Tranilast在角膜碱烧伤治疗中的潜在作用
Potential Role of Tranilast in the Treatment of Corneal Alkali Burns
DOI: 10.12677/HJO.2023.123014, PDF, HTML, XML, 下载: 132  浏览: 305  科研立项经费支持
作者: 林雅娜, 杨程成, 刘 洋:中山大学附属第五医院眼科,广东 珠海
关键词: Tranilast角膜碱烧伤胶原降解炎症Tranilast Corneal Alkali Burn Collagen Degradation Inflammation
摘要: 角膜碱烧伤是临床上常见的眼外伤类型,致盲率极高,其发生机制涉及角膜基质细胞、炎性细胞浸润、角膜胶原纤维降解、各种细胞因子及其相互作用。积累的证据表明,Tranilast具有广泛的药理特性,如抗炎、减轻纤维化和免疫调节作用。本文综述了Tranilast在免疫性和炎症性疾病中的新发现,并分析了Tranilast在角膜碱烧伤治疗中的应用前景。
Abstract: Corneal alkali burn is a common type of ocular trauma with a very high rate of blindness. Its occurrence mechanisms involve corneal stromal cells, inflammatory cell infiltration, corneal collagen fiber degradation, various cytokines and their interactions. Accumulating evidence suggests that Tranilast has a broad range of pharmacological properties, such as efficacy in anti-inflammatory, alleviating fibrosis and immunomodulatory effects. This review summarizes the new findings of Tranilast in immune and inflammatory diseases and analyzes the perspective application of Tranilast in the treatment of corneal alkali burns.
文章引用:林雅娜, 杨程成, 刘洋. Tranilast在角膜碱烧伤治疗中的潜在作用[J]. 眼科学, 2023, 12(3): 101-107. https://doi.org/10.12677/HJO.2023.123014

1. 引言

角膜碱烧伤是临床上常见的眼外伤类型,致盲率极高 [1] 。尤其是严重的角膜碱烧伤会引起角膜基质溶解、穿孔、新生血管形成导致视力丧失。参与碱烧伤角膜溃疡发生的途径:(1) 由角膜固有细胞(包括角膜上皮细胞及角膜基质成纤维细胞)分泌的、被浸润炎性细胞激活的基质金属蛋白酶(Matrix Metallo Proteinases, MMPs)对胶原纤维的降解作用 [2] ;(2) 由浸润炎性细胞分泌的MMPs对胶原纤维的降解作用。控制角膜基质溶解在碱烧伤的治疗中非常棘手,目前临床常在早期应用皮质类固醇抗炎,但是有眼压升高、抑制上皮修复的副作用。因此探索新的调节角膜细胞功能及抑制免疫炎症方面的局部药物具有重大意义。

Tranilast化学名为N-(3,4-二甲氧基肉桂酰)-邻氨基苯甲酸[N-(3,4-dimethoxycinnamoyl) anthranilic acid],是1976年由日本岐阜药科大学的江田昭英和Kissei制药有限公司联合研制的药物 [3] 。在日本,临床上已广泛使用tranilast的点眼液Rizaben来防治过敏性结膜炎和春季结膜炎等变态反应性结膜炎 [4] 。Tranilast抗过敏作用主要通过抑制各种细胞尤其是肥大细胞释放化学介质如组胺或白三烯,从而抑制局部组织水肿、嗜酸性粒细胞浸润 [5] 。随着研究的深入,人们发现它还具有抗炎、调节免疫、抗纤维化、防治新生血管形成等作用。目前己被应用于包括眼科在内的医学各学科的基础研究和临床治疗。Tranilast在角膜碱烧伤治疗中有潜在应用价值。

2. 检索方式

本综述的相关研究论文和摘要来自MEDLINE数据库。使用以下搜索词:(corneal alkali burn) AND (MMP),(Tranilast) AND (MMP),(corneal alkali burn) AND (cytokine),(Tranilast) AND (cytokine),(corneal alkali burn) AND (interleukin),(Tranilast) AND (interleukin),(corneal alkali burn) AND (tumor necrosis factor),(Tranilast) AND (tumor necrosis factor),(Tranilast) AND (interleukin) AND (nuclear factor),(Tranilast) AND (interleukin) AND (Mitogen-activated protein kinase)。搜索范围涵盖了1976年至2022年的出版物和以英文发表的文章。

3. Tranilast和基质金属蛋白酶

碱性化学物质对角膜的损害是碱烧伤角膜溃疡的始动因素,角膜细胞及浸润的炎症细胞等释放的酶类才是导致进行性的角膜组织破坏的原因。研究显示基质金属蛋白酶(Matrix Metallo Proteinases, MMPs)是在碱烧伤角膜基质溶解中起重要作用的酶类。MMPs可由角膜上皮细胞、角膜基质细胞以及浸润的中性粒细胞所释放。角膜上皮细胞是角膜的第一道防线,在炎症刺激下产生各种炎性细胞因子及MMPs参与角膜损伤的发生。角膜基质占角膜组织的90%以上,由细胞外基质(主要为Ⅰ型胶原纤维)和角膜基质细胞 (角膜成纤维细胞)组成。角膜基质胶原纤维过多的降解导致角膜基质溶解的发生。MMP-1主要负责I型胶原纤维的降解,尽管MMP-3不能降解I型胶原纤维,但是它参与了其它类型MMPs的活化 [6] 。MMP-2、-9降解I型胶原纤维的作用是在它们被MMP-1裂解和随后的三维胶原链的变性后而产生 [7] ,MMP2可降解上皮细胞基底膜而促进角膜溃疡的发生 [8] 。正常哺乳动物角膜中只有MMP-2存在。化学伤时角膜MMP-2明显升高,并可检测到MMP-1、3、8、9、10、13以及MT-1MMP [9] [10] 。因此,角膜碱烧伤时抑制MMPs的产生及作用可以抑制角膜基质溶解。

Tranilast可以抑制肿瘤坏死因子-α (TNF-α)诱导鼻成纤维细胞MMP-2和MMP-9的表达,而基质金属蛋白酶组织抑制剂-1 (TIMP-1)及TIMP-2的表达不受影响 [11] 。Tranilast还可以抑制脂多糖(LPS)刺激的中性粒细胞MMPs和TIMP-1的产生,它还抑制LPS刺激的中性粒细胞中MMP mRNA表达和转录因子活化 [12] 。

在眼科研究领域:Tranilast以浓度和时间依赖性方式抑制聚肌胞苷酸[poly(I:C)]诱导的角膜成纤维细胞MMP-1和MMP-3的表达 [13] 。Tranilast抑制转化生长因子-β (TGF-β)诱导的人角膜成纤维细胞中MMP-1、MMP-2和MMP-3的分泌 [14] 。Tranilast以浓度和时间依赖的方式抑制白细胞介素-1β (IL-1β)诱导的人角膜成纤维细胞MMP-1、-2和-3的表达 [15] 。

此外,Tranilast在肿瘤研究中的作用:成纤维细胞产生的MMP-2和TGF-β1增加胃癌细胞的侵袭力,而Tranilast抑制了成纤维细胞MMP-2及TGF-β1的表达,从而降低了与成纤维细胞共培养的胃癌细胞的侵袭力 [16] 。Tranilast可抑制培养的人乳腺癌细胞MMP-9 的表达,并且在联合他莫昔芬治疗中MMP-9 mRNA水平降低 [17] 。Tranilast以剂量依赖性方式抑制小鼠胰腺癌细胞迁移能力和肿瘤侵袭性,抑制MMP-2活性,并抑制金属蛋白酶组织抑制剂(TIMP-) 2的表达 [18] 。

这些研究显示Tranilast可以影响MMPs和TIMPs的表达。MMPs和TIMPs在角膜损伤恢复的过程中起重要的作用,MMPs和TIMPs的失衡可引起角膜基质溶解的病理过程。

4. Tranilast和炎症细胞因子

除角膜基质成纤维细胞外,浸润的炎性细胞也参与角膜基质的炎症反应。碱烧伤促使胶原降解为小分子多肽,而这些多肽在碱损伤后的早期中性粒细胞反应中发挥重要作用,而聚集的中性粒细胞释放的趋化因子会使更多的炎症细胞聚集于受损区域;受损的角膜胶原形成一种细胞因子并诱发多形核白细胞的呼吸爆破反应及脱颗粒,释放大量的胶原酶及超氧化物进一步加重角膜溃疡,二者形成恶性循环 [19] [20] 。碱性化学伤后炎性细胞因子上调也是造成细胞浸润及胶原破坏的重要因素。在碱烧伤的大鼠角膜中,诱导IL-6mRNA水平的表达从第1天到第7天持续存在,IL-1 β mRNA水平也显著增加 [21] 。在碱烧伤的早期阶段,IL-1α和IL-6mRNA被强烈诱导,免疫组织化学分析显示,IL-1α和IL-6主要定位于再生上皮基底细胞 [22] 。在未经治疗的碱烧伤大鼠角膜中,IL-1α、-6和-8在受伤后的7天内显着升高,倍他米松和环孢素A在第4天显着抑制IL-1α和IL-8,只有倍他米松在第4天和第7天显着抑制IL-6,这两种药物在第4天显着降低角膜混浊 [23] 。IL-1,IL-6可使多形核细胞(PMNs)浸润并释放超氧化物、前列腺素、溶酶体酶或MMPs。IL-1能诱导培养的角膜基质细胞表达MMPs,还能诱导角膜上皮、基质细胞表达IL-6,IL-8 [24] [25] [26] 。在炎性细胞因子中,白细胞介素-1对角膜溃疡的形成起着重要的作用。我们的前期工作已经证实白细胞介素-1可以刺激角膜基质成纤维细胞产生MMP-1、-2、-3、-9以促进角膜基质胶原的降解 [27] 。在炎性细胞因子的刺激下,角膜基质成纤维细胞可以产生促使白细胞聚集及激活的各种趋化因子和粘附因子 [28] [29] 。由此可见,角膜上皮细胞、角膜基质成纤维细胞及浸润的炎性细胞通过调节炎性细胞因子、趋化因子及MMPs的产生,在角膜基质溶解的形成中起着重要的作用。抑制角膜炎症反应是控制碱烧伤角膜基质溶解发展的重要环节。

研究发现Tranilast以浓度和时间依赖性方式抑制聚肌胞苷酸[poly(I:C)]诱导的角膜成纤维细胞IL-6、IL-8、单核细胞趋化蛋白-1 (MCP-1)、细胞间黏附分子-1 (ICAM-1)、血管细胞黏附分子-1 (VCAM-1)的表达 [13] 。Tranilast可以通过核转录因子-κB (NF-κB)抑制IL-1诱导大鼠肾小球系膜细胞MCP-1的蛋白质及mRNA水平上的表达 [30] 。Tranilast还可通过选择性地抑制环氧化酶-2 (COX-2)的表达来抑制IL-1诱导的皮肤成纤维细胞前列腺素-2 (PGE2)的产生 [31] 。文献报道tranilast可以抑制TNF-α及IL-4诱导人角膜基质成纤维细胞嗜酸性粒细胞趋化因子-1 (eotaxin-1)的释放及mRNA的上调及血管细胞黏附分子-1 (VCAM-1)的表面表达,并且抑制细胞因子诱导的核转录因子-κB (NF-κB)抑制物IκBα及丝裂原活化蛋白激酶(ERK、JNK、p38)的磷酸化,从而抑制TNF-α及IL-4在角膜基质成纤维细胞的信号转导 [32] 。Tranilast可抑制心肌转化生长因子β1 (TGFβ1)表达、大鼠心肌梗死后纤维化和心肌成纤维细胞中胶原蛋白的产生 [33] 。研究证实,Tranilast通过细胞外信号调节激酶-1/2 (ERK1/2)途径诱导RAW264.7巨噬细胞中血红素氧合酶-1 (HO-1)的表达;Tranilast通过抑制环氧化酶-2 (COX-2)和诱导型一氧化氮合酶(iNOS)的表达,从而减少脂多糖(LPS)刺激的巨噬细胞中前列腺素E(2) (PGE(2))和NO的产生;Tranilast抑制了肿瘤坏死因子-α (TNF-α)和白细胞介素-1β (IL-1β)的产生;推断Tranilast通过ERK1/2激活HO-1表达是其抗炎作用的一种可能机制 [34] 。Tranilast抑制特应性皮炎患者T细胞产生IL-2 [35] 。

此外,已有许多实验研究证实Tranilast在肝、肺、角质形成细胞、大鼠结肠炎、类风湿性关节炎小鼠模型等具有抗炎、抗氧化潜力以及免疫调节特性:Tranilast可显著改善实验诱导的大鼠肝功能损害,恢复了氧化剂/抗氧化剂平衡,降低血清NO、IL-6和IL-13水平;同时,血清氨显著下降,星形胶质细胞肿胀和空泡化显著减少;观察到的曲尼司特的肝脏和神经保护潜力可能涉及几种机制,如其抗炎潜力、抗氧化潜力以及免疫调节特性 [36] 。Tranilast对烟雾吸入介导的大鼠肺损伤的作用:显著减少了组织病理学变化(如肺出血、水肿和炎症细胞浸润等),增加了动脉氧分压,降低了IL-1β、TNF-α、TGF-β1水平、氧化应激和核转录因子κB (NF-κB)的表达;在体外实验中曲尼司特治疗组的炎症因子IL-11β、TNF-α和TGF-β1以及NF-κB的表达均显著低于吸烟组 [37] 。Tranilast可以减少黑素细胞凋亡,促进黑素生成,并通过消除角质细胞来源的IL-1β来优化黑素体移位,可以减少氧化应激下角质形成细胞中炎症细胞因子如IL-6、IL-8、TNF-α和IL-18的分泌 [38] 。在实验性大鼠结肠炎的治疗中,Tranilast可减少细胞因子、免疫球蛋白的分泌和髓过氧化物酶活性 [39] 。Tranilast在类风湿性关节炎小鼠模型中抑制淋巴结细胞培养物中的Th1细胞活性,并提高血清IL-10水平;在体外,抑制了T和B淋巴细胞的增殖和γ干扰素(IFNγ)的产生 [40] 。在大鼠同种异体肝脏移植中,Tranilast可降低同种异体移植物免疫排斥的组织学严重程度,降低细胞因子肿瘤坏死因子-α (TNF-α)和干扰素-γ (IFN-γ)的血清水平,并升高血清白细胞介素-10 (IL-10),起到免疫调节的作用 [41] 。

5. Tranilast和IL-1β-NF-κB和IL-1β-MAPK信号通路

白细胞介素-1对角膜溃疡的形成起着重要的作用。NF-κB信号通路与MAPK信号通路均参与调控炎症,经典途经均可由IL-1受体激活。

Tranilast以浓度和时间依赖性方式抑制IL-1β诱导的角膜成纤维细胞中MMP-1、-2和-3的表达,也能抑制IL-1β诱导的MAPKs细胞外信号调节激酶(ERK)、p38和c-Jun NH(2)-末端激酶(JNK)的磷酸化以及IκB-α的磷酸化和降解;MAPK或NF-κB信号通路的合成抑制剂也可减弱IL-1β诱导的角膜成纤维细胞中MMP-1、-2和-3的表达;推断曲尼司特抑制IL-1β诱导的人角膜成纤维细胞产生MMP-1、-2和-3的作用可能是通过抑制MAPK和NF-κB信号通路介导的 [15] 。

6. 结论

严重的角膜碱烧伤引起的角膜基质溶解治疗非常棘手。需要早期应用能够抑制角膜胶原蛋白降解和免疫性炎症的药物。角膜基质胶原纤维是角膜基质的主要成分,角膜细胞及炎症细胞释放的基质金属蛋白酶可能导致角膜基质溶解。在炎性细胞因子中,白细胞介素-1对角膜溃疡的形成起着重要的作用。核因子NFκB信号通路与MAPK信号通路,是与炎症相关的信号通路,均可由IL-1受体激活。因此,抑制IL-1-NF-κB和IL-1-MAPK信号通路、MMPS和炎症细胞因子产生的药物,被认为是治疗角膜碱烧伤的潜在靶点。本综述表明,曲尼司特可能通过抑制NF-κB和MAPK信号通路影响MMPs和炎症细胞因子的表达,具有抗炎、抗氧化潜力以及免疫调节特性,在治疗角膜碱烧伤、抑制角膜胶原降解、抑制免疫炎症中有潜在价值。

基金项目

珠海市科技计划项目(项目编号ZH2202200009HJL,申请人:林雅娜)。

参考文献

[1] Zheng, S., Xie, H.P. and Xiong, H.Y. (2006) Clinical Analysis of 135 Patients with Severe Eye Burn. Chinese Journal of Burns, 22, 50-52.
[2] Nagano, T., Hao, J.L., Nakamura, M., et al. (2001) Stimulatory Effect of Pseudomonal Elastase on Collagen Degradation by Cultured Keratocytes. Investigative Ophthalmology & Visual Science, 42, 1247-1253.
[3] Koda, A., Nagai, H., Watanabe, S., et al. (1976) Inhibition of Hypersensitivity Reactions by a New Drug, N (3’, 4’-Dimethoxycinnamoyl) Anthranilic Acid (N-5’). The Journal of Allergy and Clinical Immunology, 57, 396-407.
https://doi.org/10.1016/0091-6749(76)90054-3
[4] Ayaki, M., Iwasawa, A., Yaguchi, S. and Koide, R. (2010) Preserved and Unpreserved 12 Anti-Allergic Ophthalmic Solutions and Ocular Surface Toxicity: In Vitro Assessment in Four Cultured Corneal and Conjunctival Epithelial Cell Lines. Biocontrol Science, 15, 143-148.
https://doi.org/10.4265/bio.15.143
[5] Shishibori, T., Oyama, Y., Matsushita, O., et al. (1999) Three Distinct Anti-Allergic Drugs, Amlexanox, Cromolyn and Tranilast, Bind to S100A12 and S100A13 of the S100 Protein Family. Biochemical Journal, 338, 583-589.
https://doi.org/10.1042/bj3380583
[6] Murphy, G., Cockett, M.I., Stephens, P.E., Smith, B.J. and Docherty, A.J.P. (1987) Stromelysin Is an Activator of Procollagenase. A Study with Natural and Recombinant Enzymes. Biochemical Journal, 248, 265-268.
https://doi.org/10.1042/bj2480265
[7] Kim, H.S., Shang, T., Chen, Z., Pflugfelder, S.C. and Li, D.Q. (2004) TGF-β1 Stimulates Production of Gelatinase (MMP-9), Collagenases (MMP-1, -13) and Stromelysins (MMP-3, -10, -11) by Human Corneal Epithelial Cells. Experimental Eye Research, 79, 263-274.
https://doi.org/10.1016/j.exer.2004.05.003
[8] Fini, M.E., Girard, M.T. and Matsubara, M. (1992) Collagenolytic/Gelatinolytic Enzymes in Corneal Wound Healing. Acta Ophthalmologica, 70, 26-33.
https://doi.org/10.1111/j.1755-3768.1992.tb02165.x
[9] Paterson, C.A., Wells, J.G., Koklitis, P.A., et al. (1994) Recombinant Tissue Inhibitor of Metalloproteinases Type 1 Suppresses Alkali-Burn-Induced Corneal Ulceration in Rabbits. Investigative Ophthalmology & Visual Science, 35, 677-684.
[10] Zhang, H., Li, C. and Baciu, P.C. (2002) Expression of Integrins and MMPs during Alkaline-Burn-Induced Corneal Angiogenesis. Investigative Ophthalmology & Visual Science, 43, 955-962.
[11] Shimizu, T., Kanai, K., Asano, K., Hisamitsu, T. and Suzaki, H. (2005) Suppression of Matrix Metalloproteinase Production in Nasal Fibroblasts by Tranilast, an Antiallergic Agent, in vitro. Mediators of Inflammation, 2005, Article ID: 819627.
https://doi.org/10.1155/MI.2005.150
[12] Shimizu, T., Kanai, K., Kyo, Y., et al. (2006) Effect of Tranilast on Matrix Metalloproteinase Production from Neutrophils in-vitro. Journal of Pharmacy and Pharmacology, 58, 91-99.
https://doi.org/10.1211/jpp.58.1.0011
[13] Liu, Y., Kan, M., Li, A., et al. (2016) Inhibitory Effects of Tranilast on Cytokine, Chemokine, Adhesion Molecule, and Matrix Metalloproteinase Expression in Human Corneal Fibroblasts Exposed to Poly (I:C). Current Eye Research, 41, 1400-1407.
https://doi.org/10.3109/02713683.2015.1127389
[14] Liu, Y., Zhao, X.J., Zheng, X.S., et al. (2018) Tranilast Inhibits TGF-β-Induced Collagen Gel Contraction Mediated by Human Corneal Fibroblasts. International Journal of Ophthalmology, 11, 1247-1252.
[15] Liu, Y., Xu, D., Li, J. and Liu, Y. (2014) Inhibition of Interleukin-1β-Induced Matrix Metalloproteinase Expression in Human Corneal Fibroblasts by Tranilast. Current Eye Research, 39, 885-893.
https://doi.org/10.3109/02713683.2014.884598
[16] Yashiro, M., Murahashi, K., Matsuoka, T., et al. (2003) Tranilast (N-3,4-Dimethoxycinamoyl Anthranilic Acid): A Novel Inhibitor of Invasion-Stimulating Interaction between Gastric Cancer Cells and Orthotopic Fibroblasts. Anticancer Research, 23, 3899-3904.
[17] Darakhshan, S., Bidmeshkipour, A., Khazaei, M., et al. (2013) Synergistic Effects of Tamoxifen and Tranilast on VEGF and MMP-9 Regulation in Cultured Human Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention, 14, 6869-6874.
https://doi.org/10.7314/APJCP.2013.14.11.6869
[18] Kaneda, M., Obara, H., Suzuki, K., et al. (2017) Evaluation of Suppressive Effects of Tranilast on the Invasion/Metastasis Mechanism in a Murine Pancreatic Cancer Cell Line. Pancreas, 46, 567-574.
https://doi.org/10.1097/MPA.0000000000000779
[19] Pfister, R.R., Haddox, J.L., Sommers, C.I. and Lam, K.W. (1995) Identification and Synthesis of Chemotactic Tripeptides from Alkali-Degraded Whole Cornea. A Study of N-Acetyl-Proline-Glycine-Proline and N-Methyl-Proline- Glycine-Proline. Investigative Ophthalmology & Visual Science, 36, 1306-1316.
[20] Pfister, R.R., Haddox, J.L., Dodson, R.W. and Harkins, L.E. (1987) Alkali-Burned Collagen Produces a Locomotory and Metabolic Stimulant to Neutrophils. Investigative Ophthalmology & Visual Science, 28, 295-304.
[21] Planck, S.R., Rich, L.F., Ansel, J.C., Huang, X.N. and Rosenbaum, J.T. (1997) Trauma and Alkali Burns Induce Distinct Patterns of Cytokine Gene Expression in the Rat Cornea. Ocular Immunology and Inflammation, 5, 95-100.
https://doi.org/10.3109/09273949709085057
[22] Sotozono, C., He, J., Matsumoto, Y., et al. (1997) Cytokine Expression in the Alkali-Burned Cornea. Current Eye Research, 16, 670-676.
https://doi.org/10.1076/ceyr.16.7.670.5057
[23] Den, S., Sotozono, C., Kinoshita, S. and Ikeda, T. (2004) Efficacy of Early Systemic Betamethasone or Cyclosporin A after Corneal Alkali Injury via Inflammatory Cytokine Reduction. Acta Ophthalmologica Scandinavica, 82, 195-199.
https://doi.org/10.1111/j.1600-0420.2004.00229.x
[24] Cubitt, C.L., Tang, Q., Monteiro, C.A., et al. (1993) IL-8 Gene Expression in Cultures of Human Corneal Epithelial Cells and Keratocytes. Investigative Ophthalmology & Visual Science, 34, 3199-3206.
[25] Cubitt, C.L., Lausch, R.N. and Oakes, J.E. (1995) Differences in Interleukin-6 Gene Expression between Cultured Human Corneal Epithelial Cells and Keratocytes. Investigative Ophthalmology & Visual Science, 36, 330-336.
[26] Sakamoto, S., Inada, K., Chiba, K., et al. (1991) Production of IL-6 and IL-1 α by Human Corneal Epithelial Cells. Nippon Ganka Gakkai Zasshi, 95, 728-732.
[27] Lu, Y., Fukuda, K., Liu, Y., Kumagai, N. and Nishida, T. (2004) Dexamethasone Inhibition of IL-1-Induced Collagen Degradation by Corneal Fibroblasts in Three-Dimensional Culture. Investigative Ophthalmology & Visual Science, 45, 2998-3004.
https://doi.org/10.1167/iovs.04-0051
[28] Kumagai, N., Fukuda, K., Fujitsu, Y., et al. (2005) Lipopolysaccharide-Induced Expression of Intercellular Adhesion Molecule-1 and Chemokines in Cultured Human Corneal Fibroblasts. Investigative Ophthalmology & Visual Science, 46, 114-120.
https://doi.org/10.1167/iovs.04-0922
[29] Li, D.Q., Zhou, N., Zhang, L., et al. (2010) Suppressive Effects of Azithromycin on Zymosan-Induced Production of Proinflammatory Mediators by Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science, 51, 5623-5629.
https://doi.org/10.1167/iovs.09-4992
[30] Chikaraishi, A., Hirahashi, J., Takase, O., et al. (2001) Tranilast Inhibits Interleukin-1β-Induced Monocyte Chemoattractant Protein-1 Expression in Rat Mesangial Cells. European Journal of Pharmacology, 427, 151-158.
https://doi.org/10.1016/S0014-2999(01)01215-8
[31] Inoue, H., Ohshima, H., Kono, H., et al. (1997) Suppressive Effects of Tranilast on the Expression of Inducible Cyclooxygenase (COX2) in Interleukin-1β-Stimulated Fibroblasts. Biochemical Pharmacology, 53, 1941-1944.
https://doi.org/10.1016/S0006-2952(97)00187-1
[32] Adachi, T., Fukuda, K., Kondo, Y. and Nishida, T. (2010) Inhibition by Tranilast of the Cytokine-Induced Expression of Chemokines and the Adhesion Molecule VCAM-1 in Human Corneal Fibroblasts. Investigative Ophthalmology & Visual Science, 51, 3954-3960.
https://doi.org/10.1167/iovs.09-4161
[33] See, F., Watanabe, M., Kompa, A.R., et al. (2013) Early and Delayed Tranilast Treatment Reduces Pathological Fibrosis following Myocardial Infarction. Heart, Lung and Circulation, 22, 122-132.
https://doi.org/10.1016/j.hlc.2012.08.054
[34] Pae, H.O., Jeong, S.O., Koo, B.S., et al. (2008) Tranilast, an Orally Active Anti-Allergic Drug, Up-Regulates the Anti-Inflammatory Heme Oxygenase-1 Expression But Down-Regulates the Pro-Inflammatory Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in RAW264.7 Macrophages. Biochemical and Biophysical Research Communications, 371, 361-365.
https://doi.org/10.1016/j.bbrc.2008.04.054
[35] Morita, H., Kihara, T., Miyamoto, M., Yamagata, M. and Sagami, S. (1990) Interleukin-2 Production of T Cells in Atopic Dermatitis. The Journal of Dermatology, 17, 375-379.
https://doi.org/10.1111/j.1346-8138.1990.tb01659.x
[36] Abdelaziz, R.R., Elkashef, W.F. and Said, E. (2015) Tranilast Reduces Serum IL-6 and IL-13 and Protects against Thioacetamide-Induced Acute Liver Injury and Hepatic Encephalopathy. Environmental Toxicology and Pharmacology, 40, 259-267.
https://doi.org/10.1016/j.etap.2015.06.019
[37] Cui, P., Tang, Z., Zhan, Q., et al. (2022) In vitro and vivo Study of Tranilast Protects from Acute Respiratory Distress Syndrome and Early Pulmonary Fibrosis Induced by Smoke Inhalation. Burns, 48, 880-895.
https://doi.org/10.1016/j.burns.2022.03.010
[38] Zhuang, T., Li, S., Yi, X., et al. (2020) Tranilast Directly Targets NLRP3 to Protect Melanocytes from Keratinocyte-Derived IL-1β under Oxidative Stress. Frontiers in Cell and Developmental Biology, 8, Article 588.
https://doi.org/10.3389/fcell.2020.00588
[39] Chu, H.Q., Li, J., Huang, H.P., et al. (2016) Protective Effects of Tranilast on Oxazolone-Induced Rat Colitis through a Mast Cell-Dependent Pathway. Digestive and Liver Disease, 48, 162-171.
https://doi.org/10.1016/j.dld.2015.09.002
[40] Inglis, J.J., Criado, G., Andrew, M., Williams, R.O. and Selley, M.L. (2007) The Anti-Allergic Drug, N-(3’, 4’-Dimethoxycinnamonyl) Anthranilic Acid, Exhibits Potent Anti-Inflammatory and Analgesic Properties in Arthritis. Rheumatology, 46, 1428-1432.
https://doi.org/10.1093/rheumatology/kem160
[41] Sun, Q.F., Ding, J.G., Sheng, J.F., et al. (2011) Novel Action of 3,4-DAA Ameliorating Acute Liver Allograft Injury. Cell Biochemistry and Function, 29, 673-678.
https://doi.org/10.1002/cbf.1805