经阴道超声评估宫颈在预测早产中的临床价值
The Clinical Value of Transvaginal Ultrasound Evaluation of the Cervix in Predicting Preterm Birth
DOI: 10.12677/ACM.2023.1391975, PDF, HTML, XML, 下载: 122  浏览: 194 
作者: 张宸珲, 陆伟娟, 易 雪:昆明医科大学第二附属医院产科,云南 昆明;刘继红*:云南玛莉亚医院产科,云南 昆明
关键词: 早产宫颈经阴道超声宫颈长度宫颈角度宫颈弹性成像Preterm Birth Cervix Transvaginal Ultrasound Cervical Length Uterocervical Angle Cervical Elastography
摘要: 早产是全球5岁以下儿童死亡的主要原因,是全球健康领域的一个紧迫问题。目前,早产的防治仍是现代产科未解决的问题。早产是一种多因素疾病,其中宫颈异常是导致早产的一个重要因素。在妊娠期间,宫颈承担着双重角色,既是抵御微生物入侵的保护屏障,又是胎儿分娩过程中的结构屏障。经阴道超声(TVU)评估宫颈是早产预测的重要指标之一,特别是在曾经有过晚期流产史和(或)自发性早产史的孕妇中,为患者的诊断和治疗提供了实用而可靠的临床价值。在这篇综述中,我们概述了TVU评估宫颈在预测早产中的临床价值,单独使用宫颈长度(CL)、宫颈角度(UCA)、宫颈弹性成像等方式预测早产风险的特异性和敏感性低,可能会导致过度检查和过度治疗的发生,联合应用多种超声技术,可以充分发挥各项指标的优势,弥补单一技术所存在的局限性,从而大大提高早产预测的准确性。
Abstract: Preterm birth is the main cause of death in children under 5 years old worldwide and an urgent is-sue in the global health sector. At present, the prevention and treatment of preterm birth is still an unresolved problem in modern obstetrics. Preterm birth is a multifactorial disease, among which cervical abnormality is an important factor leading to preterm birth. During pregnancy, the cervix plays a dual role as both a protective barrier against microbial invasion and a structural barrier during fetal delivery. Transvaginal ultrasound (TVU) evaluation of the cervix is one of the important indicators for predicting preterm birth, especially in pregnant women with a history of late miscar-riage and/or spontaneous preterm birth, providing practical and reliable clinical value for the di-agnosis and treatment of patients. In this review, we outline the clinical value of TVU in predicting preterm birth by evaluating the cervix. The use of methods such as cervical length (CL), uterocervi-cal angle (UCA), and cervical elastography alone has low specificity and sensitivity in predicting the risk of preterm birth, which may lead to over examination and over treatment. Combining multiple ultrasound techniques can fully leverage the advantages of various indicators and make up for the limitations of a single technique. This greatly improves the accuracy of preterm birth prediction.
文章引用:张宸珲, 刘继红, 陆伟娟, 易雪. 经阴道超声评估宫颈在预测早产中的临床价值[J]. 临床医学进展, 2023, 13(9): 14122-14130. https://doi.org/10.12677/ACM.2023.1391975

1. 引言

在我国,早产被定义为妊娠满28周至不满37周分娩者。由于新生儿治疗水平在不同国家之间存在差异,部分国家和地区将早产的时间下限定义为妊娠满24周或满20周 [1] 。根据孕妇实际分娩孕周,早产可分为超早产(<28周)、早期早产(28~31+6周)、中期早产(32~33+6周)和晚期早产(34~36+6周) [2] [3] 。大多数早产发生在妊娠32周后,极少数早产发生在28周前 [4] [5] 。

根据世卫组织估计,2010年全球早产发生率为11.1% [6] ,2014年为10.6% [7] 。一项荟萃分析显示,在1990年至2016年期间,我国的早产率持续上升,2016年约为7%,我国各地区的早产率存在差异,其中西部地区的早产发生率最高 [8] 。随着医疗水平的进步,早产儿的存活率不断提高,但早产仍是全球5岁以下儿童死亡的主要原因,约占所有死亡的16%,占新生儿死亡的35% [7] 。因此,在目前人口增长率下降的环境下,早期发现并采取相应干预措施以预防早产发生,是产科医生关注的重要问题。

早产的发病机制尚不清楚,但早产可能是由复杂的分子机制介导的多因素失调,在怀孕的早期阶段,母体内的内分泌系统和免疫系统会经历一系列变化,这些变化可能导致生理和代谢方面的各种不平衡出现 [9] 。根据临床观察,早产可分为自发性早产和医源性早产 [2] ,医源性早产是由于母体或胎儿的健康原因不允许继续妊娠,在37周前终止妊娠,这种情况占少数,而自发性早产占大多数,约占所有早产的75% [10] ,其中宫颈异常是导致自发性早产的一个重要因素。在妊娠期间,宫颈的结缔组织经历了软化、成熟、扩张、修复这四个阶段的重塑过程 [11] 。宫颈承担着双重角色,既是抵御微生物入侵的保护屏障,又是胎儿分娩过程中的结构屏障。如果宫颈功能受损,可能导致保护性宫颈屏障的破坏,从而给机会性微生物提供进入羊膜腔的途径,进而引发宫颈在形态、结构、功能等方面出现异常,增加早产的风险。

早产的发生受到多种危险因素的影响。孕产妇因素包括:孕妇年龄(≤17岁或>35岁)、体重指数(BMI < 19 kg/m2或孕前体重 < 50 kg,营养状况差)、自发性早产史、晚期流产史、妊娠并发症或合并症(并发重度子痫前期、子痫、产前出血、妊娠期肝内胆汁淤积症、妊娠期糖尿病,合并甲状腺疾病、严重心肺疾病、免疫系统疾病、急性传染病等)、宫颈异常(宫颈长度缩短、形态)、宫颈手术史(宫颈锥切术、LEEP术等)、辅助生殖技术助孕、性传播疾病、不良嗜好(主动或被动吸烟、饮酒、吸毒)、孕妇教育水平、精神心理因素等。胎盘因素包括:胎盘早剥、前置胎盘、绒毛膜羊膜炎等。胎儿及羊水因素包括:多胎妊娠、胎儿窘迫、胎儿结构异常、胎儿染色体异常、产前死产、羊水过多或过少等 [2] [5] [12] - [19] 。其中曾经有过晚期流产史和(或)自发性早产史的孕妇,再次发生早产的风险更高;既往有早产史的孕妇,再次发生早产的风险是普通孕妇的两倍 [4] 。经阴道超声(transvaginal ultrasound, TVU)测量宫颈是早产预测的重要指标之一,为早产患者的诊断和治疗提供了实用而可靠的临床价值。

2. 宫颈长度与早产

2.1. 测量宫颈长度的方法

子宫下段在妊娠16周前尚未发育完全,很难将这个区域与宫颈管区分开,宫颈长度(Cervical Length, CL)的测量存在较大的误差,因此不应在妊娠 < 16周常规测量宫颈。

测量CL可以通过经腹和经阴道两种途径进行,尽管经腹测量在缩短检查时间和减少患者不适方面具有优势,但探头与宫颈之间的距离较远、膀胱充盈以及过度施加在探头上的压力,这些因素可能会人为地造成宫颈被拉长,从而影响测量结果的准确性。《ISUOG实践指南》 [20] 推荐使用TVU测量CL,因为它具有更高的准确性和广泛的适用性,不受孕妇肥胖、宫颈和胎儿位置的影响,更不容易出现技术问题。

检查前,孕妇需要排空膀胱取膀胱截石位,探头套上无菌避孕套,其内外分别涂上耦合剂,轻轻缓慢放入孕妇阴道内,避免探头对宫颈施压,获得孕妇静息状态下子宫颈正中矢状切面,宫颈占据屏幕的50%~75%,完整清晰显示宫颈管、宫颈内口和外口,所有图像的采集和数据的测量均由经过培训且经验丰富的超声医师或产科临床医师进行 [20] [21] 。

CL的测量可以使用直线法和轨迹法这两种测量方法,直线法是通过在触摸屏上点击“Dist.2Point”,测量从宫颈内口到宫颈外口之间的直线距离;轨迹法是通过在触摸屏上点击“Length Trace”,测量从宫颈内口沿着宫颈管轨迹到宫颈外口的距离,测量3次后取其平均值。有学者对比了直线法和轨迹法两种测量方法在早产预测方面的效果,结果发现在宫颈管呈直线状态下,这两种测量方法无明显差异,然而当宫颈管呈非直线状态时,轨迹法测量能够更准确地反映CL,在预测早产方面更具优势 [19] [21] [22] 。

2.2. 宫颈缩短的临界值选取

宫颈主要由90%的结缔组织和10%的平滑肌纤维组成,其分布数量由内口至外口逐渐递减 [23] 。在整个孕期,孕妇的宫颈会经历复杂的重塑过程。宫颈成熟前,胶原纤维呈现紧密交织的网络结构,但随着怀孕的进行,宫颈胶原纤维逐渐变得杂乱无序 [24] 。怀孕初期,宫颈会变得僵硬而紧闭,以确保宫内胎儿的安全,并承担着逐渐增加的负重;临近分娩时,宫颈会进入成熟阶段,宫颈逐渐扩张和软化。随着宫缩频率和强度的增加,胎儿通过软化的宫颈娩出母体 [25] [26] 。一项荟萃分析发现,在不同人种、不同收入的国家,CL存在差异。在妊娠16~24周进行宫颈测量,发现在非洲或亚洲血统、中/低收入国家、年龄 < 20 岁、BMI较低的孕妇中,CL较短 [20] [27] 。

在我国2014年版《早产临床诊断与治疗指南》 [4] 和国内外的研究报道中,对于单胎妊娠中期的孕产妇,常常把TVU测量CL < 25 mm作为宫颈缩短的临界值 [28] [29] [30] [31] [32] 。虽然特定的临界值(CL < 25 mm)使用起来很方便,但是针对孕产妇的个体化评估需求,不能依赖特定的临界值来满足,有部分学者提出将宫颈管缩短定义为使用TVU测量CL < 人群的第十个百分位数,该方法与CL临界值相比,更能有效地预测早产,但评估其在临床上的意义可能存在一定的局限性 [31] 。

2.3. CL预测早产的临床价值

Gudicha DW等 [31] 回顾性分析评估了6877名妊娠14~24周的孕产妇,发现在妊娠 ≤ 32周时,CL为≤25 mm早产的比值比(OR)为13.4 (95% CI, 8.8~20.6),CL ≤ 15 mm早产的OR为24.3 (95% CI, 12.9~45.9)。其中,47.6%的CL ≤ 15 mm的患者在妊娠 ≤ 32 周发生早产。一项队列研究针对单胎妊娠18~24周的既往无早产史的孕妇进行观察,在64,207名符合条件的孕妇中,46,598名孕妇在普遍CL筛查计划前接受了超声检查,17,609名孕妇在实施该计划后接受了超声检查,结果显示对于既往无早产史的孕妇,普遍引入TVU筛查CL与早产率降低有关 [33] 。早产的风险与CL成反比,宫颈越短,早产风险就越大,促使了医师对所有孕产妇进行常规的CL筛查。

Esplin MS等 [34] 在一项针对9410名单胎妊娠 ≥ 20周的初产妇的观察研究中发现,仅有少数的早产病例可以通过阴道测量CL (<25 mm)筛查被发现。因此,宫颈缩短的检出率相对较低,在低风险单胎孕妇中进行CL的筛查,对早产的预测准确性较低,把测量CL作为常规筛查仍存在争议。美国妇产科医师学会也不推荐把宫颈常规筛查用于低风险孕产妇 [35] 。对于低风险的单胎孕妇,可考虑在18~24周期间进行TVU CL筛查,并在CL ≤ 20 mm时采取相应的处理措施,以降低早产风险 [36] 。《母婴医学学会(SMFM)指南》 [37] 不推荐无症状女性在妊娠 > 24周进行常规CL筛查,认为目前通常将妊娠24周作为筛查和干预的时间界限,妊娠24周之后对无症状孕妇进行CL筛查的临床价值有限,缺乏数据支持其可以改善预后。

Boelig RC等 [38] 发现,在妊娠中期,CL为26~29 mm的低风险单胎孕妇中,约15%在妊娠24周前出现宫颈缩短(CL < 25 mm)。相较于没有早产史的单胎孕妇,宫颈初始长度为26~29 mm的孕妇,若后续宫颈缩短至 < 25 mm,其早产率明显更高。一项回顾性队列研究 [39] 发现,相较于没有宫颈缩短的足月分娩史的孕妇,那些在首次妊娠期间宫颈缩短但足月分娩的孕妇在第二次妊娠期间面临更高的宫颈缩短和早产风险。因此,先前妊娠期间的宫颈缩短可能成为后续妊娠早产的预测因素。此外,也有很多研究者证实了这一点 [40] 。van der Ven J等人认为已确定为早产高风险的人群中,在妊娠19~24周进行TVU CL测量是有益的,根据测量结果,可以采取宫颈环扎、黄体酮等干预措施,以降低早产的风险 [40] 。对于既往有晚期流产史和(或)自发性早产史的单胎高危孕产妇,建议在16~24周之间进行连续的TVU CL筛查(可根据临床情况而定,每1~2周进行1次筛查),通过对CL变化的动态监测,根据测量结果及时采取有效的个性化干预措施,提供孕产妇必要的心理支持,可降低早产的发生率 [36] [37] 。

3. 宫颈角度与早产

3.1. 测量宫颈角度的方法

宫颈角度(uterocervical angle, UCA)是宫颈内口至外口和子宫下段之间形成的夹角。随着孕周增加,子宫对宫颈内口施加的压力增大,宫颈内口向上和向外扩张,导致宫颈角度增大。当UCA < 90˚时,子宫下段的宫壁可以抵抗来自宫颈上方的压力,维持宫颈内口的正常形态,防止宫颈进一步扩张 [41] 。

宫颈前角(aUCA)测量方法是使用Angle测量键,以宫颈内口为角的顶点,先做一条子宫颈外口至内口的线,再做一条宫颈内口与子宫下段前壁距内口1 cm处的连线,测量两条线之间的角度。宫颈后角(pUCA)测量方法是使用Angle测量键,以宫颈内口为角的顶点,先做一条子宫颈外口至内口的线,再做一条宫颈内口与子宫下段后壁距内口1 cm处的连线,测量两条线之间的角度 [21] 。aUCA和pUCA分别测量3次后取其平均值。

3.2. UCA预测早产的临床价值

UCA是一种有用且新颖的TVU标记物,可作为筛查工具用于早产的诊断和评估。许多学者发现早产组的UCA明显大于足月产组,在预测早产方面,UCA优于CL [39] [42] - [47] 。

Dziadosz M等 [44] 对16~23+6周的972名单胎孕妇进行的一项研究中发现UCA ≥ 95˚与早产 < 37周显著相关,敏感性为80%;UCA ≥ 105˚预测早产 < 34 周,敏感性为81%。Khamees RE等 [43] 经研究发现UCA > 105˚显著增加了早产的风险。金珈汐等 [45] 提出妊娠28~32+6周时发现CL为2.34 cm、UCA为106.15˚,应高度警惕早产的发生。卢文岳等 [48] 报道,当UCA取截断值118˚时,敏感度和特意度分别为59.5%、91.8%,ROC曲线下面积为0.826。对CL < 25 mm的孕妇,当UCA ≥ 118˚时,应高度警惕早产的发生。Şişecioğlu M等 [49] 提出UCA > 85˚,其对预测早产的灵敏度为100%灵敏度,但特异性只有45.54%。Nguyen THT等 [50] 发现,早产风险低的人群中,UCA ≥ 95˚的孕妇被认为有早产的风险。Sawaddisan R等研究结 [51] 果显示,对于既往无早产史和CL正常的妊娠中期孕妇而言,UCA并不能有效预测低风险孕妇早产的发生。

郑倩文等 [21] 提出妊娠24~27+6周,当aUCA ≥ 102.22˚时,其预测早产的阴性预测值为96.58%,需警惕早产的发生;同时也发现相比于pUCA和CL,aUCA对早产的预测效能更高。王珍琦等 [47] 发现当aUCA以115.5˚作为最佳界值为时,预测效能略高于CL。丁炎等 [52] 研究认为aUCA预测早产的的临界值为113˚。

此外,对于CL正常但存有早产高危因素的孕妇,通过增加UCA的测量,可以提高早产的诊断准确性,更好地在孕期进行健康监测和管理。

4. 宫颈弹性成像技术与早产

宫颈弹性成像(cervical elastography)作为一种基于超声波的新型成像技术,有着简便、无创、可重复性的特点,在临床工作中扮演着重要的角色。在2007年,首次关于怀孕期间宫颈弹性成像技术的研究报告已经发表 [53] 。这项技术可以作为妊娠管理的新工具,对于怀孕期间的宫颈评估尤为重要。它可以客观地测量宫颈组织的硬度、评估宫颈的软化程度,并预测早产和诱导分娩的结果,防止不良事件的发生 [54] 。

有研究表明 [55] ,尽管宫颈弹性成像技术在预测早产风险方面尚处于起步阶段,但在宫颈缩短和或早产孕妇中,它的预测效果明显优于传统CL测量。宫颈弹性成像技术包括应力弹性成像(strain elastography, SE)、剪切波弹性成像(shear wave elastography, SWE)等多种类型。SE通过施加压力引起组织发生形变,来评估组织软硬程度。质软组织的形变程度较大,质硬组织的形变程度较小。组织的形变程度可用颜色表示,以红色代表软组织,以蓝色代表硬组织。宫颈的软化与早产风险呈正相关 [23] [56] 。虽然SE在评估组织硬度方面具有优势,但在临床应用中存在操作者技术要求高、结果解读受主观因素影响以及可重复性差等缺点。SWE是一种利用超声波探头产生横向的机械振动,形成剪切波,并通过测量剪切波在组织中的传播速度来计算组织的弹性模量的技术,常用于评估组织的弹性特性。目前,SWE已在肝脏、肾脏、甲状腺、乳房、前列腺等领域广泛研究,为这些器官的评估和诊断提供了重要的支持 [57] 。SWE不受操作员的影响,因此产生的结果更客观,更适合临床应用 [58] [59] [60] 。

SWE在早产预测中的应用首次报告于2015年 [61] 。Carlson LC等 [62] 使用SWE检测到孕晚期的宫颈相较于孕早期的宫颈更柔软。Feng Q、Patberg ET、Pizzella S等人 [63] [64] [65] 研究发现,妊娠早期通过SWE确定的软宫颈与后续早产的风险增加相关。郑璇等 [66] 研究发现SWE技术对产妇晚期流产、早产具有一定指导价值,可作为评价早产风险的一项指标。而Suthasmalee S等 [67] 经研究认为,妊娠18~24周时,早产组和足月产组的宫颈SWE无显著差异,SWE不能单独作为早产预测指标。

5. 多种超声技术联合预测早产

单独使用CL、UCA、宫颈弹性成像技术等方式预测早产均存在一定的局限性,单个指标预测早产风险的特异性和敏感性低,可能会导致过度检查和过度治疗的发生。有学者将CL与aUCA联合后,发现其在早产预测方面的效果要比仅使用aUCA时更为出色 [21] [68] 。同时也有学者提出,在测量CL时,同时测量UCA不会增加额外费用,并且操作简单 [48] 。Li J等 [55] 对169名既往有早产史的单胎孕妇研究发现,将CL测量与宫颈弹性成像技术结合,可提高既往有早产史的孕妇预测早产的能力,特别是有早产史和宫颈环扎史的孕妇。

近年来,随着人工智能(artificial intelligence, AI)技术的快速发展,其在产科超声中的应用展现出了巨大的应用潜力。基于AI的算法,可用于自动识别和测量产科超声图像中的结构和异常;将AI算法与产科超声设备集成,处理大规模的产科超声数据,可以建立模型来预测早产风险,帮助医生采取相应的干预措施。AI与产科超声的结合,可缩短检查时间,减少医务人员工作量、提高产科超声检查准确性,可有效防止过度检查和过度治疗发生。

总之,联合应用多种超声技术,可以充分发挥各项指标的优势,弥补单一技术所存在的局限性,从而大大提高早产预测的准确性。

NOTES

*通讯作者。

参考文献

[1] 谢幸, 孔北华, 段涛. 妇产科学[M]. 第9版. 北京: 人民卫生出版社, 2018: 95.
[2] 刘明慧, 杨慧霞. 孕期超声测量宫颈长度预测早产的临床价值[J]. 中国临床医生杂志, 2022, 50(12): 1414-1417.
[3] Zhang, Y.-J., Zhu, Y., Zhu, L., Lu, C.-Q., Chen, C. and Yuan, L. (2022) Prevalence of Preterm Birth and Risk Factors Associated with It at Different Gestational Ages: A Multicenter Retrospective Survey in China. Saudi Medical Journal, 43, 599-609.
https://doi.org/10.15537/smj.2022.43.6.20220210
[4] 早产临床诊断与治疗指南(2014) [J]. 中华妇产科杂志, 2014, 49(7): 485.
[5] Goldenberg, R.L., Culhane, J.F., Iams, J.D. and Romero, R. (2008) Epidemiology and Causes of Preterm Birth. Lancet, 371, 75-84.
https://doi.org/10.1016/S0140-6736(08)60074-4
[6] Blencowe, H., Cousens, S., Oestergaard, M.Z., Chou, D., Moller, A.-B., Narwal, R., Adler, A., Vera Garcia, C., Rohde, S., Say, L. and Lawn, J.E. (2012) National, Regional, and Worldwide Estimates of Preterm Birth Rates in the Year 2010 with Time Trends Since 1990 for Selected Countries: A Systematic Analysis and Implications. Lancet, 379, 2162-2172.
https://doi.org/10.1016/S0140-6736(12)60820-4
[7] Chawanpaiboon, S., Vogel, JP., Moller, AB., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M., Lewis, C., Rattanaka-nokchai, S., Teng, D.N., Thinkhamrop, J., Watananirun, K., Zhang, J., Zhou, W. and Gülmezoglu, A.M. (2019) Global, Regional, and National Estimates of Levels of Preterm Birth in 2014: A Systematic Review and Modelling Analysis. The Lancet Global Health, 7, e37-e46.
https://doi.org/10.1016/S2214-109X(18)30451-0
[8] Jing, S., Chen, C., Gan, Y., Vogel, J. and Zhang, J. (2020) Incidence and Trend of Preterm Birth in China, 1990-2016: A Systematic Review and Meta-Analysis. BMJ Open, 10, e039303.
https://doi.org/10.1136/bmjopen-2020-039303
[9] Ansari, A., Bose, S., You, Y., Park, S. and Kim, Y. (2021) Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. Interna-tional Journal of Molecular Sciences, 22, Article No. 8145.
https://doi.org/10.3390/ijms22158145
[10] Park, S., You, Y.-A., Yun, H., Choi, S.-J., Hwang, H.-S., Choi, S.-K., Lee, S.M. and Kim, Y.J. (2020) Cervicovaginal Fluid Cytokines as Predictive Markers of Preterm Birth in Symptomatic Women. Obstetrics & Gynecology Science, 63, 455-463.
https://doi.org/10.5468/ogs.19131
[11] Word, R.A., Li, X.-H., Hnat, M. and Carrick, K. (2007) Dynamics of Cervical Remodeling during Pregnancy and Parturition: Mecha-nisms and Current Concepts. Seminars in Reproductive Medicine, 25, 69-79.
https://doi.org/10.1055/s-2006-956777
[12] Tang, H., Yang, M., Yi, H. and Lin, M. (2022) Risk Factors of Pre-term Birth and Low Birth Weight in Singletons Conceived Through Frozen Embryo Transfer: A Retrospective Study. In-ternational Journal of General Medicine, 15, 8693-8704.
https://doi.org/10.2147/IJGM.S394231
[13] 叶长翔, 陈生宝, 王婷婷, 张森茂, 秦家碧, 陈立章. 早产危险因素的前瞻性队列研究[J]. 中国当代儿科杂志, 2021, 23(12): 1242-1249.
[14] 向梅, 李传峰, 张红, 等. 云南省2016-2017年12家医院新生儿早产的危险因素分析及列线图预测模型构建[J/OL]. 中国热带医学: 1-11. http://kns.cnki.net/kcms/detail/46.1064.r.20230421.1420.002.html, 2023-04-23.
[15] Sutton, A.L.M., Harper, L.M. and Tita, A.T.N. (2018) Hypertensive Disorders in Pregnancy. Obstet-rics and Gynecology Clinics of North America, 45, 333-347.
https://doi.org/10.1016/j.ogc.2018.01.012
[16] Vogel, J.P., Chawanpaiboon, S., Moller, A.-B., Watananirun, K., Bonet, M. and Lumbiganon, P. (2018) The Global Epidemiol-ogy of Preterm Birth. Best Practice & Research Clinical Obstetrics & Gynaecology, 52, 3-12.
https://doi.org/10.1016/j.bpobgyn.2018.04.003
[17] Chen, C., Zhang, J.W., Xia, H.W., Zhang, H.X., Betran, A.P., Zhang, L., Hua, X.L., Feng, L.P., Chen, D., Sun, K., Guo, C.M., Qi, H.B., Duan, T. and Zhang, J. (2019) Preterm Birth in China Between 2015 and 2016. American Journal of Public Health, 109, 1597-1604.
https://doi.org/10.2105/AJPH.2019.305287
[18] Frey, H.A. and Klebanoff, M.A. (2016) The Epidemiology, Eti-ology, and Costs of Preterm Birth. Seminars in Fetal and Neonatal Medicine, 21, 68-73.
https://doi.org/10.1016/j.siny.2015.12.011
[19] 杨慧丽, 张敏, 张丽. 156例产妇发生早产的影响因素分析[J]. 实用妇科内分泌电子杂志, 2022, 9(14): 8-10.
[20] Coutinho, C.M., Sotiriadis, A., Odibo, A., Khalil, A., D’Antonio, F., Feltovich, H., Salomon, L.J., Sheehan, P., Napolitano, R., Berghella, V. and da Silva Costa, F. (2022) ISUOG Prac-tice Guidelines: Role of Ultrasound in the Prediction of Spontaneous Preterm Birth. Ultrasound in Obstetrics & Gyne-cology, 60, 435-456.
https://doi.org/10.1002/uog.26020
[21] 郑倩文, 马晓燕, 刘继红, 等. 子宫宫颈角与子宫颈长度的早产预测分析[J]. 昆明医科大学学报, 2023, 44(5): 132-137.
[22] 陆燕飞, 宋海国, 苏嘉文, 杨立娟. 不同超声方法在妊娠中期测量不同形态宫颈长度应用[J]. 中国计划生育学杂志, 2019, 27(11): 1445-1447, 1451.
[23] 陈思晗, 胡兵, 胡莉莉. 多种超声技术评估宫颈预测早产的研究进展[J]. 中国医学影像学杂志, 2023, 31(1): 87-90+96.
[24] Qi, W., Zhao, P., Sun, Z., Ma, X., Wang, H., Wu, W., Wen, Z., Kisrieva-Ware, Z., Woodard, P.K., Wang, Q., McKinstry, R.C., Cahill, A.G. and Wang, Y. (2021) Magnetic Resonance Diffusion Tensor Imaging of Cervical Microstructure in Normal Early and Late Pregnancy in Vivo. American Journal of Obstetrics & Gynecology, 224, 101.e1-101.e11.
https://doi.org/10.1016/j.ajog.2020.07.014
[25] Vargis, E., Brown, N., Williams, K., Al-Hendy, A., Paria, B.C., Reese, J. and Mahadevan-Jansen, A. (2012) Detecting Biochemical Changes in the Rodent Cervix during Pregnancy Us-ing Raman Spectroscopy. Annals of Biomedical Engineering, 40, 1814-1824.
https://doi.org/10.1007/s10439-012-0541-4
[26] Vink, J. and Mourad, M. (2017) The Pathophysiology of Human Premature Cervical Remodeling Resulting in Spontaneous Preterm Birth: Where Are We Now? Seminars in Perinatology, 41, 427-437.
https://doi.org/10.1053/j.semperi.2017.07.014
[27] Bortoletto, T.G., Silva, T.V., Borovac-Pinheiro, A., Pereira, C.M., Silva, A.D., França, M.S., Hatanaka, A.R., Argenton, J.P., Passini Jr., R., Mol, B.W., Cecatti, J.G. and Pacagnella, R.C. (2021) Cervical Length Varies Considering Different Populations and Gestational Outcomes: Results from a Sys-tematic Review and Meta-Analysis. PLOS ONE, 16, e0245746.
https://doi.org/10.1371/journal.pone.0245746
[28] Romero, R., Conde-Agudelo, A., Da Fonseca, E., O’Brien, J.M., Cetingoz, E., Creasy, G.W., Hassan, S.S. and Nicolaides, K.H. (2018) Vaginal Progesterone for Preventing Preterm Birth and Adverse Perinatal Outcomes in Singleton Gestations with a Short Cervix: A Meta-Analysis of Individual Pa-tient Data. American Journal of Obstetrics & Gynecology, 218, 161-180.
https://doi.org/10.1016/j.ajog.2017.11.576
[29] Kashanian, M., Eshraghi, N., Rahimi, M. and Sheikhansari, N. (2022) Evaluation of Placental Alpha Microglobulin-1(PAMG1) Accuracy for Prediction of Preterm Delivery in Women with the Symptoms of Spontaneous Preterm Labor; A Comparison with Cervical Length and Number of Contractions. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 534-540.
https://doi.org/10.1080/14767058.2020.1728246
[30] Gokce, A., Kalafat, E., Sukur, Y.E., Altinboga, O. and Soylemez, F. (2022) Role of Cervical Length and Placental Alpha Microglobulin-1 to Predict Preterm Birth. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 3388-3392.
https://doi.org/10.1080/14767058.2020.1818222
[31] Gudicha, D.W., Romero, R., Kabiri, D., Hernandez-Andrade, E., Pacora, P., Erez, O., Kusanovic, J.P., Jung, E., Paredes, C., Berry, SM., Yeo, L., Hassan, SS., Hsu, C.-D. and Tarca, A.L. (2021) Personalized Assessment of Cervical Length Improves Prediction of Spontaneous Preterm Birth: A Standard and a Percentile Calculator. American Journal of Obstetrics & Gynecology, 224, 288.e1-288.e17.
https://doi.org/10.1016/j.ajog.2020.09.002
[32] 李介岩, 王欣. 单胎妊娠短宫颈的临床观察[J]. 中国医刊, 2023, 58(7): 734-737.
[33] Son, M., Grobman, W.A., Ayala, N.K. and Miller, E.S. (2016) A Universal Mid-Trimester Transvaginal Cervical Length Screening Program and Its Associated Reduced Preterm Birth Rate. American Journal of Obstetrics & Gynecology, 214, 365.e1-365.e5.
https://doi.org/10.1016/j.ajog.2015.12.020
[34] Esplin, M.S., Elovitz, M.A., Iams, J.D., Parker, C.B., Wapner, R.J., Grobman, W.A., Simhan, H.N., Wing, D.A., Haas, D.M., Silver, R.M., Hoffman, M.K., Peaceman, A.M., Caritis, S.N., Parry, S., Wadhwa, P., Foroud, T., Mercer, B.M., Hunter, S.M., Saade, G.R. and Reddy, U.M. (2017) Predictive Accuracy of Serial Transvaginal Cervical Lengths and Quantitative Vaginal Fetal Fibronectin Levels for Spontaneous Preterm Birth among Nulliparous Women. JAMA, 317, 1047-1056.
https://doi.org/10.1001/jama.2017.1373
[35] Khalifeh, A., Quist-Nelson, J. and Berghella, V. (2016) Current Im-plementation of Universal Cervical Length Screening for Preterm Birth Prevention in the United States. Obstetrics & Gy-necology, 127, 7S.
https://doi.org/10.1097/01.AOG.0000483635.97512.65
[36] Orzechowski, K.M., Boelig, R.C. and Berghella, V. (2016) Cervical Length Screening in Asymptomatic Women at High Risk and Low Risk for Spontaneous Preterm Birth. Clinical Obstetrics and Gynecology, 59, 241-251.
https://doi.org/10.1097/GRF.0000000000000195
[37] McIntosh, J., Feltovich, H., Berghella, V. and Manuck, T. (2016) The Role of Routine Cervical Length Screening in Selected High- And Low-Risk Women for Preterm Birth Pre-vention. American Journal of Obstetrics & Gynecology, 215, B2-B7.
https://doi.org/10.1016/j.ajog.2016.04.027
[38] Boelig, R.C., Kripalu, V., Chen, S.L., Cruz, Y., Roman, A. and Berghella, V. (2021) Utility of Follow-up Cervical Length Screening in Low-Risk Women with a Cervical Length of 26 to 29 mm. American Journal of Obstetrics & Gynecology, 225, 179.e1-179.e6.
https://doi.org/10.1016/j.ajog.2021.02.027
[39] Wie, J.H., Lee, J.S., Hwang, H.S., Kwon, J.Y., Ko, H.S. and Park, I.Y. (2022) The Risk of Preterm Birth in Women with History of Short Cervix Delivering at Term in the Previous Preg-nancy: A Retrospective Cohort Study. Archives of Gynecology and Obstetrics, 305, 1151-1158.
https://doi.org/10.1007/s00404-021-06202-8
[40] van der Ven, J., et al. (2015) The Capacity of Mid-Pregnancy Cervical Length to Predict Preterm Birth in Low-Risk Women: A National Cohort Study. Acta Obstetricia et Gynecolog-ica Scandinavica, 94, 1223-1234.
https://doi.org/10.1111/aogs.12721
[41] 陆欣贤, 董吉, 李娜, 等. 经会阴超声测量子宫宫颈前角预测初产妇足月分娩发动时间的临床价值[J]. 临床超声医学杂志, 2022, 24(4): 307-309.
[42] Goldstein, M.J., Bailer, J.M. and Gonzalez-Brown, V.M. (2023) Uterocervical Angle in Predicting Spontaneous Preterm Birth: A Systematic Review and Meta-Analysis. AJOG Global Reports, 3, Article ID: 100240.
https://doi.org/10.1016/j.xagr.2023.100240
[43] Khamees, R.E., Khattab, B.M., Elshahat, A.M., Taha, O.T. and Aboelroose, A.A. (2022) Uterocervical Angle versus Cervical Length in the Prediction of Spontaneous Preterm Birth in Singleton Pregnancy. International Journal of Gynecology & Obstetrics, 156, 304-308.
https://doi.org/10.1002/ijgo.13629
[44] Dziadosz, M., Bennett, T.A., Dolin, C., West Honart, A., Pham, A., Lee, S.S., Pivo, S. and Roman, A.S. (2016) Uterocervical Angle: A Novel Ultrasound Screening Tool to Predict Spontaneous Preterm Birth. American Journal of Obstetrics & Gynecology, 215, 376.e1-376.e7.
https://doi.org/10.1016/j.ajog.2016.03.033
[45] 金珈汐, 仲莞, 孙静莉, 陈震宇. 超声测量宫颈角对早产的预测价值[J]. 中国医学影像学杂志, 2020, 28(9): 692-695.
[46] Pruksanusak, N., Sawaddisan, R., Kor-Anantakul, O., Suntharasaj, T., Suwanrath, C. and Geater, A. (2020) Comparison of Reliability between Uterocervical Angle and Cervi-cal Length Measurements by Various Experienced Operators Using Transvaginal Ultrasound. Journal of Maternal-Fetal & Neonatal Medicine, 33, 1419-1426.
[47] 王珍琦, 冯鸿, 邓学东. 经会阴超声测量子宫宫颈前角及宫颈长度预测早产的应用价值[J]. 中华医学超声杂志(电子版), 2019, 16(11): 853-856.
[48] 卢文岳, 肖慧彬, 黄素梅, 等. 经阴道超声测量子宫颈角联合宫颈长度预测胎儿早产的可行性研究[J]. 中国医药科学, 2023, 13(9): 118-121.
[49] Şişecioğlu, M., Üstünyurt, E., Dinçgez Çakmak, B., Karasin, S. and Yenigül, N.N. (2022) The Predictive Role of Second Trimester Uterocervical Angle Measurement in Obstetric Outcomes. Turkish Journal of Obstetrics and Gynecology, 19, 187-194.
https://doi.org/10.4274/tjod.galenos.2022.64176
[50] Nguyen, T.H.T., Vu, V.T. and Nguyen, V.Q.H. (2023) Distribution of Uterocervical Angles of Pregnant Women at 16+ 0 to 23+ 6 Weeks Gestation with Low Risk for Preterm Birth: First Vietnamese Cohort of Women with Singleton Pregnancies. BMC Pregnancy and Childbirth, 23, Article No. 301.
https://doi.org/10.1186/s12884-023-05597-3
[51] Sawaddisan, R., Kor-Anantakul, O., Pruksanusak, N. and Geater, A. (2020) Uterocervical Angle Measurement for Preterm Birth Prediction in Singleton Pregnant Women with No History of Preterm Birth and Normal Cervical Length: A Prospective Cohort Study. European Journal of Obstetrics & Gynecology and Reproductive Biology, 252, 30-35.
https://doi.org/10.1016/j.ejogrb.2020.06.020
[52] 丁炎, 赵新美, 陈雷, 等. 经会阴部超声测量孕中期子宫宫颈前角与宫颈长度对预测早产的对比研究[J]. 中华超声影像学杂志, 2017, 26(12): 1084-1087.
[53] Yamaguchi, S., Kamei, Y., Kozuma, S. and Taketani, Y. (2007) Tissue Elastography Imaging of the Uterine Cervix during Pregnancy. Journal of Medical Ultrasonics, 34, 209-210.
https://doi.org/10.1007/s10396-007-0150-2
[54] Shao, J., Shi, G., Qi, Z., Zheng, J. and Chen, S. (2021) Advancements in the Application of Ultrasound Elastography in the Cervix. Ultra-sound in Medicine and Biology, 47, 2048-2063.
https://doi.org/10.1016/j.ultrasmedbio.2021.04.009
[55] Li, J., Wu, Q., Chen, Y., Wang, J., Yan, Y., Deng, D. and Huang, R. (2023) Addition of Cervical Elastosonography to Cervical Length to Predict Preterm Birth in Pregnancy Women with Prior Preterm Birth: A Preliminary Prospective Study. Jour-nal of Gynecology Obstetrics and Human Reproduction, 52, Article ID: 102617.
https://doi.org/10.1016/j.jogoh.2023.102617
[56] 张晓娇, 陈慧月. 孕中期子宫颈弹性应变率联合子宫颈前角超声测量对早产的预测价值[J]. 实用妇产科杂志, 2022, 38(4): 274-277.
[57] Sigrist, R.M.S., Liau, J., Kaffas, A.E., Chammas, M.C. and Willmann, J.K. (2017) Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics, 7, 1303-1329.
https://doi.org/10.7150/thno.18650
[58] Swiatkowska-Freund, M. and Preis, K. (2017) Cervical Elastography during Pregnancy: Clinical Perspectives. International Journal of Women’s Health, 9, 245-254.
https://doi.org/10.2147/IJWH.S106321
[59] 张菁菁, 徐海飞, 李统怀, 郑哲岚. 声辐射力脉冲成像联合应力式弹性成像诊断子宫肌瘤变性的应用价值[J]. 临床超声医学杂志, 2020, 22(11): 843-846.
[60] Wang, X.-L., Lin, S. and Lyu, G.-R. (2022) Advances in the Clinical Application of Ultrasound Elastography in Uterine Imaging. Insights into Imaging, 13, Article No. 141.
https://doi.org/10.1186/s13244-022-01274-9
[61] Muller, M., Aït-Belkacem, D., Hessabi, M., Gennisson, J.-L., Grangé, G., Goffinet, F., Lecarpentier, E., Cabrol, D., Tanter, M. and Tsatsaris, V. (2015) Assessment of the Cervix in Pregnant Women Using Shear Wave Elastography: A Feasibility Study. Ultrasound in Medicine and Biology, 41, 2789-2797.
https://doi.org/10.1016/j.ultrasmedbio.2015.06.020
[62] Carlson, L.C., Hall, T.J., Rosado-Mendez, I.M., Palmeri, M.L. and Feltovich, H. (2018) Detection of Changes in Cervical Softness Using Shear Wave Speed in Early versus Late Pregnancy: An in Vivo Cross-Sectional Study. Ultrasound in Medicine and Biology, 44, 515-521.
https://doi.org/10.1016/j.ultrasmedbio.2017.10.017
[63] Feng, Q., Chaemsaithong, P., Duan, H., Ju, X., Appiah, K., Shen, L., Wang, X., Tai, Y., Leung, T.Y. and Poon, L.C. (2022) Screening for Spontaneous Preterm Birth by Cervical Length and Shear-Wave Elastography in the First Trimester of Pregnancy. American Journal of Obstetrics & Gynecology, 227, 500.e1-500.e14.
https://doi.org/10.1016/j.ajog.2022.04.014
[64] Patberg, E.T., Wells, M., Vahanian, S.A., Zavala, J., Bhattacharya, S., Richmond, D., Akerman, M., Demishev, M., Kinzler, W.L., Chavez, M.R. and Vintzileos, A.M. (2021) Use of Cer-vical Elastography at 18 to 22 Weeks’ Gestation in the Prediction of Spontaneous Preterm Birth. American Journal of Obstetrics & Gynecology, 225, 525.e1-525.e9.
https://doi.org/10.1016/j.ajog.2021.05.017
[65] Pizzella, S., El Helou, N., Chubiz, J., Wang, L.V., Tuuli, M.G., England, S.K. and Stout, M.J. (2020) Evolving Cervical Imaging Technologies to Predict Preterm Birth. Seminars in Immunopathology, 42, 385-396.
https://doi.org/10.1007/s00281-020-00800-5
[66] 郑璇, 杨铖, 石楠. 宫颈组织剪切波弹性成像技术对流产及早产的预测价值[J]. 中国超声医学杂志, 2022, 38(1): 99-102.
[67] Suthasmalee, S. and Moungmaithong, S. (2019) Cervical Shear Wave Elastography as a Predictor of Preterm Delivery during 18-24 Weeks of Pregnancy. Journal of Ob-stetrics and Gynaecology Research, 45, 2158-2168.
https://doi.org/10.1111/jog.14094
[68] 陶玉程, 丁文波, 武心萍, 等. 孕晚期超声测量宫颈前角及宫颈长度预测自发性早产价值[J]. 中国计划生育学杂志, 2021, 29(12): 2679-2682.