轻度非增殖期糖尿病视网膜病变患者对比敏感度与其黄体生成素的相关性研究
Correlation between Contrast Sensitivity and Its Luteinizing Hormone in Patients with Mild Non-Proliferative Diabetic Retinopathy
摘要: 目的:研究轻度非增殖期糖尿病性视网膜病变(Non-proliferative diabetic retinopathy, NPDR)患者不同空间频率的对比敏感度(Contrast sensitivity, CS)和低对比度视力(Low-contrast visual acuity, LCVA)的变化与其黄体生成素水平(Luteinizing hormone, LH)的相关性。方法:本研究共选取2022年3月至2022年9月在重庆医科大学附属永川医院眼科住院的2型糖尿病患者40例(80眼),并选取体检健康无糖尿病患者20例(40眼)作为正常对照组。所有患者均仔细询问病史,收集并检测患者外周血清LH水平及空腹血浆葡萄糖(Fasting blood glucose, FBG)等相关生化指标,并进行视力检测、裂隙灯检查、眼底检查、CS和LCVA检测。糖尿病患者(Diabetes mellitus, DM)另行荧光素眼底血管造影检查(Fundus fluorescein angiography, FFA)、眼底照相及光学相干断层扫描(Optical coherence tomography, OCT),根据结果分为无糖尿病性视网膜病变组(Non-diabetic retinopathy, NDR)和轻度非增殖期糖尿病视网膜病变组(Non-proliferative diabetic retinopathy, NPDR),分析轻度NPDR患者CS及LCVA的变化及其与LH水平的相关性。结果:三组之间年龄差异有统计学意义(P < 0.05),NDR组及轻度NPDR组在空间频率为0.75 c/d、1.5 c/d、3 c/d、6 c/d、12 c/d下的CS均低于正常对照组(P < 0.05),年龄校正后,轻度NPDR组和NDR组与正常对照组相比,在各空间频率的CS均低于正常对照组(P < 0.01);轻度NPDR组在对比度为6%、4.3%和3.2%时的视力低于NDR组,差异有统计学意义(P < 0.001),年龄校正后在对比度6%时轻度NPDR组的视力低于NDR组,在对比度为6%、4.3%和3.2%时轻度NPDR组的视力低于对照组,且NDR组视力低于对照组;三组男性患者血清LH水平存在显著差异,且DR病变程度与血清LH水平呈正相关,三组之间女性患者的血清LH水平无显著差异;LCVA与受试者血清LH水平无相关关系(P > 0.05);另外,在空间频率为3 c/d、6 c/d时轻度NPDR组患者的血清LH水平与对比敏感度呈负相关关系。结论:轻度NPDR患者的CS和LCVA均下降,CS及LCVA检测可用于DR患者视觉功能损害的早期监测。男性糖尿病患者LH水平与DR程度及视觉功能存在一定相关性,LH水平越高,患者DR程度越严重,这可能为临床糖尿病视网膜病变治疗靶点的选择提供理论依据。
Abstract: Objection: To study the changes in contrast sensitivity (CS) and low-contrast visual acuity (LCVA) at different spatial frequencies and their correlation with luteinizing hormone (LH) levels in patients with mild non-proliferative diabetic retinopathy. Method: We selected 40 patients (80 eyes) with type 2 diabetes mellitus hospitalized in the Ophthalmology Department of Yongchuan Hospital, Chongqing Medical University between March 2022 and September 2022, and selected 20 patients (40 eyes) without diabetes as the control group. All patients were collected their medical history, peripheral blood was taken for examination of biochemical indexes such as serum LH level and fasting plasma glucose (FBG). Visual acuity test, slit-lamp test, fundus test, CS and LCVA tests were measured. Fluorescence angiography, fundus photography and optical coherence tomography (OCT) were measured in diabetic patients. According to the results, the group without diabetic retinopa-thy (non-diabetic retinopathy, NDR) and the group with mild non-proliferative diabetic retinopathy (non-proliferative diabetic retinopathy, NPDR) were divided. The changes in CS and LCVA in pa-tients with mild NPDR and their correlation with LH levels were analyzed. Result: There was a sig-nificant difference in age among the three groups (P < 0.05). The contrast sensitivity of the NDR group and the mild NPDR group at spatial frequencies of 0.75 c/d, 1.5 c/d, 3 c/d, 6 c/d, and 12 c/d was lower than that of the normal control group (P < 0.05). After age correction, there was a signifi-cant difference in contrast sensitivity between the NDR group and the mild NPDR group and the normal control group at each spatial frequency (P < 0.01). The visual acuity of the mild NPDR group at 6%, 4.3%, and 3.2% contrast was lower than that of the NDR group, showing a significant differ-ence (P < 0.001). The mild NPDR group had lower visual acuity than the NDR group at 6% of con-trast after age correction, and the NDR group had lower visual acuity than the normal control group at 6%, 4.3%, and 3.2% contrast, the NDR group had lower visual acuity than the normal control group. LH serum level was positively correlated with diabetic retinopathy in male patients, but there was no significant difference in LH serum level in female patients. There was no correlation between LCVA and serum LH level (P > 0.05). LH serum levels in the NPDR group were negatively correlated with contrast sensitivity at spatial frequencies of 3 c/d, 6 c/d. Conclusion: CS and LCVA were decreased in mild NPDR group, they can be used for early monitoring of visual function im-pairment in DR patients. There is a correlation between LH level and the degree of DR and visual function in male diabetic patients, the higher the LH level, the more severe the degree of DR in pa-tients, which may provide a theoretical basis for the selection of therapeutic targets for clinical dia-betic retinopathy.
文章引用:张冬梅, 徐霁, 宋胜仿, 李华, 刘世纯. 轻度非增殖期糖尿病视网膜病变患者对比敏感度与其黄体生成素的相关性研究[J]. 临床医学进展, 2023, 13(8): 13403-13413. https://doi.org/10.12677/ACM.2023.1381873

1. 引言

糖尿病视网膜病变(Diabetic retinopathy, DR)是糖尿病的严重并发症,是全世界劳动年龄阶段视力下降甚至失明的主要原因 [1] 。在我国,DR的患病率约为34.1%,2020年DR导致50岁以上人群失明的人数约为3.2万例,已成为严重的公共卫生问题 [2] [3] 。研究发现,在DR的早期阶段,如视网膜仅存在微血管瘤病变,患者通常无明显症状,中心视力可能正常,如果不及时治疗,视网膜病变将会继续进展,后期会严重损害视力,最终发展为失明 [4] [5] 。对DR发病机制的研究表明,微血管病变、炎症和视神经退行性病变可能导致早期的视网膜损伤,而且最近研究表明,视网膜神经功能障碍先于微血管损伤 [6] [7] 。目前早期DR患者的神经功能障碍表现为暗适应、色觉、对比敏感度等视觉功能异常,可以通过视网膜电图、对比敏感度(contrast sensitivity, CS)、低对比度视力(Low-contrast visual acuity, LCVA)等测量 [8] - [13] 。CS是指人眼辨别物体时所需物体表面的明暗亮度反差,在临床评估中被广泛用作视觉功能的衡量标准 [14] [15] [16] [17] [18] 。LCVA只改变空间频率,而对比度不变,是暗环境下识别字体亮度与背景亮度反差较小时的视力,可以发现高对比度视力检测不能发现的视力异常。CS与LCVA结合能够更全面地了解DR早期患者的视觉功能改变,有助于发现隐匿的DR患者并及时实施相关的治疗,从而延缓疾病进展,降低DR的致盲率。

黄体生成素(Luteinizing hormone, LH)是一种糖蛋白激素,产生于脑垂体前叶,卵巢和睾丸是LH作用的经典靶点 [19] 。近年来研究发现,视网膜中存在LH受体,并在视锥光感受器中密度最高 [20] 。Movsas等人发现在增殖性糖尿病视网膜病变(Proliferative diabetic retinopathy, PDR)的玻璃体腔中,女性患者眼睛玻璃体腔中LH水平明显高于男性 [21] ,另一项研究中,在男性2型糖尿病患者中,轻度NPDR患者血清LH水平低于中、重度NPDR,LH与DR的发生呈正相关 [22] 。但在另一项研究中,绝经后女性患者血清LH水平与DR的发生无相关性 [23] 。另外,Movsas等人 [21] 在敲除LH受体基因的小鼠实验中发现,敲除LH受体小鼠的视网膜电图(Electroretinography, ERG)的a波和b波振幅比对照组降低25%,表明LH受体信号的减少与视锥光感受器的视觉处理相关。这些结果表明LH与DR的发生密切相关,且LH可能在视觉系统中发挥着重要生理作用,但目前关于早期DR的视觉功能改变及其与相关激素水平的相关性研究较少。本研究拟通过探讨轻度NPDR患者的CS及LCVA改变及其与LH水平的相关性,为DR的早期筛查与防治提供理论依据。

2. 资料与方法

2.1. 研究对象

选取2022年3月至2022年9月于重庆医科大学附属永川医院眼科住院的2型糖尿病患者40例(80眼)及我院体检无糖尿病健康对照者20例(40眼)。糖尿病患者另行荧光素眼底血管造影检查(Fundus fluorescein angiography, FFA)及光学相干断层扫描(Optical coherence tomography, OCT),根据检查结果排除黄斑水肿,将糖尿病患者分为无糖尿病视网膜病变(Non-diabetic retinopathy, NDR)组(20例40眼)、轻度非增殖期糖尿病性视网膜病变(Non-proliferative diabetic retinopathy, NPDR)组(20例40眼)。对糖尿病患者分组采用美国眼科学会2019版糖尿病视网膜病变的国际临床分级标准 [24] :目前国际上根据严重程度,DR可分为以下两个时期:非增殖性糖尿病视网膜病变(NPDR)和增殖性糖尿病视网膜病变(PDR)。前者又分为轻度NPDR、中度NPDR、重度NPDR,其中出现微动脉瘤是轻度NPDR的特征,中度病变介于轻度病变与重度病变之间,而重度NPDR的特征是出现下列病变之一:视网膜内微血管异常、视网膜静脉血管呈串珠状改变或多于20处的视网膜内出血。PDR的特征为出现下列1个及以上表现:视盘或其他地方的新生血管形成、异常血管导致的视网膜前出血或出血进入玻璃体导致的玻璃体积血。其中NDR组:男性12例24眼,女性8例16眼;年龄59~72岁,平均年龄(66.75 ± 3.65)岁。轻度NPDR组:男性8例16眼,女性12例24眼;年龄57~74岁,平均年龄(65.5 ± 4.47)岁。对照组:男性8例16眼,女性12例24眼;年龄53~67岁,平均年龄(59.35 ± 4.56)岁。三组患者的性别差异无统计学意义(P > 0.05),三组之间年龄差异有统计学意义(P < 0.05)。

2.2. 纳入标准

① 糖尿病患者参照中华医学会糖尿病学分会在2020版的中国2型糖尿病防治指南中提出的2型糖尿病诊断标准 [24] ;② 糖尿病视网膜病变分级参照美国眼科学会2019版糖尿病视网膜病变的国际临床分级标准 [25] ;③ 年龄 ≥ 45岁;④ 女性自然绝经 ≥ 1年;⑤ 最佳矫正视力 ≥ 0.9+,屈光不正:−2.00DS − +2.00DS [13] [26] 。

2.3. 排除标准

① 患有角膜疾病、高眼压症、青光眼、葡萄膜炎、视网膜脱落等其他影响视力的眼科疾病及全身疾病;② 既往有眼部手术史;③ 眼球震颤、斜视;④ LOCS分级系统中晶状体混浊度II级以上 [27] ;⑤ 高血压;⑥ 既往无性激素药物或可能影响其水平的药物史;⑦ 无其他内分泌系统疾病。

2.4. 方法

2.4.1. 研究对象资料收集

所有患者详细询问病史,记录年龄、性别、糖尿病病程、糖尿病家族史。

2.4.2. 眼部临床检查

所有入选对象均接受视力检测、裂隙灯检查、眼底检查、对比敏感度(CS)和低对比度视力检测,对于糖尿病患者还需行FFA和OCT检查。其中,测量CS和LCVA采用意大利DMD视觉敏感度测试仪。① 对比敏感度(CS):受试者与屏幕之间的距离为3公尺,分别在空间频率为0.75、1.5、3.0、6.0、12.0、18.0 c/d下检测,激励受试者辨别圆形图像中光栅的倾斜方向并做出回答。② 低对比度视力(LCVA):受试者与屏幕之间的距离为2公尺,采用Sloan test测量在对比度为3.2%、4.3%、6%下的视力,嘱受试者由上到下逐个字母进行回答,并记录每行回答错误的个数,若大于等于两个字母则停止测量,记录此行的视力结果,采用LogMAR记录数值,数值越小代表视力越好,反之亦然。

2.4.3. 生化指标检测方法

抽取受试者早晨空腹8小时静脉血,静置2小时后,检测空腹血浆葡萄糖(Fasting blood glucose, FBG)、LH、糖化血红蛋白(Glycosylated hemoglobin, HbA1c)。FBG采用己糖激酶法测定,LH采用酶联免疫法测定、HbA1c采用高效液相色谱仪测定。

2.5. 统计学分析

统计软件SPSS26.0对纳入数据进行分析。首先所有数据进行正态检验及方差齐性检验,计数资料以x ± s表示,组间比较采用单因素方差分析,用Bonferroni检验,年龄使用线性回归校正。Pearson相关性分析法用于连续变量,分析两者的关系。若P < 0.05代表有统计学差异。

3. 结果

3.1. 各组之间基本资料比较

NDR组和NPDR组的血糖水平均高于对照组,差异有统计学意义(P < 0.001),NPDR组糖化血红蛋白水平高于NDR组,NDR组糖化血红蛋白水平高于对照组,差异有统计学意义(P < 0.001)。三组之间年龄差异有统计学意义(P < 0.05),见表1

Table 1. Basic information between the groups

表1. 各组之间基本资料

3.2. 对照组、NDR及轻度NPDR组的对比敏感度的比较分析

对照组、NDR组及轻度NPDR组在空间频率为18 c/d时CS差异无统计学意义(P = 0.340),分别在0.75 c/d、1.5 c/d、3 c/d、6 c/d、12 c/d时三组之间的CS差异有统计学意义(P < 0.05);两两组间比较,对照组和轻度NPDR组在空间频率为18 c/d时差异无统计学意义(P > 0.05),其余各空间频率下NPDR组的CS与对照组相比均下降,差异有统计学意义(P < 0.05)。NDR组和轻度NPDR组在空间频率为3 c/d、6 c/d、12 c/d时的CS差异有统计学意义(P < 0.05),见表2。用线性回归校正年龄后,NPDR组与对照组相比,在各空间频率的CS均降低,差异均有统计学意义(P < 0.01);NDR组在各空间频率的CS均比对照组低,差异均有统计学意义(P < 0.01),见表3

Table 2. Comparative analysis of comparative sensitivity between the groups

表2. 各组之间对比敏感度比较分析

注:a代表与对照组比较,P < 0.05;b代表与NDR组比较,P < 0.05。

Table 3. Comparative analysis of contrast sensitivity between the groups after age correction

表3. 年龄校正后各组之间对比敏感度比较分析

注:a代表与对照组比较,P < 0.01。

3.3. 对照组、NDR组及轻度NPDR组的不同对比度视力比较分析

Sloan视力表对比度为6%时NDR组的视力低于对照组,差异有统计学意义(P < 0.001);对比度为6%、4.3%和3.2%时的轻度NPDR组的视力低于NDR组及对照组,差异有统计学意义(P < 0.001),见表4。用线性回归校正年龄后,在对比度6%时轻度NPDR组的视力低于NDR组;在对比度为6%、4.3%和3.2%时的轻度NPDR组的视力低于对照组,且NDR组视力低于对照组,见表5

Table 4. Comparative analysis of different low-contrast visual acuity between the groups

表4. 各组之间不同低对比度视力的比较分析

注:a代表与对照组比较,P < 0.01;b代表与NDR组比较,P < 0.01。

Table 5. Comparative analysis of low-contrast visual acuity between the groups after age correction

表5. 年龄校正后各组之间低对比度视力比较分析

注:a代表与对照组比较,P < 0.01;b代表与NDR组比较,P < 0.01。

3.4. 对照组、NDR组及轻度NPDR组的LH水平比较

在女性患者中3组之间血清LH水平的比较,差异无统计学意义(P > 0.05)。在男性患者中,轻度NPDR组的LH水平高于NDR组和对照组,差异有统计学意义(P < 0.05),见表6

Table 6. Comparison of LH levels in control group, NDR group and mild-NPDR group

表6. 对照组、NDR组及轻度NPDR组的LH水平比较

注:a代表与对照组比较,P < 0.05;b代表与NDR组比较,P < 0.05。

3.5. 对视觉功能与LH的相关性分析

不同对比度视力与受试者血清LH水平无相关关系(P > 0.05);在空间频率为3 c/d和6 c/d时轻度NPDR组患者的血清LH水平与CS呈负相关关系(P < 0.05),见表7表8

Table 7. Correlation analysis of low contrast visual acuity and LH

表7. 低对比度视力与LH的相关性分析

Table 8. Correlation analysis of contrast sensitivity and LH

表8. 对比敏感度与LH的相关性分析

4. 讨论

DR是糖尿病患者常见的眼部并发症,后期严重损害糖尿病患者的生活质量,为其带来巨大的经济负担,因此早期发现DR对于糖尿病患者来说变得十分重要。研究表明,视网膜神经损伤先于血管病变,临床表现包括视野,暗适应,对比敏感度和色觉等视觉功能变化 [28] [29] ,目前DR早期诊断主要基于裂隙灯眼底检查、眼底照相及FFA检查,前两者可能忽视早期糖尿病患者的视网膜微血管病变,而FFA作为有创的检查,在临床上有一定局限性,并且忽略了DR患者早期视觉功能改变,因此寻找一种可量化且敏感可靠的视觉功能检测指标,是早期发现DR的关键。此外,研究表明,LH可能参与DR的发生发展,且LH可能在视觉系统中发挥着重要生理作用 [21] ,但目前相关性研究较少。本研究通过对不同空间频率的CS及LCVA的测量,探讨无DR的糖尿病患者与轻度NPDR患者的视觉功能变化及其与LH水平的关系,结果表明,轻度NPDR患者CS与LCVA有所下降,表明早期DR患者视觉功能受损;在空间频率为3 c/d和6 c/d时,轻度NPDR的血清LH水平与CS呈负相关关系;另外,在男性糖尿病患者中LH水平越高,患者DR程度越严重。LH可能在DR患者视觉处理过程中发挥着一定的生理功能。

研究表明,高血糖会损害视觉功能,诱导糖尿病小鼠仅4周后CS出现降低 [30] ,视觉功能检测提示糖尿病早期视网膜神经损伤,这可能与血糖改变导致视杆细胞光感受器转导通路缺陷有关,降低了神经节细胞对刺激大小的敏感性 [31] [32] 。Pramanik S等 [33] 发现轻度NPDR患者和无DR的糖尿病患者相比,前者的CS下降更显著。同样,Silva等 [34] 描述了与健康对照者相比,糖尿病患者和DR患者的对比敏感度明显下降。这与本研究一致,在本研究中,DR患者的CS均下降,其中轻度NPDR组患者在中、高空间频率下CS值降低,这可能与中、高空间频率主要反映视觉对比度和黄斑区视敏度情况,而在DR早期黄斑区视网膜的神经节细胞更容易受缺血缺氧的影响 [35] 。本研究对照组选取本院体检且视力无明显下降、晶体无明显混浊、无高血压患者,可能导致年龄选择性偏倚,因此给予年龄校正后分析,结果表明在对比度在6%时轻度NPDR组的视力低于NDR组。Sukha等 [36] 研究描述了DR患者在中、低对比度视力的改变,与无DR患者相比,DR患者在中对比度(10%)和低对比度(2.5%)下的视力更差。在本研究中,患者在对比度为6%、4.3%和3.2%下的视力测量中观察到了类似的结果。这些结果提示,轻度NPDR患者CS与LCVA均下降,在DR早期就存在视觉功能的损害,CS和LCVA可能在DR早期监测中发挥一定的作用。

既往研究表明,LH可能在动物视觉系统中发挥着重要生理作用。早在1998年,Thompson等人 [37] 发现黄体生成素(LH)/人绒毛膜促性腺激素(CG)受体基因的表达除了性腺组织外,神经视网膜中也存在LH/CG受体,并且LH/CG受体在感光细胞中最高,然后在整个视网膜内降低,这一发现表明,LH/CG可能在光感受器细胞对视觉处理的细胞反应中起一定作用。后续发现LH的受体在眼睛中广泛表达,比如在小梁网、角膜、睫状体、视网膜、视神经中均存在其受体 [38] 。随后,Movsas等人 [21] 在敲除LH受体基因的小鼠和正常野生型小鼠的实验中发现,敲除LH受体小鼠具有异常的ERG,表明低于正常水平的LH受体信号会对视觉产生负面影响。在本研究中,轻度NPDR患者的血清LH水平与对比敏感度呈负相关关系。既往研究表明LH能够诱导血管内皮生长因子(Vascular endothelial growth factor, VEGF)表达 [39] [40] ,视锥细胞中存在LH受体,LH可能参与调节维持视锥细胞功能稳态所需的VEGF水平。另一项动物实验证明了VEGF的缺失会影响视锥光感受器的功能 [41] ,在敲除成年小鼠视网膜色素水平细胞(RPE)中Vegf基因的实验中表明,三天后,Vegf基因缺失的小鼠脉络膜毛细血管完全消融,7个月后,通过视网膜电图观察到视锥细胞功能障碍,以上研究表明,RPE中产生的VEGF对脉络膜毛细血管和视锥光感受器的维持是必需的。而光感受器中表达VEGF受体 [42] ,VEGF可能在其维持正常生理功能中具有直接作用。既往研究表明视网膜中存在一个神经内分泌回路,它涉及从视锥感光细胞(LH受体位点)到VEGF产生细胞(RPE细胞、星形胶质细胞、Muller细胞、血管内皮细胞、神经节细胞和睫状上皮)的信号传导 [20] ,LH可能通过其受体在局部充当神经调节剂通过影响VEGF从而影响视觉处理,从而影响糖尿病视网膜病变视觉功能。

既往对于糖尿病视网膜病变的研究还发现病变程度与性别和LH水平可能存在潜在相关性。在本研究中,女性患者的血清LH水平与DR的病变程度无显著差异,这与Siddiqui K [23] 等研究结果一致。本研究表明男性NDR组和NPDR组血清LH水平均低于对照组,差异有统计学意义。Sun Q等 [43] 首次提出,在男性糖尿病患者中随着血清LH水平的升高,DR的病变程度越严重,结果与本研究相似。LH与DR潜在的性别相关性,可能与眼内LHR密度的性别差异有关 [44] 。研究发现血管内皮生长因子(Vascular endothelial growth factor, VEGF)与DR的发病机制有关 [45] [46] [47] ,同时视网膜中存在LH的受体,且LH这类性激素可以促进VEGF的表达 [48] 。另外,在哺乳动物眼睛中其玻璃体腔的VEGF和LH水平相关 [49] 。LH可能参与并调节视网膜中VEGF的表达,从而参与糖尿病视网膜病变的进展。但是LH与DR的相关性以及其在DR中的病理生理机制仍然有待进一步研究。

5. 总结

综上所述,本研究表明轻度NPDR和无DR患者CS和LCVA均存在损伤,CS和LCVA可用于DR视觉功能受损的早期监测;在空间频率为3 c/d和6 c/d时轻度NPDR的血清LH水平与CS呈负相关关系;在男性患者中,血清LH的水平随着DR的病变程度增高,这可能为临床糖尿病视网膜病变治疗靶点的选择提供理论依据。

NOTES

*通讯作者。

参考文献

[1] Li, X., Tan, T.E., Wong, T.Y. and Sun, X. (2023) Diabetic Retinopathy in China: Epidemiology, Screening and Treat-ment Trends—A Review. Clinical & Experimental Ophthalmology.
https://doi.org/10.1111/ceo.14269
[2] 万文萃, 龙洋. 糖尿病视网膜病变的流行病学、病因学与发病机制研究现状[J]. 眼科新进展, 2022, 42(9): 673-679.
[3] GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study (2021) Causes of Blindness and Vision Impairment in 2020 and Trends over 30 Years, and Prevalence of Avoidable Blindness in Relation to VISION 2020: The Right to Sight: An Analysis for the Global Burden of Disease Study. The Lancet Global Health, 9, e144-e160.
[4] Ciprés, M., Satue, M., Melchor, I., et al. (2022) Retinal Neurodegeneration in Patients with Type 2 Diabetes Mellitus without Diabetic Retinopathy. Archivos de la Sociedad Es-pañola de Oftalmología (England Ed), 97, 205-218.
https://doi.org/10.1016/j.oftale.2022.02.009
[5] Neriyanuri, S., Pardhan, S., Gella, L., et al. (2017) Retinal Sensi-tivity Changes Associated with Diabetic Neuropathy in the Absence of Diabetic Retinopathy. British Journal of Oph-thalmology, 101, 1174-1178.
https://doi.org/10.1136/bjophthalmol-2016-309641
[6] Wang, W. and Lo, A.C.Y. (2018) Diabetic Retinopathy: Pathophysiology and Treatments. International Journal of Molecular Sciences, 19, Article No. 1816.
https://doi.org/10.3390/ijms19061816
[7] Lynch, S.K. and Abràmoff, M.D. (2017) Diabetic Retinopathy Is a Neurodegenerative Disorder. Vision Research, 139, 101-107.
https://doi.org/10.1016/j.visres.2017.03.003
[8] Simó, R., Simó-Servat, O., Bogdanov, P., et al. (2022) Diabetic Retinopathy: Role of Neurodegeneration and Therapeutic Perspectives. The Asia-Pacific Journal of Ophthalmology (Phi-la), 11, 160-167.
https://doi.org/10.1097/APO.0000000000000510
[9] De Moraes, G. and Layton, C.J. (2016) Therapeutic Target-ing of Diabetic Retinal Neuropathy as a Strategy in Preventing Diabetic Retinopathy. Clinical & Experimental Ophthal-mology, 44, 838-852.
https://doi.org/10.1111/ceo.12795
[10] Miura, G. (2023) Visual Evoked Potentials for the Detection of Diabetic Retinal Neuropathy. International Journal of Molecular Sciences, 24, Article No. 7361.
https://doi.org/10.3390/ijms24087361
[11] Joltikov, K.A., Sesi, C.A., de Castro, V.M., et al. (2018) Disorganiza-tion of Retinal Inner Layers (DRIL) and Neuroretinal Dysfunction in Early Diabetic Retinopathy. Investigative Ophthal-mology & Visual Science, 59, 5481-5486.
https://doi.org/10.1167/iovs.18-24955
[12] Park, J.C., Chen, Y.F., Liu, M., et al. (2020) Structural and Functional Abnormalities in Early-Stage Diabetic Retinopathy. Current Eye Research, 45, 975-985.
https://doi.org/10.1080/02713683.2019.1705983
[13] Lupión Durán, T., García-Ben, A., Rodríguez Méndez, V., et al. (2021) Study of Visual Acuity and Contrast Sensitivity in Diabetic Patients with and without Non-Proliferative Dia-betic Retinopathy. International Ophthalmology, 41, 3587-3592.
https://doi.org/10.1007/s10792-021-01930-x
[14] Safi, H., Safi, S., Hafezi-Moghadam, A., et al. (2018) Early De-tection of Diabetic Retinopathy. Survey of Ophthalmology, 63, 601-608.
https://doi.org/10.1016/j.survophthal.2018.04.003
[15] Kaur, K. and Gurnani, B. (2023) Contrast Sensitivity. StatPearls Publishing, Treasure Island.
[16] Ichhpujani, P., Thakur, S. and Spaeth, G.L. (2020) Contrast Sensitivity and Glaucoma. Journal of Glaucoma, 29, 71-75.
https://doi.org/10.1097/IJG.0000000000001379
[17] Jia, Y., Ye, Q., Zhang, S., et al. (2022) Contrast Sensitivity and Stereoacuity in Successfully Treated Refractive Amblyopia. Investigative Ophthalmology & Visual Science, 63, 6.
https://doi.org/10.1167/iovs.63.1.6
[18] Thurman, S.M., Davey, P.G., McCray, K.L., et al. (2016) Predicting Indi-vidual Contrast Sensitivity Functions from Acuity and Letter Contrast Sensitivity Measurements. Journal of Visualization, 16, 15.
https://doi.org/10.1167/16.15.15
[19] Mey, M., Bhatta, S. and Casadesus, G. (2021) Luteinizing Hormone and the Aging Brain. Vitamins and Hormones, 115, 89-104.
https://doi.org/10.1016/bs.vh.2020.12.005
[20] Dukic-Stefanovic, S., Walther, J., Wosch, S., et al. (2012) Chori-onic Gonadotropin and Its Receptor Are both Expressed in Human Retina, Possible Implications in Normal and Patho-logical Conditions. Public Library of Science, 7, e52567.
https://doi.org/10.1371/journal.pone.0052567
[21] Movsas, T.Z., Wong, K., Ober, M.D., et al. (2018) Confirma-tion of Luteinizing Hormone (LH) in Living Human Vitreous and the Effect of LH Receptor Reduction on Murine Elec-troretinogram. Neuroscience, 385, 1-10.
https://doi.org/10.1016/j.neuroscience.2018.05.049
[22] 荆亚莉. 基于HGF及LH探讨糖尿病及糖尿病视网膜病变的发病机制研究[D]: [博士学位论文]. 南京: 南京医科大学, 2019.
[23] Siddiqui, K., George, T.P., Alosaimi, J., et al. (2021) Level of Hormones in Menopause in Relation to Diabetic Retinopathy among Type 2 Diabetic Women. Health Care for Women International, 42, 58-66.
https://doi.org/10.1080/07399332.2020.1798962
[24] 中华医学会糖尿病分会视网膜病变学组. 糖尿病相关眼病防治多学科中国专家共识(2021版) [J]. 中华糖尿病杂志, 2021, 13(11): 1026-1042.
[25] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
[26] 程振英, 褚仁远, 周行涛. 中低度近视眼高阶像差与低对比度视力相关性研究[J]. 眼科新进展, 2008, 28(1): 46-48.
[27] Stavrou, E.P. and Wood, J.M. (2003) Letter Contrast Sensitivity Changes in Early Diabetic Retinopathy. Clinical and Experimental Optometry, 86, 152-156.
https://doi.org/10.1111/j.1444-0938.2003.tb03097.x
[28] Baba, T. (2021) Detecting Dia-betic Retinal Neuropathy Using Fundus Perimetry. International Journal of Molecular Sciences, 22, Article No. 10726.
https://doi.org/10.3390/ijms221910726
[29] Soni, D., Sagar, P. and Takkar, B. (2021) Diabetic Retinal Neuro-degeneration as a Form of Diabetic Retinopathy. International Ophthalmology, 41, 3223-3248.
https://doi.org/10.1007/s10792-021-01864-4
[30] Miller, W.P., Yang, C., Mihailescu, M.L., et al. (2018) Deletion of the Akt/mTORC1 Repressor REDD1 Prevents Visual Dysfunction in a Rodent Model of Type 1 Diabetes. Diabetes, 67, 110-119.
https://doi.org/10.2337/db17-0728
[31] Moore-Dotson, J.M., Beckman, J.J., Mazade, R.E., Hoon, M., Bernstein, A.S., et al. (2016) Early Retinal Neuronal Dysfunction in Diabetic Mice: Reduced Light-Evoked Inhibition In-creases Rod Pathway Signaling. Investigative Ophthalmology & Visual Science, 57, 1418-30.
https://doi.org/10.1167/iovs.15-17999
[32] Becker, S., Carroll, L.S. and Vinberg, F. (2020) Rod Phototransduction and Light Signal Transmission during Type 2 Diabetes. BMJ Open Diabetes Research & Care, 8, e001571.
https://doi.org/10.1136/bmjdrc-2020-001571
[33] Pramanik, S., Chowdhury, S., Ganguly, U., Banerjee, A., et al. (2020) Visual Contrast Sensitivity Could Be an Early Marker of Diabetic Retinopathy. Heliyon, 6, e05336.
https://doi.org/10.1016/j.heliyon.2020.e05336
[34] Silva-Viguera, M.C., García-Romera, M.C., et al. (2022) Con-trast Sensitivity Assessment in Early Diagnosis of Diabetic Retinopathy: A Systematic Review. Seminars in Ophthal-mology, 38, 319-332.
[35] 邬丹. 糖尿病视网膜病变早期患者的视觉对比敏感度变化的观察[D]: [硕士学位论文]. 沈阳: 中国医科大学, 2010.
[36] Sukha, A.Y. and Rubin, A. (2009) High, Medium, and Low Contrast Visual Acuities in Diabetic Retinal Disease. Optometry and Vision Science, 86, 1086-1095.
https://doi.org/10.1097/OPX.0b013e3181b48635
[37] Thompson, D.A., Othman, M.I., Lei, Z., et al. (1998) Lo-calization of Receptors for Luteinizing Hormone/Chorionic Gonadotropin in Neural Retina. Life Sciences, 63, 1057-1064.
https://doi.org/10.1016/S0024-3205(98)00367-1
[38] Dubovy, S.R., Fernandez, M.P., Echegaray, J.J., et al. (2017) Expression of Hypothalamic Neurohormones and Their Receptors in the Human Eyes. Oncotarget, 8, 66796-66814.
https://doi.org/10.18632/oncotarget.18358
[39] Gómez, R., Lima, I., Simón, C., et al. (2004) Administration of Low-Dose LH Induces Ovulation and Prevents Vascular Hyperpermeability and Vascular Endothelial Growth Factor Expression in Superovulated Rats. Reproduction, 127, 483-489.
https://doi.org/10.1530/rep.1.00129
[40] Trau, H.A., Davis, J.S. and Duffy, D.M. (2015) Angiogenesis in the Primate Ovulatory Follicle Is Stimulated by Luteinizing Hormone via Prostaglandin E2. Biology of Reproduction, 92, Article No. 15.
https://doi.org/10.1095/biolreprod.114.123711
[41] Kurihara, T., Westenskow, P.D., Bravo, S., et al. (2012) Friedlander M Targeted Deletion of V Egfa in Adult Mice Induces Vision Loss. Journal of Clinical Investigation, 122, 4213-4217.
https://doi.org/10.1172/JCI65157
[42] Ames, A., Li, Y.Y., Heher, E.C., et al. (1992) Energy Metabo-lism of Rabbit Retina as Related to Function: High Cost of Na+ Transport. Journal of Neuroscience, 12, 840-853.
https://doi.org/10.1523/JNEUROSCI.12-03-00840.1992
[43] Sun, Q., Jing, Y., Zhang, B., Gu, T., Meng, R., Sun, J., et al. (2021) The Risk Factors for Diabetic Retinopathy in a Chinese Population: A Cross-Sectional Study. Journal of Diabetes Research, 2021, Article ID: 5340453.
https://doi.org/10.1155/2021/5340453
[44] Melmed, S.P., Kenneth, S., Larsen, P., et al. (2011) Williams Textbook of Endocrinology. 12th Edition, Elsevier, Philadelphia.
[45] Uemura, A., Fruttiger, M., D’Amore, P.A., et al. (2021) VEGFR1 Signaling in Retinal Angiogenesis and Microinflammation. Progress in Retinal and Eye Research, 84, Article ID: 100954.
https://doi.org/10.1016/j.preteyeres.2021.100954
[46] Yang, J. and Liu, Z. (2022) Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Frontiers in Endocrinology, 13, Article ID: 816400.
https://doi.org/10.3389/fendo.2022.816400
[47] Chatziralli, I. and Loewenstein, A. (2021) Intravitreal An-ti-Vascular Endothelial Growth Factor Agents for the Treatment of Diabetic Retinopathy: A Review of the Literature. Pharmaceutics, 13, Article No. 1137.
https://doi.org/10.3390/pharmaceutics13081137
[48] Movsas, T.Z. and Muthusamy, A. (2018) The Potential Effect of Human Chorionic Gonadotropin on Vasoproliferative Disorders of the Immature Retina. Neuroreport, 29, 1525-1529.
https://doi.org/10.1097/WNR.0000000000001140
[49] Movsas, T.Z., Sigler, R. and Muthusamy, A. (2018) Vit-reous Levels of Luteinizing Hormone and VEGF Are Strongly Correlated in Healthy Mammalian Eyes. Current Eye Re-search, 43, 1041-1044.
https://doi.org/10.1080/02713683.2018.1467932