls Mycobacterium tuberculosis Susceptibility by Modulating Inflammation and Cell Death. EMBO Reports, 22, e52252.
https://doi.org/10.15252/embr.202052252
[49] Xi, X., Zhang, C., Han, W., et al. (2015) MicroRNA-223 Is Up-regulated in Active Tuberculosis Patients and Inhibits Apoptosis of Macrophages by Targeting FOXO3. Genetic Testing and Molecular Biomarkers, 19, 650-656.
https://doi.org/10.1089/gtmb.2015.0090
[50] Tripathi, A., Srivastava, V. and Singh, B.N. (2018) hsa-let-7b-5p Fa-cilitates Mycobacterium tuberculosis Survival in THP-1 Human Macrophages by Fas Downregulation. FEMS Microbi-ology Letters, 365, fny040.
https://doi.org/10.1093/femsle/fny040
[51] Zhang, D., Yi, Z. and Fu, Y. (2019) Downregulation of miR-20b-5p Facilitates Mycobacterium tuberculosis Survival in RAW 264.7 Macrophages via Attenuating the Cell Apoptosis by Mcl-1 Upregulation. Journal of Cellular Biochemistry, 120, 5889-5896.
https://doi.org/10.1002/jcb.27874
[52] Liang, S., Song, Z., Wu, Y., et al. (2018) MicroRNA-27b Modulates In-flammatory Response and Apoptosis during Mycobacterium tuberculosis Infection. The Journal of Immunology, 200, 3506-3518.
https://doi.org/10.4049/jimmunol.1701448
[53] Liu, G., Wan, Q., Li, J., et al. (2020) Silencing miR-125b-5p At-tenuates Inflammatory Response and Apoptosis Inhibition in Mycobacterium tuberculosis-Infected Human Macrophages by Targeting DNA Damage-Regulated Autophagy Modulator 2 (DRAM2). Cell Cycle, 19, 3182-3194.
https://doi.org/10.1080/15384101.2020.1838792
[54] Wu, Y., Guo, Z., Yao, K., et al. (2016) The Transcriptional Foundations of Sp110-Mediated Macrophage (RAW264.7) Resistance to Mycobacterium tuberculosis H37Ra. Scientific Reports, 6, Article No. 22041.
https://doi.org/10.1038/srep22041
[55] Zhang, G., Liu, X., Wang, W., et al. (2016) Down-Regulation of miR-20a-5p Triggers Cell Apoptosis to Facilitate Mycobacterial Clearance through Targeting JNK2 in Human Macro-phages. Cell Cycle, 15, 2527-2538.
https://doi.org/10.1080/15384101.2016.1215386
[56] Liao, X., Sharma, N., Kapadia, F., et al. (2011) Krüppel-Like Factor 4 Regulates Macrophage Polarization. Journal of Clinical Investigation, 121, 2736-2749.
https://doi.org/10.1172/JCI45444
[57] Date, D., Das, R., Narla, G., et al. (2014) Kruppel-Like Transcription Factor 6 Regulates Inflammatory Macrophage Polarization. Journal of Biological Chemistry, 289, 10318-10329.
https://doi.org/10.1074/jbc.M113.526749
[58] Sahu, S.K., Kumar, M., Chakraborty, S., et al. (2017) MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBP β Regulate Innate Immune Signaling, the Polarization of Macrophages and the Trafficking of Mycobacterium tuberculosis to Lysosomes during Infection. PLOS Pathogens, 13, e1006410.
https://doi.org/10.1371/journal.ppat.1006410
[59] Bi, J., Zeng, X., Zhao, L., et al. (2022) Retraction Notice to: MiR-181a Induces Macrophage Polarized to M2 Phenotype and Promotes M2 Macrophage-Mediated Tumor Cell Me-tastasis by Targeting KLF6 and C/EBPα. Nucleic Acids—Molecular Therapy, 28, 792.
https://doi.org/10.1016/j.omtn.2022.05.005
[60] Ahluwalia, P.K., Pandey, R.K., Sehajpal, P.K., et al. (2017) Per-turbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-Survival Foam Cell. Frontiers in Immunology, 8, Article No. 107.
https://doi.org/10.3389/fimmu.2017.00107
[61] Zhao, S., Mi, Y., Guan, B., et al. (2020) Tumor-Derived Exosomal miR-934 Induces Macrophage M2 Polarization to Promote Liver Metastasis of Colorectal Cancer. Journal of Hematology & Oncology, 13, Article No. 156.
https://doi.org/10.1186/s13045-020-00991-2
[62] Zhang, M., Zhou, Z., Wang, J., et al. (2016) MiR-130b Pro-motes Obesity Associated Adipose Tissue Inflammation and Insulin Resistance in Diabetes Mice through Alleviating M2 Macrophage Polarization via Repression of PPAR-γ. Immunology Letters, 180, 1-8.
https://doi.org/10.1016/j.imlet.2016.10.004