靶向p53-MDM2的抗肿瘤小分子抑制剂的研究进展
Recent Advancements on the Anti-Tumor Small Molecule Inhibitors Targeting the p53-MDM2 Interaction
DOI: 10.12677/ACM.2023.1381881, PDF, HTML, XML, 下载: 320  浏览: 503  科研立项经费支持
作者: 丁涵静, 胡美纯*:湖北科技学院基础医学院,湖北 咸宁
关键词: p53MDM2抗肿瘤药物小分子抑制剂靶向治疗p53 MDM2 Anti-Tumor Drug Small Molecule Inhibitor Targeted Therapy
摘要: p53能够调控细胞周期、诱导细胞凋亡和DNA修复,被称为“抑癌蛋白”。p53的功能失调通常会引起遗传不稳定性,促进肿瘤发生。MDM2是p53最重要的负反馈调节因子之一,能够抑制p53的转录活性和稳定性,从而抑制p53的抗癌作用。因此,p53-MDM2是肿瘤治疗的关键靶标,而靶向p53-MDM2的小分子抑制剂是一种极具前景的抗肿瘤药物。本文介绍了p53和MDM2在肿瘤发生发展中的作用以及p53与MDM2的结合位点特征,并对靶向p53-MDM2小分子抑制剂的研究进行了综述。
Abstract: p53 can regulate cell cycle, induce apoptosis and DNA repair, and is known as the “tumor suppres-sor protein”. Dysregulation of p53 usually causes genetic instability and promotes tumorigenesis. MDM2 is one of the most important negative regulators of p53, which can inhibit the transcriptional activity and lower the stability of p53, thereby inhibiting the anti-tumor effect of p53. Therefore, the p53-MDM2 interaction is a key target for anti-cancer therapy, and small molecule inhibitors target-ing p53-MDM2 are highly promising as anti-tumor agents. This review introduces the mechanisms of p53-MDM2 in tumorigenesis and tumor development, summarizes the characteristics of the binding mode of p53 and MDM2, and reviews the recent anti-tumor research progress on the de-velopment of small molecule inhibitors targeting p53-MDM2.
文章引用:丁涵静, 胡美纯. 靶向p53-MDM2的抗肿瘤小分子抑制剂的研究进展[J]. 临床医学进展, 2023, 13(8): 13474-13483. https://doi.org/10.12677/ACM.2023.1381881

1. 引言

肿瘤是现今威胁人类生命健康的最大致死疾病因素之一,仅次于心血管疾病 [1] 。肿瘤的临床治疗方法通常包括手术治疗、放疗、化疗等。其中,化疗是一种全身性治疗方法,对肿瘤原发灶和转移灶均有治疗作用。术前化疗可提高手术切除率,术后化疗可预防肿瘤复发转移,预防病情进一步发展。然而,传统化疗药物的选择性较差,在杀死肿瘤细胞的同时,也杀死大量的正常细胞,导致机体各系统功能紊乱。与传统化疗药物相比,小分子靶向药物对正常组织伤害更低,副作用更少;与蛋白质及多肽类药物相比,其制造、运输和储存成本大幅下降所以价格更低,目前已成为抗癌药物研发的热点 [2] [3] [4] 。靶向药物是针对与肿瘤发生、发展有关的分子靶点,采用特异性药物进行干预,从而诱导肿瘤细胞凋亡或坏死 [3] 。例如,伊马替尼(Imatinib)是一种BCR-ABL1酪氨酸激酶抑制剂,而酪氨酸激酶过表达与慢性粒细胞白血病(Chronic Myeloid Leukemia, CML)的发生发展紧密相关,是CML的肿瘤治疗关键分子靶点。一项用伊马替尼治疗CML的临床研究结果显示,患者的10年总生存率达83.3%,部分患者甚至达到了完全的细胞遗传学意义上的病情缓解,且与伊马替尼相关的严重不良反应很少 [5] 。由此可见,小分子靶向药物不仅能选择性抑制肿瘤细胞生长,对正常细胞的损伤也相对较小 [6] ,具有极佳的研发价值。

自2001年伊马替尼被FDA批准上市以来,已有许多不同类型的抗肿瘤小分子靶向药物被开发出来,如拓扑异构酶抑制剂、细胞凋亡诱导剂、细胞周期抑制剂、微管蛋白抑制剂等等 [2] [7] 。这些药物利用了不同的蛋白质分子靶点,使用了不同的药物设计策略。其中,与细胞周期抑制剂有关的靶向药物设计策略就是抑制p53蛋白和MDM2 (Murine Double Minute 2,鼠双微体2)之间的相互作用(即抑制p53-MDM2)。p53蛋白可以控制细胞周期,诱导细胞凋亡,抑制肿瘤的发生发展;而MDM2能抑制p53的功能,是p53的负反馈调控因子。因此,抑制p53-MDM2就能延长p53的作用时间,从而抑制肿瘤生长。目前,p53-MDM2已成为肿瘤治疗的热门分子靶点。本文将重点介绍p53与MDM2的相互作用机制及二者在肿瘤发生发展中的作用,并对靶向p53-MDM2的抗肿瘤小分子抑制剂的研究进展进行总结。

2. p53和MDM2的相互作用

2.1. p53的结构和功能

p53蛋白是由抑癌基因TP53编码的转录因子 [8] ,能诱导细胞凋亡,阻止异常分裂,从而抑制癌细胞的增殖转化,故p53又被称为“抑癌蛋白” [9] 。TP53基因有野生型和突变型两种,其表达产物也有野生型p53和突变型p53两种类型。野生型p53的稳定性差,半衰期只有几分钟。因此,若能阻断野生型p53蛋白的降解,就能提高p53的稳定性并延长p53的作用时间,从而抑制肿瘤生长。

p53蛋白主要由四个区域构成(图1(A)):1) N端转录激活区;2) DNA结合区;3) C端四聚化结构域;4) C端非特异结合区。N端转录激活区能使p53启动下游靶基因表达、调控细胞周期、促进细胞凋亡,从而抑制肿瘤细胞的增殖。在正常细胞中,当基因复制出现问题时,p53蛋白会终止其复制,使细胞退回到G1期,并促进基因的损伤修复。当基因修复无法使细胞回到正常状态时,p53将开启下游信号通路并诱导激活其靶基因的转录,如p21、BAX、PUMA等,从而促进细胞的凋亡 [9] 。

Figure 1. Schematic diagram of the functional domains of p53 and MDM2

图1. p53与MDM2的功能结构域示意图

2.2. MDM2的结构和功能

MDM2是鼠双微体基因,编码MDM2蛋白。MDM2最初在鼠BALB/c3T3成纤维细胞系中发现,后证实也在人的多种组织中存在。目前认为,MDM2蛋白是p53蛋白的负调控因子,能够结合p53并抑制其功能,促进肿瘤的发生和发展。

MDM2蛋白主要有四个功能结构域(图1(B)):1) N端的p53结合区;2) 高度酸性区域,能与核糖体结合;3) 锌指结构区,具有转录因子的活性;4) C端的RING (Really Interesting New Gene,即“非常有趣的新基因”,简称为RING)指结构域 [10] ,具有E3泛素连接酶活性。MDM2的N端p53结合区能够与p53的转录激活区结合,抑制p53转录因子活性,从而抑制p53的抑癌功能;而MDM2的C端RING指结构域可以诱导p53的泛素化,最终使p53在细胞内的浓度下降。因此,MDM2是p53最为重要的负反馈调节因子,而MDM2的N端p53结合区就是与p53关联十分紧密的功能靶标。

2.3. p53和MDM2的相互作用机制

MDM2和p53的N端转录激活区的蛋白质共结晶结构显示,二者相互作用界面较小且存在明显的结合口袋(图2(A))。p53的三个关键氨基酸残基Phe19、Trp23、Leu26深深嵌入MDM2的结合口袋,从而促进了p53与MDM2的紧密结合 [11] 。该结合口袋位于MDM2的N端结构域,主要通过疏水作用力与p53的上述三个残基相互作用 [11] [12] 。p53的这三个残基也同时构成了位于其N端的一个α螺旋的疏水侧面(图2(B)),该α螺旋在p53与MDM2的结合中发挥了决定性作用。简言之,p53的α螺旋与MDM2的结合口袋主要通过疏水作用力紧密契合,同时还通过氢键等其他作用力稳定了p53-MDM2蛋白质复合物(图2(B))。

Figure 2. The binding mode of MDM2 and the transactivation domain of p53 (PDB code: 1YCR). (A) The binding pocket of MDM2. The yellow amino acid residues are from p53, and the red area on the surface is the hydrophobic pocket of MDM2. The redder the color, the stronger the hydrophobicity, and vice versa. (B) Key binding residues of p53 and MDM2. Blue ribbon indicates MDM2, yellow ribbon indicates p53, the green dashed line denotes the hydrogen bond, and the three key residues of p53 are marked with red label

图2. MDM2与p53转录激活区的结合方式示意图(PDB code: 1YCR)。(A) MDM2的结合口袋。黄色氨基酸残基来自p53,蛋白质表面的红色区域即为MDM2的疏水口袋,颜色越红则疏水性越强,反之则越弱。(B) p53与MDM2的关键结合残基。蓝色表示MDM2,黄色表示p53,绿色虚线为氢键。p53的三个关键残基用红色字体标明

MDM2蛋白对p53蛋白的负调控具有三重机制。一方面,MDM2能够与p53蛋白发生直接相互作用,降低或抑制其转录活性。另一方面,MDM2的C端含有一个特殊的RING指结构域 [13] ,具有E3泛素连接酶活性,能够促进p53蛋白泛素化,降低其在细胞内的含量,间接影响p53的转录活性。此外,MDM2还可以与MDMX蛋白(Murine Double Minute X,鼠双微体X)形成复合物 [14] ,促进p53的泛素化修饰,导致p53通过蛋白酶体途径被降解,从而减少p53在细胞内的水平,最终促进肿瘤发生 [15] [16] 。因此,调节p53与MDM2之间的相互作用能够控制p53的功能,进而影响其p53下游靶蛋白的表达水平。例如,p53的靶蛋白之一是细胞周期蛋白依赖性激酶抑制剂p21 [9] [17] ,它是细胞周期的负调节因子。当p53被抑制后,p21就不会被激活,这会导致细胞周期失去控制。在许多肿瘤类型中,p53都普遍存在功能异常,从而使肿瘤细胞得以无限增殖。当前的癌症治疗策略之一就是通过抑制p53与MDM2的相互作用来提高p53的水平,让p53得以继续发挥其“抑癌功能”,从而抑制肿瘤生长。

3. 靶向p53-MDM2的小分子抗肿瘤药物

基于p53与MDM2的共结晶结构,目前已有多种靶向p53-MDM2的小分子抑制剂被研发出来,其中部分抑制剂已进入临床研究。下文将对靶向p53-MDM2的代表性小分子抑制剂及其抗肿瘤研究结果进行总结。

3.1. Nutlins

Nutlins是一类小分子抑制剂,有Nutlin-1、Nutlin-2、Nutlin-3等类型 [18] 。它们通过直接与MDM2结合,阻断p53-MDM2复合物的形成,从而抑制p53的降解,增强p53蛋白的稳定性。Nutlins的核心骨架是顺式咪唑啉,在结构上类似p53的Phe19、Trp23和Leu26三个关键残基的苯环官能团,是首批能够特异性地干扰p53和MDM2之间的相互作用的咪唑啉类小分子。在Nutlins家族中,Nutlin-3相比其他成员对p53-MDM2的抑制效果更好。因此,Nutlin-3是抗肿瘤研究中最常用和最广泛评估的一种。Nutlin-3又可分为两种:Nutlin-3a与Nutlin-3b,其中Nutlin-3a的抑制作用比3b强150倍 [18] 。

Nutlin-3a的结构中包含两个氯苯基环和一个甲氧苯基环,这些环能够替代p53的Leu26和Trp23这两个关键残基,从而与MDM2的结合口袋紧密结合。正因为这种结构特点,Nutlin-3a比Nutlin-1和Nutlin-2的抑制效果更好。相关研究报道,Nutlin-3a的IC50为90 nM,而Nutlin-1和Nutlin-2的IC50分别为260nM和140 nM [19] 。Nutlins类化合物对多种肿瘤细胞都具有抑制作用。报道显示,Nutlin-3能够提高p53的表达水平,抑制DNA修复 [20] ,进而导致肿瘤细胞内的DNA损伤反应 [21] [22] [23] 。然而,重复给药后Nutlin-3的效用会下降,因此Nutlin-3可能不适合单一给药,需要与其他药物联合使用,从而克服肿瘤耐药性 [24] [25] 。

RG7112也是一种Nutlins类化合物,是通过对Nutlin-3a进行结构修饰而得到的。RG7112对MDM2具有较强亲和力(KD = 10.7 nM),且抑制肿瘤的活性比Nutlin-3a高3倍左右 [26] 。截至目前,RG7112已开展多项临床试验,主要包括白血病和各种实体瘤等 [27] [28] [29] 。其中,一项临床研究结果显示,RG7112能显著提高脂肪肉瘤患者体内的p53和下游p21的表达水平,其药物不良反应主要是中性粒细胞减少和血小板减少 [30] 。

3.2. RG7388

RG7388也称为Idasanutlin,能通过与MDM2结合来抑制p53-MDM2相互作用。顾名思义,Idasanutlin是基于Nutlins核心骨架而研发出来的第二代Nutlins,其药效相对第一代有所提高 [31] 。例如,RG7388对MDM2的结合活性提高了33倍左右,对含野生型p53的各种肿瘤细胞的抗增殖活性显著提高。另外,RG7388的小鼠口服生物利用度达80%,代谢稳定性也优于第一代Nutlins [12] 。RG7388对于急性髓系白血病的抗肿瘤研究进入了III期临床试验 [32] 。在二期临床试验中,RG7388相对于第一代Nutlins的疗效更佳、副作用更小。然而,在III期临床试验中,多名患者出现剂量毒性,且有多位受试者出现不良反应。另外,RG7388与其他药物联用能增强药效。例如,ABT-199是一种BCL-2抑制剂,RG7388与ABT-199联用的肿瘤治疗效果较好,与ABT-199表现出了协同作用 [33] 。

3.3. AMG 232

AMG232又称为KRT-232,能够增加p53的稳定性和转录活性,从而抑制p53的降解 [34] 。AMG232与其他MDM2药物一样,能占据MDM2的疏水口袋从而抑制p53与MDM2的结合,其关键官能团为一个间氯苯基、一个对氯苯基和一个异丙基,能模拟p53的三个关键残基。

AMG232的抗肿瘤研究结果显示,在SJSA-1骨肉瘤模型中,AMG232的抗肿瘤活性较为明显,能显著促进肿瘤消退,且无明显毒副作用 [35] 。AMG232还能诱导卵巢癌细胞中的p53活化 [36] 。用AMG232处理OVTOKO、OVMANA和TOV-21G细胞系后,p53及其靶基因p21在所有测试的细胞系中均被激活。但是,在OVTOKO和OVMANA细胞系中,高表达MDM2的细胞系对AMG232给药表现出一定的耐药性。因此,虽然AMG232的效果较好,但由于某些癌细胞系的耐药性,它可能不适用于单一给药。当把AMG232与其他细胞毒性药物联用后,其抗肿瘤活性得到明显提高 [37] [38] 。

3.4. SAR405838

SAR405838也称为MI-77301,是一种靶向p53-MDM2的新型药物。与前文所述的化合物类似,SAR405838可以与p53竞争并占据MDM2的结合口袋,从而抑制p53-MDM2相互作用,从而抑制肿瘤细胞生长 [39] 。研究显示,SAR405838 能有效抑制结肠癌、前列腺癌等多种肿瘤细胞生长 [40] ,且在大脑肿瘤中(如胶质瘤等)也具有一定的应用潜力 [41] 。研究显示,给携带HCT-116人源结肠癌细胞系的小鼠口服SAR405838后,SAR405838能够抑制小鼠结肠癌异种移植物的生长。SAR405838还能够抑制前列腺癌,尤其是LNCaP前列腺淋巴结癌细胞的生长,且对小鼠没有明显毒性 [40] 。一项I期临床研究结果显示,SAR405838与MEK1/2 (即MAPK激酶1/2)抑制剂Pimasertib联合使用能有效抑制结肠癌、黑色素瘤等多种肿瘤生长,且SAR405838的用药安全性与Pimasertib相当(NCT01985191) [42] 。

3.5. HDM201

HDM201也称为Siremadlin,是诺华制药公司设计的一种靶向p53-MDM2的小分子抑制剂,目前HDM201的具体结构设计思路尚未完全公开,但与其结构类似的化合物合成已有文献报道 [12] [43] 。抗肿瘤研究结果显示,HDM201可以抑制多种肿瘤细胞生长,如白血病、黑色素瘤、结肠癌、脂肪瘤等,且能选择性诱导p53野生型的肿瘤细胞周期停滞和凋亡,并具有剂量依赖性 [44] [45] [46] 。进一步研究表明,HDM201可通过上调p53的靶基因表达,如PUMA等,从而实现其抗肿瘤活性 [46] 。HDM201也具有与其他靶向药物联用的潜力,例如,HDM201与FLT3 (FMS样酪氨酸激酶3)抑制剂联用可以特异性诱导p53野生型的急性髓性白血病细胞凋亡 [47] 。另外,HMD201还与MEK抑制剂Trametinib及上文提到的Nutlin-3及RG7388表现出协同性:与单一给药相比,使用Trametinib/Nutlin-3/RG7388/HDM201联合治疗能够高效诱导p53下游靶基因转录并上调p53靶蛋白水平,并进一步诱导肿瘤细胞周期停滞和凋亡 [48] 。近期的一项I期临床研究结果还显示,HDM201具有良好的药代动力学参数,其安全性与其他同类别的临床药物无显著差异(NCT02143635) [44] 。目前,另有多项涉及HDM201的联合用药临床研究正在进行,包括HDM201与PD-1抑制剂联用应用于结直肠癌和肾细胞癌(NCT02890069),以及HDM201与Janus激酶1/2抑制剂联用应用于骨髓纤维化(NCT04097821)等等。

3.6. 黄酮类化合物

黄酮类化合物是广泛存在于植物中的一类天然产物,具有抗氧化、抗炎、抗诱变和抗癌等多种活性 [49] [50] 。黄酮及其衍生物有许多不同的种类,如黄酮、黄酮醇、黄烷酮、黄烷醇、黄烷醇、花色素苷和查尔酮等等,其中部分黄酮种类具有与p53-MDM2相关的抗肿瘤活性。研究表明,查尔酮能够抑制乳腺癌和黑色素瘤细胞系的生长,并且其抑制效果与p53正相关 [25] 。查尔酮具有A、B、C、D四种结构不同的类型,其中A、B和C可以通过直接结合MDM2或使MDM2变性而抑制p53-MDM2,但D型查尔酮不影响p53-MDM2的相互作用 [51] 。

3.7. 环肽化合物

Chlorofusin是从镰刀菌属(Fusarium)的发酵液中获得的一种真菌代谢物 [52] ,由一个二十七元环肽通过其鸟氨酸残基与一个结构新颖的发色团组成的环肽类抑制剂。研究表明,Chlorofusin能够有效抑制p53-MDM2相互作用(IC50 = 4.6 μM, KD = 4.7 μM),从而稳定p53活性。然而,一项抗肿瘤研究结果显示,Chlorofusin在4 μM浓度下不能显著影响HepG2细胞系的生长。尽管在部分肝癌细胞系中该药物未能显著诱导肿瘤细胞凋亡,但它仍然可能是一个有潜力的靶向p53-MDM2的先导化合物。目前Chlorofusin与MDM2结合的具体方式不明,仍需进一步研究。

4. 总结与展望

靶向p53-MDM2的小分子抑制剂是一种新型抗肿瘤药物,其作用机制是解除MDM2对p53的负调控,从而使p53得以继续发挥其“抑癌蛋白”功能,诱导肿瘤细胞发生周期停滞和凋亡。目前已发现多种靶向p53-MDM2的小分子抑制剂,且在体外实验中显示出良好的抗癌效果,其中部分抑制剂已进入临床试验阶段。尽管大多数化合物由于各种原因未能通过体外实验及临床筛选,但它们仍可作为先导化合物,为开发亲和力更强、渗透率更高、效果更显著的靶向p53-MDM2小分子抑制剂提供参考。总而言之,p53与MDM2之间相互作用机制的特殊性给相关小分子抑制剂的开发带来了巨大的挑战,目前仍无相关的上市药物。为了提高p53-MDM2小分子抑制剂的临床效果和安全性,未来仍需更多的研究证据以进一步验证各类小分子化合物的应用价值。

基金项目

咸宁市自然科学基金项目(2022ZRKX066),湖北科技学院国家培育项目(2022-24GP02),湖北科技学院博士科研启动基金项目(BK1413),湖北省自然科学基金面上项目(2022CFB394);湖北省卫生健康委员会科研项目(WJ2019Q022);湖北科技学院医学科研专项基金(2022YKY08)。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clini-cians, 73, 17-48.
https://doi.org/10.3322/caac.21763
[2] Chahat, Bhatia, R. and Kumar, B. (2023) p53 as a Poten-tial Target for Treatment of Cancer: A Perspective on Recent Advancements in Small Molecules with Structural Insights and SAR Studies. European Journal of Medicinal Chemistry, 247, Article ID: 115020.
https://doi.org/10.1016/j.ejmech.2022.115020
[3] Wu, Q., Qian, W., Sun, X. and Jiang, S. (2022) Small-Molecule Inhibitors, Immune Checkpoint Inhibitors, and More: FDA-Approved Novel Therapeutic Drugs for Solid Tumors from 1991 to 2021. Journal of Hematology & Oncology, 15, Article No. 143.
https://doi.org/10.1186/s13045-022-01362-9
[4] Bedard, P.L., Hyman, D.M., Davids, M.S. and Siu, L.L. (2020) Small Molecules, Big Impact: 20 Years of Targeted Therapy in Oncology. The Lancet. 395, 1078-1088.
https://doi.org/10.1016/S0140-6736(20)30164-1
[5] Hochhaus, A., Larson, R.A., Guilhot, F., Radich, J.P., Branford, S., Hughes, T.P., Baccarani, M., Deininger, M.W., Cervantes, F., Fujihara, S., et al. (2017) Long-Term Out-comes of Imatinib Treatment for Chronic Myeloid Leukemia. The New England Journal of Medicine, 376, 917-927.
https://doi.org/10.1056/NEJMoa1609324
[6] Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., Yang, W., Tian, C., Miao, Z., Wang, T., et al. (2021) Small Molecules in Targeted Cancer Therapy: Advances, Challenges, and Future Perspectives. Signal Transduction and Targeted Therapy, 6, Article No. 201.
https://doi.org/10.1038/s41392-021-00572-w
[7] Bhatia, N., Khator, R., Kulkarni, S., Singh, Y., Kumar, P. and Thareja, S. (2023) Recent Advancements in the Discovery of MDM2/MDM2-p53 Interaction Inhibitors for the Treat-ment of Cancer. Current Medicinal Chemistry, 30, 3668-3701.
https://doi.org/10.2174/0929867330666221114103924
[8] Finlay, C.A., Hinds, P.W. and Levine, A.J. (1989) The p53 Proto-Oncogene Can Act as a Suppressor of Transformation. Cell, 57, 1083-1093.
https://doi.org/10.1016/0092-8674(89)90045-7
[9] Kastenhuber, E.R. and Lowe, S.W. (2017) Putting p53 in Context. Cell, 170, 1062-1078.
https://doi.org/10.1016/j.cell.2017.08.028
[10] Borden, K.L. and Freemont, P.S. (1996) The RING Finger Domain: A Recent Example of a Sequence-Structure Family. Current Opinion in Structural Biology, 6, 395-401.
https://doi.org/10.1016/S0959-440X(96)80060-1
[11] Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Mo-reau, J., Levine, A.J. and Pavletich, N.P. (1996) Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Sup-pressor Transactivation Domain. Science, 274, 948-953.
https://doi.org/10.1126/science.274.5289.948
[12] Zhu, H., Gao, H., Ji, Y., Zhou, Q., Du, Z., Tian, L., Jiang, Y., Yao, K. and Zhou, Z. (2022) Targeting p53-MDM2 Interaction by Small-Molecule Inhibitors: Learning from MDM2 In-hibitors in Clinical Trials. Journal of Hematology & Oncology, 15, Article No. 91.
https://doi.org/10.1186/s13045-022-01314-3
[13] Boddy, M.N., Freemont, P.S. and Borden, K.L. (1994) The p53-Associated Protein MDM2 Contains a Newly Characterized Zinc-Binding Domain Called the RING Finger. Trends in Biochemical Sciences, 19, 198-199.
https://doi.org/10.1016/0968-0004(94)90020-5
[14] Shvarts, A., Steegenga, W.T., Riteco, N., van Laar, T., Dekker, P., Bazuine, M., van Ham, R.C., van der Houven van Oordt, W., Hateboer, G., van der Eb, A.J., et al. (1996) MDMX: A Novel p53-Binding Protein with Some Functional Properties of MDM2. The EMBO Journal, 15, 5349-5357.
https://doi.org/10.1002/j.1460-2075.1996.tb00919.x
[15] Wang, X. and Jiang, X. (2012) Mdm2 and MdmX Part-ner to Regulate p53. FEBS Letters, 586, 1390-1396.
https://doi.org/10.1016/j.febslet.2012.02.049
[16] Wang, X. (2011) p53 Regulation: Teamwork between RING Domains of Mdm2 and MdmX. Cell Cycle, 10, 4225-4229.
https://doi.org/10.4161/cc.10.24.18662
[17] el-Deiry, W.S. (1998) p21/p53, Cellular Growth Control and Genomic Integrity. Current Topics in Microbiology and Immunology, 227, 121-137.
https://doi.org/10.1007/978-3-642-71941-7_6
[18] Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004) In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2. Science, 303, 844-848.
https://doi.org/10.1126/science.1092472
[19] Shangary, S. and Wang, S. (2009) Small-Molecule Inhibitors of the MDM2-p53 Protein-Protein Interaction to Reactivate p53 Function: A Novel Approach for Cancer Therapy. Annual Re-view of Pharmacology and Toxicology, 49, 223-241.
https://doi.org/10.1146/annurev.pharmtox.48.113006.094723
[20] Carrillo, A.M., Hicks, M., Khabele, D. and Eischen, C.M. (2015) Pharmacologically Increasing Mdm2 Inhibits DNA Repair and Cooperates with Genotoxic Agents to Kill p53-Inactivated Ovarian Cancer Cells. Molecular Cancer Research, 13, 1197-1205.
https://doi.org/10.1158/1541-7786.MCR-15-0089
[21] Kumar, A., Gautam, V., Sandhu, A., Rawat, K., Sharma, A. and Saha, L. (2023) Current and Emerging Therapeutic Approaches for Colorectal Cancer: A Comprehensive Review. World Journal of Gastrointestinal Surgery, 15, 495-519.
https://doi.org/10.4240/wjgs.v15.i4.495
[22] Rigatti, M.J., Verma, R., Belinsky, G.S., Rosenberg, D.W. and Giardina, C. (2012) Pharmacological Inhibition of Mdm2 Triggers Growth Arrest and Promotes DNA Breakage in Mouse Colon Tumors and Human Colon Cancer Cells. Molecular Carcinogenesis, 51, 363-378.
https://doi.org/10.1002/mc.20795
[23] Verma, R., Rigatti, M.J., Belinsky, G.S., Godman, C.A. and Giardina, C. (2010) DNA Damage Response to the Mdm2 Inhibitor Nutlin-3. Biochemical Pharmacology, 79, 565-574.
https://doi.org/10.1016/j.bcp.2009.09.020
[24] de Lange, J., Ly, L.V., Lodder, K., Verlaan-de Vries, M., Teunisse, A.F., Jager, M.J. and Jochemsen, A.G. (2012) Synergistic Growth Inhibition Based on Small-Molecule p53 Activation as Treatment for Intraocular Melanoma. Oncogene, 31, 1105-1116.
https://doi.org/10.1038/onc.2011.309
[25] Koo, N., Sharma, A.K. and Narayan, S. (2022) Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. International Journal of Molecular Sciences, 23, Article No. 5005.
https://doi.org/10.3390/ijms23095005
[26] 闫宁, 李桢, 吴成军, 孙铁民. 作用于p53/MDM2/MDMX系统的抗肿瘤小分子抑制剂的研究进展[J]. 中国药物化学杂志, 2016, 26(5): 419-430.
[27] Traweek, R.S., Cope, B.M., Roland, C.L., Keung, E.Z., Nassif, E.F. and Erstad, D.J. (2022) Targeting the MDM2-p53 Pathway in Dedifferentiated Liposarcoma. Frontiers in Oncology, 12, Article ID: 1006959.
https://doi.org/10.3389/fonc.2022.1006959
[28] Andreeff, M., Kelly, K.R., Yee, K., Assouline, S., Strair, R., Pop-plewell, L., Bowen, D., Martinelli, G., Drummond, M.W., Vyas, P., et al. (2016) Results of the Phase I Trial of RG7112, a Small-Molecule MDM2 Antagonist in Leukemia. Clinical Cancer Research, 22, 868-876.
https://doi.org/10.1158/1078-0432.CCR-15-0481
[29] Patnaik, A., Tolcher, A., Beeram, M., Nemunaitis, J., Weiss, G.J., Bhalla, K., Agrawal, M., Nichols, G., Middleton, S., Beryozkina, A., et al. (2015) Clinical Pharmacology Charac-terization of RG7112, an MDM2 Antagonist, in Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 76, 587-595.
https://doi.org/10.1007/s00280-015-2830-8
[30] Ray-Coquard, I., Blay, J.Y., Italiano, A., Le Cesne, A., Penel, N., Zhi, J., Heil, F., Rueger, R., Graves, B., Ding, M., et al. (2012) Effect of the MDM2 Antagonist RG7112 on the P53 Pathway in Patients with MDM2-Amplified, Well-Differentiated or Dedifferentiated Liposarcoma: An Exploratory Proof-of-Mechanism Study. The Lancet Oncology, 13, 1133-1140.
https://doi.org/10.1016/S1470-2045(12)70474-6
[31] Khurana, A. and Shafer, D.A. (2019) MDM2 Antagonists as a Novel Treatment Option for Acute Myeloid Leukemia: Perspectives on the Therapeutic Potential of Idasanutlin (RG7388). OncoTargets and Therapy. 12, 2903-2910.
https://doi.org/10.2147/OTT.S172315
[32] Skalniak, L., Kocik, J., Polak, J., Skalniak, A., Rak, M., Wolnicka-Glubisz, A. and Holak, T.A. (2018) Prolonged Idasanutlin (RG7388) Treatment Leads to the Generation of p53-Mutated Cells. Cancers (Basel), 10, Article No. 396.
https://doi.org/10.3390/cancers10110396
[33] Tisato, V., Voltan, R., Gonelli, A., Secchiero, P. and Zauli, G. (2017) MDM2/X Inhibitors under Clinical Evaluation: Perspectives for the Management of Hematological Malignancies and Pe-diatric Cancer. Journal of Hematology & Oncology, 10, Article No. 133.
https://doi.org/10.1186/s13045-017-0500-5
[34] Liao, G., Yang, D., Ma, L., Li, W., Hu, L., Zeng, L., Wu, P., Duan, L. and Liu, Z. (2018) The Development of Piperidinones as Potent MDM2-P53 Protein-Protein Interaction Inhib-itors for Cancer Therapy. European Journal of Medicinal Chemistry, 159, 1-9.
https://doi.org/10.1016/j.ejmech.2018.09.044
[35] Sun, D., Li, Z., Rew, Y., Gribble, M., Bartberger, M.D., Beck, H.P., Canon, J., Chen, A., Chen, X., Chow, D., et al. (2014) Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2-p53 Inhibitor in Clinical Development. Journal of Medicinal Chemistry, 57, 1454-1472.
https://doi.org/10.1021/jm401753e
[36] Sahin, I., Zhang, S., Navaraj, A., Zhou, L., Dizon, D., Safran, H. and El-Deiry, W.S. (2020) AMG-232 Sensitizes High MDM2-Expressing Tumor Cells to T-Cell-Mediated Killing. Cell Death Discovery, 6, Article No. 57.
https://doi.org/10.1038/s41420-020-0292-1
[37] Canon, J., Osgood, T., Olson, S.H., Saiki, A.Y., Robertson, R., Yu, D., Eksterowicz, J., Ye, Q., Jin, L., Chen, A., et al. (2015) The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents. Molecular Cancer Therapeutics, 14, 649-658.
https://doi.org/10.1158/1535-7163.MCT-14-0710
[38] Ghotaslou, A., Samii, A., Boustani, H., Kiani Ghalesardi, O. and Shahidi, M. (2022) AMG-232, a New Inhibitor of MDM-2, Enhance Doxorubicin Efficiency in Pre-B Acute Lym-phoblastic Leukemia Cells. Reports of Biochemistry and Molecular Biology, 11, 111-124.
https://doi.org/10.52547/rbmb.11.1.111
[39] Bill, K.L., Garnett, J., Meaux, I., Ma, X., Creighton, C.J., Bolshakov, S., Barriere, C., Debussche, L., Lazar, A.J., Prudner, B.C., et al. (2016) SAR405838: A Novel and Potent Inhibitor of the MDM2:p53 Axis for the Treatment of Dedifferentiated Liposarcoma. Clinical Cancer Research, 22, 1150-1160.
https://doi.org/10.1158/1078-0432.CCR-15-1522
[40] Wang, S., Sun, W., Zhao, Y., McEachern, D., Meaux, I., Barrière, C., Stuckey, J.A., Meagher, J.L., Bai, L., Liu, L., et al. (2014) SAR405838: An Optimized Inhibitor of MDM2-p53 Interaction That Induces Complete and Durable Tumor Regression. Cancer Research, 74, 5855-5865.
https://doi.org/10.1158/0008-5472.CAN-14-0799
[41] Kim, M., Laramy, J.K., Gampa, G., Parrish, K.E., Brundage, R., Sarkaria, J.N. and Elmquist, W.F. (2019) Brain Distributional Kinetics of a Novel MDM2 Inhibitor SAR405838: Im-plications for Use in Brain Tumor Therapy. Drug Metabolism & Disposition, 47, 1403-1414.
https://doi.org/10.1124/dmd.119.088716
[42] de Weger, V.A., de Jonge, M., Langenberg, M.H.G., Schellens, J.H.M., Lolkema, M., Varga, A., Demers, B., Thomas, K., Hsu, K., Tuffal, G., et al. (2019) A Phase I Study of the HDM2 Antagonist SAR405838 Combined with the MEK Inhibitor Pimasertib in Patients with Advanced Solid Tumours. British Journal of Cancer, 120, 286-293.
https://doi.org/10.1038/s41416-018-0355-8
[43] Vaupel, A., Holzer, P., Ferretti, S., Guagnano, V., Kallen, J., Mah, R., Masuya, K., Ruetz, S., Rynn, C., Schlapbach, A., et al. (2018) In Vitro and in Vivo Characterization of a Novel, Highly Potent p53-MDM2 Inhibitor. Bioorganic & Medicinal Chemistry Letters, 28, 3404-3408.
https://doi.org/10.1016/j.bmcl.2018.08.027
[44] Stein, E.M., DeAngelo, D.J., Chromik, J., Chatterjee, M., Bauer, S., Lin, C.C., Suarez, C., de Vos, F., Steeghs, N., Cassier, P.A., et al. (2022) Results from a First-in-Human Phase I Study of Siremadlin (HDM201) in Patients with Advanced Wild-Type TP53 Solid Tumors and Acute Leukemia. Clinical Cancer Research, 28, 870-881.
https://doi.org/10.1158/1078-0432.CCR-21-1295
[45] Abdul Razak, A.R., Bauer, S., Suarez, C., Lin, C.C., Quek, R., Hütter-Krönke, M.L., Cubedo, R., Ferretti, S., Guerreiro, N., Jullion, A., et al. (2022) Co-Targeting of MDM2 and CDK4/6 with Siremadlin and Ribociclib for the Treatment of Patients with Well-Differentiated or Dedifferentiated Lipo-sarcoma: Results from a Proof-of-Concept, Phase Ib Study. Clinical Cancer Research, 28, 1087-1097.
https://doi.org/10.1158/1078-0432.CCR-21-1291
[46] Jeay, S., Ferretti, S., Holzer, P., Fuchs, J., Chapeau, E.A., Wartmann, M., Sterker, D., Romanet, V., Murakami, M., Kerr, G., et al. (2018) Dose and Schedule Determine Distinct Molecular Mechanisms Underlying the Efficacy of the p53-MDM2 Inhibitor HDM201. Cancer Research, 78, 6257-6267.
https://doi.org/10.1158/0008-5472.CAN-18-0338
[47] Seipel, K., Marques, M.A.T., Sidler, C., Mueller, B.U. and Pabst, T. (2018) MDM2- and FLT3-Inhibitors in the Treatment of FLT3-ITD Acute Myeloid Leuke-mia, Specificity and Efficacy of NVP-HDM201 and Midostaurin. Haematologica, 103, 1862-1872.
https://doi.org/10.3324/haematol.2018.191650
[48] Wu, C.E., Koay, T.S., Esfandiari, A., Ho, Y.H., Lovat, P. and Lunec, J. (2018) ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma. Cancers (Basel), 11, Article No. 3.
https://doi.org/10.3390/cancers11010003
[49] Kopustinskiene, D.M., Jakstas, V., Savickas, A. and Bernatoniene, J. (2020) Flavonoids as Anticancer Agents. Nutrients, 12, Article No. 457.
https://doi.org/10.3390/nu12020457
[50] Zhao, L., Yuan, X., Wang, J., Feng, Y., Ji, F., Li, Z. and Bian, J. (2019) A Review on Flavones Targeting Serine/Threonine Protein Kinases for Potential Anticancer Drugs. Bioorganic & Me-dicinal Chemistry, 27, 677-685.
https://doi.org/10.1016/j.bmc.2019.01.027
[51] Jandial, D.D., Blair, C.A., Zhang, S., Krill, L.S., Zhang, Y.B. and Zi, X. (2014) Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones. Current Cancer Drug Targets, 14, 181-200.
https://doi.org/10.2174/1568009614666140122160515
[52] Clark, R.C., Lee, S.Y., Searcey, M. and Boger, D.L. (2009) The Isolation, Total Synthesis and Structure Elucidation of Chlorofusin, a Natural Product Inhibitor of the p53-mDM2 Protein-Protein Interaction. Natural Product Reports, 26, 465-477.
https://doi.org/10.1039/b821676b