Hydrological Droughts Analysis Based on Copulas Function in the East River Basin, China
摘要: 东江流域肩负着给珠三角及其周边城市与香港供水的重要任务,水文干旱特征的研究对于东江流域供水的不确定性及可持续性研究具有重要意义。基于此,本文利用Copula函数及第二重现期等方法对东江流域4个水文站1975~2009年的日流量数据进行了分析。研究结果表明,在东江流域,同时发生较高干旱强度与较长历时的干旱事件的风险由上游向下游逐渐减小;而发生较高干旱强度或较长干旱历时的干旱事件风险在上游最小,随着干旱强度或历时增大到一定程度,下游的风险相对降低。在进行水资源管理时,应将流域作为一个整体,全面考虑水文干旱风险在东江流域上中下游的异同,该文的研究对于东江流域水资源管理具有重要理论与现实意义
Abstract: Variations of hydrological droughts largely decide the variability and availability of water resources of a river basin. The EastRiver basinbears the heavy responsibility for water supply for the megacities within the Pearl River Delta region and those in the vicinity of the Pearl River Delta such as Shenzhen andHong Kong. About 80% of the water consumption of Hong Kong has to be satisfied by the water supply from theEast River. In this case, the sustainable water supply from theEastRiver basinwill be greatly significant for the regional social stability. In this study, statistical behaviors and risks of the hydrological droughts of the East River basin are evaluated using copula functions and the secondary return periods based on the daily streamflow data covering the period of 1975-2009. The research results indicate that the hydrological droughts of high drought severity and long duration are subjected to the decreasing risks from the upper to the lower East River basin. However, the droughts of higher severity or long duration are subjected to the lower risk in the upperEastRiver basinwhen compared to those in the lowerEastRiver basin. Water resources management of theEastRiver basinshould be integrated by taking theEastRiver basinas a whole. And the results of this study will provide theoretical and scientific grounds for the basin-scale water resources management.
文章引用:肖名忠, 张强, 陈晓宏, 陈永勤. 基于Copula函数的东江流域水文干旱特征分析[J]. 水资源研究, 2012, 1(3): 110-118. http://dx.doi.org/10.12677/JWRR.2012.13016


[1] KAO, S. C., GOVINDARAJU, R. S. A copula-based joint defi- cit index for droughts. Journal of Hydrology, 2010, 380(2): 121-134.
[2] American Meteorological Society. Statement on meteorological drought. Bulletin of the American Meteorological Society, 2004, 85: 771-773.
[3] WILHITE, D. A. Drought as a natural hazard: Concepts and definitions. Drought, A Global Assessment, 2000, 1: 3-18.
[4] MISHRA, A. K., SINGH, V. P. A review of drought concepts. Journal of Hydrology, 2010, 391(2): 202-216.
[5] VÖRÖSMARTY, C. J., GREEN, P., SALISBURY, J. and LAM- MERS, R. B. Global water resources: Vulnerability from climate change and population growth. Science, 2000, 289(5477): 284.
[6] LIU, C. L., ZHANG, Q., SINGH, V. P. and CUI, Y. Copula- based evaluations of drought variations in Guangdong, South China. Natural Hazards, 2011, 59(3): 1533-1546.
[7] 张强, 李剑锋, 陈晓宏, 等. 基于Copula函数的新疆极端降水概率时空变化特征[J]. 地理学报, 2011, 66(1): 3-12. ZHANG Qiang, LI Jianfeng, CHEN Xiaohong, et al. Spatial va-riability of probability distribution of extreme precipitation in Xinjiang. Acta Geographica Sinic, 2011, 66(1): 3-12. (in Chi-nese)
[8] SALVADORI, G., DE MICHELE, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resources Research, 2004, 40(12), Article ID W12511.
[9] 肖名忠, 张强, 陈晓宏. 基于多变量概率分析的珠江流域干旱特征研究[J]. 地理学报, 2012, 67(1): 83-92. XIAO Mingzhong, ZHANG Qiang and CHEN Xiaohong. Spa- tial-temporal patterns of drought risk across the Pearl River Ba- sin. Acta Geographica Sinic, 2012, 67(1): 83-92. (in Chinese)
[10] 董满宇, 江源, 李俞萍, 等. 近46年来东江流域降水变化趋势分析[J]. 水文, 2010, 30(5): 85-90. DONG Manyu, JIANG Yuan, LI Yuping, et al. Analysis of precipitation change trend over last 46 years in Dongjiang River Basin. Journal of China Hydrology, 2010, 30(5): 85-90. (in Chi-nese)
[11] 王兆礼, 陈晓宏, 杨涛. 东江流域博罗站天然年径流量序列多时间尺度分析[J]. 中国农村水利水电, 2010, 2: 21-24. WANG Zhaoli, CHEN Xiaohong and YANG Tao. Multiple time scale analysis of natural annual runoff series at the Boluo Station in the Dongjiang River Basin. China Rural Water and Hydro- power, 2010, 2: 21-24. (in Chinese)
[12] 王兆礼, 陈晓宏, 杨涛. 近50a东江流域径流变化及影响因素分析[J]. 自然资源学报, 2010, 25(8): 1365-1374. WANG Zhaoli, CHEN Xiaohong and YANG Tao. Runoff variation and its impacting factors in the Dongjiang River Basin during 1956-2005. Journal of Natural Resources, 2010, 25(8): 1365- 1374. (in Chinese)
[13] 林凯荣, 何艳虎, 雷旭, 等. 东江流域1959~2009年气候变化及其对径流的影响[J]. 生态环境学报, 2011, 20(12): 1783-1787. LIN Kairong, HE Yanhu, LEI Xu, et al. Climate change and its impact on runoff during 1956-2009 in Dongjiang Basin. Ecology and Environmental Sciences, 2011, 20(12): 1783-1787. (in Chi- nese)
[14] ZHOU, Y., ZHANG, Q., LI, K. and CHEN, X. Hydrological effects of water reservoirs on hydrological processes in the East River (China) basin: Complexity evaluations based on the mul- tiscale entropy analysis. Hydrological Processes, 2011, in press.
[15] YEVJEVICH, V. Objective approach to definitions and investi- gations of continental hydrologic droughts. Hydrology Paper 23, Fort Collins: Colorado State University, 1967.
[16] FLEIG, A. K., TALLAKSEN, L. M., HISDAL, H. and DE- MUTH, S. A global evaluation of streamflow drought charac-ter- istics. Hydrology and Earth System Sciences, 2006, 10(4): 535- 552.
[17] ZELENHASI, E., SALVAI, A. A method of streamflow drought analysis. Water Resources Research, 1987, 23(1): 156-168.
[18] TALLAKSEN, L. M., MADSEN, H. and CLAUSEN, B. On the definition and modelling of streamflow drought duration and deficit volume. Hydrological Sciences Journal, 1997, 42(1): 15- 33.
[19] MADSEN, H, ROSBJERG, D. On the modelling of extreme droughts. IAHS Publications: Series of Proceedings and Reports, Intern Association Hydrological Sciences, 1995, 231: 377-386.
[20] NELSEN, R. B. An introduction to copulas. New York: Springer Verlag, 2006: 7-269.
[21] SKLAR, A. Fonctions de répartition à n dimensions et leurs marges. Paris: Publications de l'Institut de Statistique de l'Uni- versité de Paris, 1959: 229-231.
[22] GENEST, C., RIVEST, L. P. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statis- tical Association, 1993, 88(423): 1034-1043.
[23] PLACKSETT, R. L. A class of bivariate distributions. Journal of the American Statistical Association, 1965, 60(310): 516-522.
[24] KAO, S. C., GOVINDARAJU, R. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 2008, 44, Article ID W02415.
[25] SALVADORI, G. Extremes in nature: An approach using copu- las. New York: Springer Verlag, 2007: 113-284.
[26] SALVADORI, G., DE MICHELE, C. Estimating strategies for multiparameter multivariate extreme value copulas. Hydrology and Earth System Sciences, 2011, 15(1): 141-150.
[27] PICKANDS, J. Multivariate extreme value distributions, bull. International Statistical Institute, 1981, 49: 859-878.
[28] SHIAU, J. T., SHEN, H. W. Recurrence analysis of hydrologic droughts of differing severity. Journal of Water Resources Plan- ning and Management, 2001, 127(1): 30.
[29] GENEST, C., RÉmillard, B. and BEAUDOIN, D. Good-ness- of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 2009, 44(2): 199-213.
[30] GENEST, C., KOJADINOVIC, I., NEŠLEHOVá, J. and YAN, J. A goodness-of-fit test for bivariate extreme-value copulas. Ber- noulli, 2011, 17(1): 253-275.