|
[1]
|
Zhang, B., Pan, C., Feng, C., Yan, C., Yu, Y. and Chen, Z. (2022) Role of Mitochondrial Reactive Oxygen Species in Homeostasis Regulation. Redox Report, 27, 45-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Walkon, L.L., Strubbe-Rivera, J.O. and Bazil, J.N. (2022) Calcium Overload and Mitochondrial Metabolism. Biomolecules, 12, Article No. 1891. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zheng, J., Cao, Y., Yang, J. and Jiang, H. (2022) UBXD8 Mediates Mitochondria-Associated Degradation to Restrain Apoptosis and Mitophagy. EMBO Reports, 23, e54859. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kosieradzki, M. and Rowinski, W. (2008) Ische-mia/Reperfusion Injury in Kidney Transplantation: Mechanisms and Prevention. Transplantation Proceedings, 40, 3279-3288. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rouslin, W. (1983) Mitochondrial Complexes I, II, III, IV, and V in Myocardial Ischemia and Autolysis. American Journal of Physiology, 244, H743-H748. [Google Scholar] [CrossRef]
|
|
[6]
|
Duann, P. and Lin, P.H. (2017) Mitochondria Damage and Kidney Disease. Advances in Experimental Medicine and Biology, 982, 529-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bhargava, P. and Schnellmann, R.G. (2017) Mitochondrial Energetics in the Kidney. Nature Reviews Nephrology, 13, 629-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Eltzschig, H.K. and Eckle, T. (2011) Ischemia and Reperfu-sion—From Mechanism to Translation. Nature Medicine, 17, 1391-1401. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Anzell, A.R., Maizy, R., Przyklenk, K. and Sanderson, T.H. (2018) Mito-chondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Molecular Neurobiology, 55, 2547-2564. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dobashi, K., Ghosh, B., Orak, J.K., Singh, I. and Singh, A.K. (2000) Kidney Ischemia-Reperfusion: Modulation of Antioxidant Defenses. Molecular and Cellular Biochemistry, 205, 1-11. [Google Scholar] [CrossRef]
|
|
[11]
|
Dare, A.J., Bolton, E.A., Pettigrew, G.J., Bradley, J.A., Saeb-Parsy, K. and Murphy, M.P. (2015) Protection against Renal Ischemia-Reperfusion Injury in Vivo by the Mito-chondria Targeted Antioxidant MitoQ. Redox Biology, 5, 163-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Park, E.J., Dusabimana, T., Je, J., Jeong, K., Yun, S.P. and Kim, H.J. (2020) Honokiol Protects the Kidney from Renal Ischemia and Reperfusion Injury by Upregulating the Glutathione Biosynthetic Enzymes. Biomedicines, 8, Article No. 352. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Walker, L.M., York, J.L., Imam, S.Z., Ali, S.F., Muldrew, K.L. and Mayeux, P.R. (2001) Oxidative Stress and Reactive Nitrogen Species Generation during Renal Ischemia. Toxicological Sciences, 63, 143-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C. and Yuan, Y. (2021) Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupt-ing TFAM-Mediated mtDNA Maintenance. Theranostics, 11, 1845-1863. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Calkins, M.J., Manczak, M., Mao, P., Shirendeb, U. and Reddy, P.H. (2011) Impaired Mitochondrial Biogenesis, Defective Axonal Transport of Mitochondria, Abnormal Mitochondrial Dy-namics and Synaptic Degeneration in a Mouse Model of Alzheimer’s Disease. Human Molecular Genetics, 20, 4515-4529. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cao, M., Jiang, J., Du, Y. and Yan, P. (2012) Mitochon-dria-Targeted Antioxidant Attenuates High Glucose-Induced P38 MAPK Pathway Activation in Human Neuroblastoma Cells. Molecular Medicine Reports, 5, 929-934. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, J., Chen, X., Xiao, W., Ma, W., Li, T. and Huang, J. (2011) Mito-chondria-Targeted Antioxidant Peptide SS31 Attenuates High Glucose-Induced Injury on Human Retinal Endothelial Cells. Biochemical and Biophysical Research Communications, 404, 349-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Manczak, M., Mao, P., Calkins, M.J., Cornea, A., Reddy, A.P. and Murphy, M.P. (2010) Mitochondria-Targeted Antioxidants Protect against Amyloid-Beta Toxicity in Alzheimer’s Dis-ease Neurons. Journal of Alzheimer’s Disease, 20, S609-S631. [Google Scholar] [CrossRef]
|
|
[19]
|
Mizuguchi, Y., Chen, J., Seshan, S.V., Poppas, D.P., Szeto, H.H. and Felsen, D. (2008) A Novel Cell-Permeable Antioxidant Peptide Decreases Renal Tubular Apoptosis and Damage in Unilateral Ureteral Obstruction. American Journal of Physiology-Renal Physiology, 295, F1545-F1553. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Whiteman, M., Spencer, J.P., Szeto, H.H. and Armstrong, J.S. (2008) Do Mitochondriotropic Antioxidants Prevent Chlorinative Stress-Induced Mitochondrial and Cellular Injury? An-tioxidants & Redox Signaling, 10, 641-650. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cho, J., Won, K., Wu, D., Soong, Y., Liu, S. and Szeto, H.H. (2007) Potent Mitochondria-Targeted Peptides Reduce Myocardial Infarction in Rats. Coronary Artery Disease, 18, 215-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Cho, S., Szeto, H.H., Kim, E., Kim, H., Tolhurst, A.T. and Pinto, J.T. (2007) A Novel Cell-Permeable Antioxidant Peptide, SS31, Attenuates Ischemic Brain Injury by Down-Regulating CD36. Journal of Biological Chemistry, 282, 4634-4642. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhao, K., Zhao, G.M., Wu, D., Soong, Y., Birk, A.V. and Schiller, P.W. (2004) Cell-Permeable Peptide Antioxidants Targeted to Inner Mitochondrial Membrane Inhibit Mitochondrial Swelling, Oxidative Cell Death, and Reperfusion Injury. Journal of Biological Chemistry, 279, 34682-34690. [Google Scholar] [CrossRef]
|
|
[24]
|
Arany, I., Faisal, A., Clark, J.S., Vera, T., Baliga, R. and Nagamine, Y. (2010) p66SHC-Mediated Mitochondrial Dysfunction in Renal Proximal Tubule Cells during Oxidative Injury. American Journal of Physiology-Renal Physiology, 298, F1214-F1221. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Arany, I., Faisal, A., Nagamine, Y. and Safirstein, R.L. (2008) p66shc Inhibits Pro-Survival Epidermal Growth Factor Receptor/ERK Signaling during Severe Oxidative Stress in Mouse Renal Proximal Tubule Cells. Journal of Biological Chemistry, 283, 6110-6117. [Google Scholar] [CrossRef]
|
|
[26]
|
Sun, L., Xiao, L., Nie, J., Liu, F.Y. and Ling, G.H. (2010) p66Shc Mediates High-Glucose and Angiotensin II-Induced Oxidative Stress Renal Tubular Injury via Mitochondrial-Dependent Apoptotic Pathway. American Journal of Physiology-Renal Physiology, 299, F1014-F1025. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Szeto, H.H., Liu, S., Soong, Y., Wu, D., Darrah, S.F., Cheng, F.Y. and Chen, W.C. (2011) Mitochondria-Targeted Peptide Accelerates ATP Recovery and Reduces Ischemic Kidney Injury. Journal of the American Society of Nephrology, 22, 1041-1052. [Google Scholar] [CrossRef]
|
|
[28]
|
Yang, S.K., Li, A.M., Han, Y.C., Peng, C.H., Song, N. and Yang, M. (2019) Mitochondria-Targeted Peptide SS31 Attenuates Renal Tubulointerstitial Injury via Inhibiting Mitochondrial Fission in Diabetic Mice. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 2346580. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Granata, S., Votrico, V., Spadaccino, F., Catalano, V., Ranieri, E. and Stallone, G. (2022) Oxidative Stress and Ischemia/Reperfusion Injury in Kidney Transplantation: Focus on Ferroptosis, Mitophagy and New Antioxidants. Antioxidants (Basel), 11, Article No. 769. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Trnka, J., Blaikie, F.H., Smith, R.A. and Murphy, M.P. (2008) A Mitochondria-Targeted Nitroxide Is Reduced to Its Hydroxylamine by Ubiquinol in Mitochondria. Free Radical Biology and Medicine, 44, 1406-1419. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Corsi, L., Zavatti, M., Geminiani, E., Zanoli, P.B. and Araldi, M. (2011) Anti-Inflammatory Activity of the Non-Peptidyl Low Molecular Weight Radical Scavenger IAC in Carrageenan-Induced Oedema in Rats. Journal of Pharmacy and Pharmacology, 63, 417-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tian, Y., Shu, J., Huang, R., Chu, X. and Mei, X. (2020) Protective Effect of Renal Ischemic Postconditioning in Renal Ischemic-Reperfusion Injury. Translational Andrology and Urology, 9, 1356-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Youle, R.J. and Narendra, D.P. (2011) Mechanisms of Mitophagy. Na-ture Reviews Molecular Cell Biology, 12, 9-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ashrafi, G. and Schwarz, T.L. (2013) The Pathways of Mitophagy for Qual-ity Control and Clearance of Mitochondria. Cell Death & Differentiation, 20, 31-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Esteban-Martinez, L. and Boya, P. (2018) BNIP3L/NIX-Dependent Mi-tophagy Regulates Cell Differentiation via Metabolic Reprogramming. Autophagy, 14, 915-917. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Acuna Castroviejo, D., Escames, G., Carazo, A., Leon, J., Khaldy, H. and Reiter, R.J. (2002) Melatonin, Mitochondrial Homeostasis and Mitochondrial-Related Diseases. Current Topics in Medicinal Chemistry, 2, 133-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hofmann, J., Otarashvili, G., Meszaros, A., Ebner, S., Weissen-bacher, A. and Cardini, B. (2020) Restoring Mitochondrial Function While Avoiding Redox Stress: The Key to Prevent-ing Ischemia/Reperfusion Injury in Machine Perfused Liver Grafts? International Journal of Molecular Sciences, 21, Ar-ticle No. 3132. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Suliman, H., Ma, Q., Zhang, Z., Ren, J., Morris, B.T. and Crowley, S.D. (2021) Annexin A1 Tripeptide Mimetic Increases Sirtuin-3 and Augments Mitochondrial Function to Limit Ischemic Kidney Injury. Frontiers in Physiology, 12, Article ID: 683098. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yu, W., Sheng, M., Xu, R., Yu, J., Cui, K. and Tong, J. (2013) Berberine Protects Human Renal Proximal Tubular Cells from Hypoxia/Reoxygenation Injury via Inhibiting Endoplasmic Reticulum and Mitochondrial Stress Pathways. Journal of Translational Medicine, 11, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Shakeri, F., Bianconi, V., Pirro, M. and Sahebkar, A. (2020) Effects of Plant and Animal Natural Products on Mitophagy. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 6969402. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Pabla, N. and Bajwa, A. (2022) Role of Mitochondrial Ther-apy for Ischemic-Reperfusion Injury and Acute Kidney Injury. Nephron, 146, 253-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
McCully, J.D., Del Nido, P.J. and Emani, S.M. (2022) Mitochondrial Transplantation for Organ Rescue. Mitochondrion, 64, 27-33. [Google Scholar] [CrossRef] [PubMed]
|