|
[1]
|
Wang, C. and Xu, Y. (2022) New Energy Utilization Rate and Coal Energy Economic Development Based on the Fuzzy Network Algorithm. Computational Intelligence and Neuroscience, 2022, Article ID: 1752090. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Du, C.F., Liang, Q., Dangol, R., Zhao, J., Ren, H., Madhavi, S. and Yan, Q. (2018) Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 10, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhu, C., Shi, Q., Feng, S., Du, D. and Lin, Y. (2018) Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Letters, 3, 1713-1721. [Google Scholar] [CrossRef]
|
|
[4]
|
Buvat, G., Eslamibidgoli, M.J., Youssef, A.H., Garbarino, S., Ruediger, A., Eikerling, M. and Guay, D. (2020) Effect of IrO6 Octahedron Distortion on the OER Activity at (100) IrO2 Thin Film. ACS Catalysis, 10, 806-817. [Google Scholar] [CrossRef]
|
|
[5]
|
Griffith, K.J., Wiaderek, K.M., Cibin, G., Marbella, L.E. and Grey, C.P. (2018) Niobium Tungsten Oxides for High-Rate Lithium-Ion Energy Storage. Nature, 559, 556-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gyoeroek, M., Kaiser, A., Sukuba, I., Urban, J., Hermansson, K. and Probst, M. (2016) Surface Binding Energies of Beryllium/Tungsten Alloys. Journal of Nuclear Materials, 472, 76-81. [Google Scholar] [CrossRef]
|
|
[7]
|
Ratanaphan, S., Boonkird, T., Sarochawikasit, R., Beladi, H., Barmak, K. and Rohrer, G.S. (2017) Atomistic Simulations of Grain Boundary Energies in Tungsten. Materials Letters, 186, 116-118. [Google Scholar] [CrossRef]
|
|
[8]
|
Fu, Q., Han, J., Wang, X., Xu, P., Yao, T., Zhong, J., Zhong, W., Liu, S., Gao, T., Zhang, Z., et al. (2021) 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Advanced Materials, 33, Article ID: 1907818. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zheng, Y., Jiao, Y., Zhu, Y., Li, L.H., Han, Y., Chen, Y., Jaroniec, M. and Qiao, S.Z. (2016) High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 138, 16174-16181. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bockris, J.O.M. and Otagawa, T. (1983) Mechanism of Oxygen Evolution on Perovskites. The Journal of Physical Chemistry, 87, 2960-2971. [Google Scholar] [CrossRef]
|
|
[11]
|
Li, Y., Zhou, L. and Guo, S. (2021) Noble Metal-Free Electrocatalytic Materials for Water Splitting in Alkaline Electrolyte. EnergyChem, 3, Article ID: 100053. [Google Scholar] [CrossRef]
|
|
[12]
|
Song, J., Wei, C., Huang, Z.F., Liu, C., Zeng, L., Wang, X. and Xu, Z.J. (2020) A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chemical Society Reviews, 49, 2196-2214. [Google Scholar] [CrossRef]
|
|
[13]
|
Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Avcı, O., Tepeli Büyüksünetçi, Y. and Anık, Ü. (2023) Electrochemical Determination of Hemoglobin by the İmmobilization of the Analyte into a Carbon Felt Electrode (CFE) Using Cyclic Voltammetry (CV). Analytical Letters, 56, 870-880. [Google Scholar] [CrossRef]
|
|
[15]
|
Beheshti, M., Kakooei, S., Ismail, M.C. and Shahrestani, S. (2020) Investigation of CO2 Electrochemical Reduction to Syngas on Zn/Ni-Based Electrocatalysts Using the Cyclic Voltammetry Method. Electrochimica Acta, 341, Article ID: 135976. [Google Scholar] [CrossRef]
|
|
[16]
|
Wu, X., Wang, R. and Li, Y. (2022) A Thin-Layer Diffusion Model-Based Intelligent Cyclic Voltammetry Analysis Method to Capture Electrochemical Parameters in Flow Batteries. Electrochimica Acta, 433, Article ID: 141267. [Google Scholar] [CrossRef]
|
|
[17]
|
Nasir, S.N.S., Sidek, N., Kadir, M.F.Z. and Manan, N.S.A. (2019) Electrochemical Behavior of NH4VO3 in Glyceline DES Studied by Cyclic Voltammetry Method. Ionics, 25, 4981-4990. [Google Scholar] [CrossRef]
|
|
[18]
|
Saqib, M., Dorozhko, E.V., Barek, J., Vyskocil, V., Korotkova, E.I. and Shabalina, A.V. (2021) A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl. Molecules, 26, Article 5050. [Google Scholar] [CrossRef]
|
|
[19]
|
Zuo, X., Xu, C. and Xin, H. (1997) Simulation of Voltammogram on Rough Electrode. Electrochimica Acta, 42, 2555-2558. [Google Scholar] [CrossRef]
|
|
[20]
|
Tan, H.W., Ramesh, S. and Liew, C.W. (2019) Electrical, Thermal, and Structural Studies on Highly Conducting Additive-Free Biopolymer Electrolytes for Electric Double-Layer Capacitor Application. Ionics, 25, 4861-4874. [Google Scholar] [CrossRef]
|
|
[21]
|
Exner, K.S. (2019) Beyond the Traditional Volcano Concept: Overpotential-Dependent Volcano Plots Exemplified by the Chlorine Evolution Reaction over Transition-Metal Oxides. The Journal of Physical Chemistry C, 123, 16921-16928. [Google Scholar] [CrossRef]
|
|
[22]
|
Survila, A., Kanapeckaite, S. and Mažeika, K. (2018) Double Current Maxima Formed under Linear Potential Sweep Conditions in Acetic Acid Solutions at pH < 2.5. Russian Journal of Electrochemistry, 54, 33-42. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhu, S., Lei, J., Zhang, L. and He, J. (2020) CoO/NF Nanowires Promote Hydrogen and Oxygen Production for Overall Water Splitting in Alkaline Media. International Journal of Hydrogen Energy, 45, 8031-8040. [Google Scholar] [CrossRef]
|
|
[24]
|
Yang, L., Zhu, X., Xiong, S., Wu, X., Shan, Y. and Chu, P.K. (2016) Synergistic WO3∙2H2O Nanoplates/WS2 Hybrid Catalysts for High-Efficiency Hydrogen Evolution. ACS Applied Materials & Interfaces, 8, 13966-13972. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, J., Wei, X., Wang, X., Song, W., Zhong, W., Wang, M., Ju, J. and Tang, Y. (2021) Plasmonic Au Nanoparticle@Ti3C2Tx Heterostructures for Improved Oxygen Evolution Performance. Inorganic Chemistry, 60, 5890-5897. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Theerthagiri, J., Lee, S.J., Murthy, A.P., Madhavan, J. and Choi, M.Y. (2020) Fundamental Aspects and Recent Advances in Transition Metal Nitrides as Electrocatalysts for Hydrogen Evolution Reaction: A Review. Current Opinion in Solid State and Materials Science, 24, Article ID: 100805. [Google Scholar] [CrossRef]
|
|
[27]
|
Wang, J., Zhang, M., Yang, G., Song, W., Zhong, W., Wang, X., Wang, M., Sun, T. and Tang, Y. (2021) Heterogeneous Bimetallic Mo-NiPx/NiSy as a Highly Efficient Electrocatalyst for Robust Overall Water Splitting. Advanced Functional Materials, 31, Article ID: 2101532. [Google Scholar] [CrossRef]
|
|
[28]
|
Yang, G., Wang, Y., Peng, F., Bergara, A. and Ma, Y. (2016) Gold as a 6p-Element in Dense Lithium Aurides. Journal of the American Chemical Society, 138, 4046-4052. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Fan, C., Liu, C., Peng, F., Tan, N., Tang, M., Zhang, Q., Wang, Q., Li, F., Wang, J., Chen, Y., et al. (2017) Phase Stability and Incompressibility of Tungsten Boride (WB) Researched by in-situ High Pressure X-Ray Diffraction. Physica B: Condensed Matter, 521, 6-12. [Google Scholar] [CrossRef]
|
|
[30]
|
Zou, M., Zhang, J., Zhu, H., Du, M., Wang, Q., Zhang, M. and Zhang, X. (2015) A 3D Dendritic WSe2 Catalyst Grown on Carbon Nanofiber Mats for Efficient Hydrogen Evolution. Journal of Materials Chemistry A, 3, 12149-12153. [Google Scholar] [CrossRef]
|
|
[31]
|
Kadam, S.R., Enyashin, A.N., Houben, L., Bar-Ziv, R. and Bar-Sadan, M. (2020) Ni-WSe2 Nanostructures as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction (HER) in Acidic and Alkaline Media. Journal of Materials Chemistry A, 8, 1403-1416. [Google Scholar] [CrossRef]
|
|
[32]
|
Yang, Y., Fei, H., Ruan, G., Li, Y. and Tour, J.M. (2015) Vertically Aligned WS2 Nanosheets for Water Splitting. Advanced Functional Materials, 25, 6199-6204. [Google Scholar] [CrossRef]
|
|
[33]
|
Li, A., Chang, X., Huang, Z., Li, C., Wei, Y., Zhang, L., Wang, T. and Gong, J. (2016) Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface Recombination in Photocatalysts. Angewandte Chemie International Edition, 55, 13734-13738. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wu, A., Xie, Y., Ma, H., Tian, C., Gu, Y., Yan, H., Zhang, X., Yang, G. and Fu, H. (2018) Integrating the Active OER and HER Components as the Heterostructures for the Efficient Overall Water Splitting. Nano Energy, 44, 353-363. [Google Scholar] [CrossRef]
|
|
[35]
|
Kim, D., Zhang, Z. and Yong, K. (2018) Synergistic Doping Effects of a ZnO: N/BiVO4: Mo Bunched Nanorod Array Photoanode for Enhancing Charge Transfer and Carrier Density in Photoelectrochemical Systems. Nanoscale, 10, 20256-20265. [Google Scholar] [CrossRef]
|
|
[36]
|
Liang, J., Yu, Q., Yang, X., Zhang, T. and Li, J. (2018) A Systematic Theoretical Study on FeOx-Supported Single-Atom Catalysts: M1/FeOx for CO Oxidation. Nano Research, 11, 1599-1611. [Google Scholar] [CrossRef]
|
|
[37]
|
Carmo, M., Fritz, D.L., Mergel, J. and Stolten, D. (2013) A Comprehensive Review on PEM Water Electrolysis. International Journal of Hydrogen Energy, 38, 4901-4934. [Google Scholar] [CrossRef]
|
|
[38]
|
Park, S., Shao, Y., Liu, J. and Wang, Y. (2012) Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective. Energy & Environmental Science, 5, 9331-9344. [Google Scholar] [CrossRef]
|
|
[39]
|
Tang, C., Wang, H.F. and Zhang, Q. (2018) Multiscale Principles to Boost Reactivity in Gas-Involving Energy Electrocatalysis. Accounts of Chemical Research, 51, 881-889. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wang, H. and Dai, H. (2013) Strongly Coupled Inorganic-Nano-Carbon Hybrid Materials for Energy Storage. Chemical Society Reviews, 42, 3088-3113. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Tang, C., Zhong, L., Zhang, B., Wang, H.F. and Zhang, Q. (2018) 3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis. Advanced Materials, 30, Article ID: 1705110. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wang, B., Tang, C., Wang, H.F., Chen, X., Cao, R. and Zhang, Q. (2019) A Nanosized CoNi Hydroxide@Hydroxy- sulfide Core—Shell Heterostructure for Enhanced Oxygen Evolution. Advanced Materials, 31, Article ID: 1805658. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, J., Hong, W., Jian, C., Cai, Q. and Liu, W. (2019) Seamless Tungsten Disulfide-Tungsten Heterojunction with Abundant Exposed Active Sites for Efficient Hydrogen Evolution. Applied Catalysis B: Environmental, 244, 320-326. [Google Scholar] [CrossRef]
|
|
[44]
|
Hai, G., Huang, J., Cao, L., Kajiyoshi, K., Wang, L. and Feng, L. (2021) Hierarchical W18O49/NiWO4/NF Heterojunction with Tuned Composition and Charge Transfer for Efficient Water Splitting. Applied Surface Science, 562, Article ID: 150145. [Google Scholar] [CrossRef]
|
|
[45]
|
Chandrasekaran, S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., Lin, Z., Peng, F. and Zhang, P. (2019) Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond. Chemical Society Reviews, 48, 4178-4280. [Google Scholar] [CrossRef]
|
|
[46]
|
Liu, B., Li, H., Cao, B., Jiang, J., Gao, R. and Zhang, J. (2018) Few Layered N, P Dual-Doped Carbon-Encapsulated Ultrafine MoP Nanocrystal/MoP Cluster Hybrids on Carbon Cloth: An Ultrahigh Active and Durable 3D Self-Supported Integrated Electrode for Hydrogen Evolution Reaction in a Wide pH Range. Advanced Functional Materials, 28, Article ID: 1801527. [Google Scholar] [CrossRef]
|
|
[47]
|
Kim, J., Jung, H., Jung, S.M., Hwang, J., Kim, D.Y., Lee, N., Kim, K.S., Kwon, H., Kim, Y.T., Han, J.W., et al. (2021) Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society, 143, 1399-1408. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ye, L., Chen, S., Li, W., Pi, M., Wu, T. and Zhang, D. (2015) Tuning the Electrical Transport Properties of Multilayered Molybdenum Disulfide Nanosheets by Intercalating Phosphorus. The Journal of Physical Chemistry C, 119, 9560-9567. [Google Scholar] [CrossRef]
|
|
[49]
|
Wang, D.Y., Gong, M., Chou, H.L., Pan, C.J., Chen, H.A., Wu, Y., Lin, M.C., Guan, M., Yang, J., Chen, C.W., et al. (2015) Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets—Carbon Nanotubes for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 137, 1587-1592. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Xu, W., Ni, X.M., Zhang, L.J., Yang, F., Peng, Z., Huang, Y.F. and Liu, Z. (2022) Tuning the Electronic Structure of Tungsten Oxide for Enhanced Hydrogen Evolution Reaction in Alkaline Electrolyte. ChemElectroChem, 9, e202101300. [Google Scholar] [CrossRef]
|
|
[51]
|
Sun, C., Wang, P., Wang, H., Xu, C., Zhu, J., Liang, Y., Su, Y., Jiang, Y., Wu, W., Fu, E., et al. (2019) Defect Engineering of Molybdenum Disulfide through Ion Irradiation to Boost Hydrogen Evolution Reaction Performance. Nano Research, 12, 1613-1618. [Google Scholar] [CrossRef]
|
|
[52]
|
Kang, S., Koo, J.J., Seo, H., Truong, Q.T., Park, J.B., Park, S.C., Jung, Y., Cho, S.P., Nam, K.T., Kim, Z.H., et al. (2019) Defect-Engineered MoS2 with Extended Photoluminescence Lifetime for High-Performance Hydrogen Evolution. Journal of Materials Chemistry C, 7, 10173-10178. [Google Scholar] [CrossRef]
|
|
[53]
|
Wang, Y., Qiao, M., Li, Y. and Wang, S. (2018) Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Small, 14, Article ID: 1800136. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Hong, J., Hu, Z., Probert, M., Li, K., Lv, D., Yang, X., Gu, L., Mao, N., Feng, Q., Xie, L., et al. (2015) Exploring Atomic Defects in Molybdenum Disulphide Monolayers. Nature Communications, 6, Article No. 6293. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I. and Idrobo, J.C. (2013) Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 13, 2615-2622. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Cao, D., Zhang, T., Zeng, J., Cai, L., Pu, X., Qian, J., Gao, D. and Liu, J. (2021) Fe13+-Ion Irradiated WS2 with Multi-Vacancies and Fe Dopants for Hydrogen Evolution Reaction. FlatChem, 27, Article ID: 100247. [Google Scholar] [CrossRef]
|
|
[57]
|
Zhang, X., Guo, T., Liu, T., Lv, K., Wu, Z. and Wang, D. (2019) Tungsten Phosphide (WP) Nanoparticles with Tunable Crystallinity, W Vacancies, and Electronic Structures for Hydrogen Production. Electrochimica Acta, 323, Article ID: 134798. [Google Scholar] [CrossRef]
|
|
[58]
|
Li, L., Sau, C., Fanni, T., Li, J., Viitanen, T., Christophe, F., Palumbo, F., Raffo, L., Huttunen, H., Takala, J., et al. (2019) An Integrated Hardware/Software Design Methodology for Signal Processing Systems. Journal of Systems Architecture, 93, 1-19. [Google Scholar] [CrossRef]
|
|
[59]
|
Lv, C., Yan, C., Chen, G., Ding, Y., Sun, J., Zhou, Y. and Yu, G. (2018) An Amorphous Noble-Metal-Free Electrocatalyst That Enables Nitrogen Fixation under Ambient Conditions. Angewandte Chemie International Edition, 57, 6073-6076. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Chang, K., Hai, X., Pang, H., Zhang, H., Shi, L., Liu, G., Liu, H., Zhao, G., Li, M. and Ye, J. (2016) Targeted Synthesis of 2H- and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution. Advanced Materials, 28, 10033-10041. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhou, X., Liu, X., Zhang, J., Zhang, C., Yoo, S.J., Kim, J.G., Chu, X., Song, C., Wang, P., Zhao, Z., et al. (2020) Highly-Dispersed Cobalt Clusters Decorated onto Nitrogen-Doped Carbon Nanotubes as Multifunctional Electrocatalysts for OER, HER and ORR. Carbon, 166, 284-290. [Google Scholar] [CrossRef]
|
|
[62]
|
Han, H., Choi, H., Mhin, S., Hong, Y.R., Kim, K.M., Kwon, J., Ali, G., Chung, K.Y., Je, M., Umh, H.N., et al. (2019) Advantageous Crystalline-Amorphous Phase Boundary for Enhanced Electrochemical Water Oxidation. Energy & Environmental Science, 12, 2443-2454. [Google Scholar] [CrossRef]
|
|
[63]
|
Li, H., Gao, Y., Wang, C. and Yang, G. (2015) A Simple Electrochemical Route to Access Amorphous Mixed-Metal Hydroxides for Supercapacitor Electrode Materials. Advanced Energy Materials, 5, Article ID: 1401767. [Google Scholar] [CrossRef]
|
|
[64]
|
Tang, C., Titirici, M.M. and Zhang, Q. (2017) A Review of Nanocarbons in Energy Electrocatalysis: Multifunctional Substrates and Highly Active Sites. Journal of Energy Chemistry, 26, 1077-1093. [Google Scholar] [CrossRef]
|
|
[65]
|
You, B., Tang, M.T., Tsai, C., Abild-Pedersen, F., Zheng, X. and Li, H. (2019) Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 31, Article ID: 1807001. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Wang, X., Zhu, Y., Vasileff, A., Jiao, Y., Chen, S., Song, L., Zheng, B., Zheng, Y. and Qiao, S.Z. (2018) Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 3, 1198-1204. [Google Scholar] [CrossRef]
|
|
[67]
|
Liu, F., Liu, C. and Zhong, X. (2019) Enhancing Electrocatalysis for Hydrogen Production Over CoP Catalyst by Strain: A Density Functional Theory Study. Physical Chemistry Chemical Physics, 21, 9137-9140. [Google Scholar] [CrossRef]
|
|
[68]
|
Yang, C., Gao, M.Y., Zhang, Q.B., Zeng, J.R., Li, X.T. and Abbott, A.P. (2017) In-Situ Activation of Self-Supported 3D Hierarchically Porous Ni3S2 Films Grown on Nanoporous Copper as Excellent pH-Universal Electrocatalysts for Hydrogen Evolution Reaction. Nano Energy, 36, 85-94. [Google Scholar] [CrossRef]
|
|
[69]
|
Luo, Y., Liu, Y., Wu, L., Ma, X., Liu, Q., Huang, F., Zhang, X., Zhang, Y., Zhang, J., Luo, H., et al. (2019) CUL7 E3 Ubiquitin Ligase Mediates the Degradation of Activation-Induced Cytidine Deaminase and Regulates the Ig Class Switch Recombination in B Lymphocytes. The Journal of Immunology, 203, 269-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Han, H., Kim, K.M., Choi, H., Ali, G., Chung, K.Y., Hong, Y.R., Choi, J., Kwon, J., Lee, S.W., Lee, J.W., et al. (2018) Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide—Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis, 8, 4091-4102. [Google Scholar] [CrossRef]
|
|
[71]
|
Hong, Y.R., Mhin, S., Kim, K.M., Han, W.S., Choi, H., Ali, G., Chung, K.Y., Lee, H.J., Moon, S.I., Dutta, S., et al. (2019) Electrochemically Activated Cobalt Nickel Sulfide for an Efficient Oxygen Evolution Reaction: Partial Amorphization and Phase Control. Journal of Materials Chemistry A, 7, 3592-3602. [Google Scholar] [CrossRef]
|
|
[72]
|
Zhu, K., Zhu, X. and Yang, W. (2019) Application of in situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts. Angewandte Chemie International Edition, 58, 1252-1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Zhu, Y., Wang, J., Chu, H., Chu, Y.C. and Chen, H.M. (2020) In Situ/Operando Studies for Designing Next-Generation Electrocatalysts. ACS Energy Letters, 5, 1281-1291. [Google Scholar] [CrossRef]
|
|
[74]
|
Li, X., Wang, H.Y., Yang, H., Cai, W., Liu, S. and Liu, B. (2018) In Situ/Operando Characterization Techniques to Probe the Electrochemical Reactions for Energy Conversion. Small Methods, 2, Article ID: 1700395. [Google Scholar] [CrossRef]
|
|
[75]
|
Yan, Y., Wang, P., Lin, J., Cao, J. and Qi, J. (2021) Modification Strategies on Transition Metal-Based Electrocatalysts for Efficient Water Splitting. Journal of Energy Chemistry, 58, 446-462. [Google Scholar] [CrossRef]
|