内质网应激在急性肝损伤中的研究进展
Research Progress of Endoplasmic Reticulum Stress in Acute Liver Injury
DOI: 10.12677/ACM.2023.13102178, PDF, HTML, XML, 下载: 292  浏览: 498  科研立项经费支持
作者: 侯祥梅*:内蒙古医科大学内蒙古自治区分子生物学重点实验室,内蒙古 呼和浩特;宿迁市妇幼医院药剂科,江苏 宿迁;马丽杰:内蒙古医科大学内蒙古自治区分子生物学重点实验室,内蒙古 呼和浩特;李 岚#:内蒙古自治区精神卫生中心(内蒙古第三医院)药剂科,内蒙古 呼和浩特
关键词: 急性肝损伤内质网应激氧化应激炎症反应凋亡自噬Acute Liver Injury Endoplasmic Reticulum Stress Oxidative Stress Inflammatory Response Apop-tosis Autophagy
摘要: 急性肝损伤(acute liver injury, ALI)是一种起病快、诱因多、症状显著的临床肝疾病,病毒感染、药物滥用或化学物质暴露等因素均可诱导ALI,但其具体的发病机制仍不清楚。有报道称内质网应激(endoplasmic reticulum stress, ERS)参与肝脏疾病的发生,本文就ERS在ALI中的作用机制进行归纳,为临床治疗提供理论依据。
Abstract: Acute liver injury (ALI) is a clinical liver disease with rapid onset, multiple causes and significant symptoms. Factors such as viral infection, drug abuse, or chemical exposure could induce ALI, but the exact pathogenesis has not been fully elucidated. Studies have found that endoplasmic reticu-lum stress (ERS) is closely related to liver diseases. This article reviews the mechanism of ERS in the occurrence and development of ALI to provide new ideas for the targeted therapy of the disease.
文章引用:侯祥梅, 马丽杰, 李岚. 内质网应激在急性肝损伤中的研究进展[J]. 临床医学进展, 2023, 13(10): 15574-15581. https://doi.org/10.12677/ACM.2023.13102178

1. 引言

急性肝损伤(acute liver injury, ALI)主要由病毒感染、酗酒、药物滥用或化学物质暴露等诱导 [1] ,其主要特征是突发异常的肝功能损害并伴有进行性肝外器官衰竭,死亡率极高 [2] 。深入研究ALI的发病机制有助于寻求安全有效且经济可行的个体化靶向治疗方案,也是加强临床防治肝病能力的重要环节。报道显示,内质网应激(endoplasmic reticulum stress, ERS)介导ALI的发展过程 [3] 。

内质网(endoplasmic reticulum, ER)是蛋白质合成、加工与转运以及钙(Ca2+)储备的场所 [4] 。当未折叠或错误折叠蛋白异常积聚或在外来因素(如外源性物质入侵、氧化应激)的存在下,细胞内环境被破坏,继而引发ERS [5] 。此时,将激活未折叠蛋白反应(unfolded protein response, UPR)来维持细胞的正常功能;但过度的ERS将通过多种途径导致细胞死亡 [6] 。本文就ERS介导的信号转导通路、ALI主要的诱导因素以及ERS在ALI中的作用机制研究予以概述。

2. ERS介导的UPR相关信号转导通路

UPR主要由三种跨膜蛋白组成:蛋白激酶样内质网激酶(PERK)、肌醇需求酶1 (IRE1)、活化转录因子6 (ATF6) [7] 。生理条件下,这三种跨膜蛋白均与葡萄糖调节蛋白78 (GRP78)结合;ERS时,跨膜蛋白则与GRP78分散,从而启动下游信号通路来增强蛋白折叠和降解的能力,恢复ER稳态 [8] ,分述如下。

2.1. PERK信号通路

PERK在诱导真核翻译起始因子2α (eIF2α)磷酸化之后,不仅可以阻碍ER内的蛋白合成,维持细胞活力 [9] ;还可促进转录因子4 (ATF4)的翻译,待ATF4入核后,通过诱导C/EBP同源蛋白(CHOP)的转录,加重氧化应激,从而介导自噬或细胞凋亡 [10] 。

2.2. IRE1信号通路

IRE1在ER中高度保守 [6] 。与PERK一样,IRE1通过二聚化和自磷酸化被激活,活化的IRE1选择性切割X盒结合蛋白1 (XBP1) mRNA,诱导XBP1功能活性剪接异构体sXBP1的表达 [11] 。sXBP1不仅能够促进P58IPK的表达,增强ER蛋白降解能力,而且也可与ER伴侣蛋白结合,减轻ERS,从而促进细胞生存 [12] 。然而,当应激持续发生,IRE1还可通过激活TRAF2-ASK1-JNK信号通路诱导炎症反应和细胞凋亡 [13] 。

2.3. ATF6信号通路

作为一种II型跨膜蛋白和转录因子,ATF6具有两种亚型:ATF6α和AFT6β [14] 。AFT6α主要与ERS相关,而AFT6β主要起调节作用。正常情况下,ATF6与GRP78结合 [15] 。在ERS期间,ATF6α转移至高尔基体,被S1P和S2P切割成具有活性的ATF6α [16] ,随后入核来激活XBP1、ER伴侣蛋白、氧化还原酶等相关基因的表达,以恢复蛋白折叠稳态 [17] 。另外,ATF6还可以与IRE1通路以及CHOP结合,从而诱导细胞凋亡 [18] 。

3. ERS在ALI中的作用机制

3.1. 介导氧化应激参与ALI

氧化应激(Oxidative stress, OS)是指活性氧(Reactive oxygen species, ROS)通过诱导蛋白和脂质过氧化、DNA损伤、炎症浸润等,破坏抗氧化防御系统,进而造成机体损伤的过程 [19] 。OS已被认为是导致肝损伤的关键因素,理由如下。

ROS可诱导ERS。在ER中,蛋白质的折叠主要依靠二硫键的连接。过量的ROS可以通过抑制内质网氧化还原酶1α (ERO1α)和蛋白二硫化异构酶(PDI),破坏二硫键的形成,从而导致蛋白折叠错误,引发ERS [20] 。此外,ROS通过激活肌醇1,4,5-三磷酸受体(IP3R)介导的Ca2+通道,进而加剧ERS,诱导细胞凋亡 [21] 。核因子E2相关因子2 (Nrf2)是参与氧化应激的核心因子。在肝损伤时,过度的OS促进Nrf2与Keap1分离,增强与抗氧化反应元件(ARE)的结合力,继而促进相关靶基因的转录 [22] 。有报道称外源性氧化剂可以将eIF2α磷酸化,通过减少蛋白质合成和翻译而诱导ATF4的异常表达和ERS [23] 。

ERS也可以促进ROS的产生。ERO1通过招募黄素腺嘌呤二核苷酸(FAD)对PDI进行氧化形成新的二硫键,之后与氧分子结合,产生过氧化氢,进而增加ROS水平 [24] 。Wang等研究发现,在ERS期间,高浓度的Ca2+会破坏线粒体和ER甚至整个细胞质之间的动态平衡,导致ROS生成增加,加重肝细胞凋亡 [21] 。此外,在ER稳态恢复过程中也会有ROS的产生 [25] 。综上,我们发现OS与ERS关系密切,两者相互作用,相辅相成。

3.2. 介导炎症反应参与ALI

炎症是ALI发病机制中的另一个重要因素。NF-κB信号通路和丝裂原活化蛋白激酶(MAPK)信号通路是炎症免疫反应中最复杂且最经典的两条通路,且都与ERS相关 [26] 。一般来讲,与IκB抑制因子结合会使NF-κB失活。一旦发生ERS,PERK-EIF2α通路可以通过减少IκB的合成上调NF-κB的表达 [27] 。另外,IRE1也可通过降解IκB,从而释放NF-κB,提高促炎因子(如IL-6和TNF-α)的转录水平,诱导肝细胞死亡 [28] 。最近研究发现ATF6与NF-κB密切相关,即ATF6通过激活NF-κB,进一步加重炎症反应 [17] 。Qiu等亦证实ROS与炎症反应的严重程度呈正相关,表明NF-κB信号通路是ROS的重要靶点 [29] 。MAPK通路主要包括c-Jun氨基末端激酶(JNK)、p38和ERK1/2 [30] ,IRE1可通过招募TNAF2和ASK1,活化JNK,进而激活蛋白-1 (AP-1),发挥致炎作用 [31] 。P38可通过稳定转录因子X-Box结合蛋白-1 (XBP1),参与ERS介导的炎症反应 [32] 。有研究报道,抑制MAPK/ERK通路的磷酸化可以减轻由脂多糖诱导的炎症 [33] 。

3.3. 介导细胞凋亡参与ALI

细胞凋亡是一种细胞程序性死亡的生理过程,机体通过这种形式维持ER的稳态 [10] 。ERS通路是介导细胞凋亡的重要通路,主要涉及CHOP、IRE1/ASK1/JNK和caspase-12通路 [34] 。CHOP是ERS的标志性蛋白。Wu等研究显示在体内体外阻塞性黄疸模型中,CHOP表达上调会增加Bax/Bcl-2比率,促进caspase-3的活化,导致ERS,从而促进细胞凋亡;给予保肝药物后,则可逆转这一过程。表明通过抑制PERK-CHOP-GADD34通路的激活以及下调Bax和Bcl-2的比值来改善肝功能 [35] 。Jo等在体内体外ERS模型中观察到,过表达的双特异性磷酸酶(DUSP5)显著诱导肝细胞死亡。为继续探索ERS对DUSP5调控的分子机制,他们将CHOP敲低,发现CHOP的敲低可抑制DUSP5的表达,促进细胞生存。其机制与PERK-CHOP通路介导的凋亡有关,DUSP5可作为治疗肝损伤的关键点 [36] 。另外,CHOP诱导的细胞凋亡不仅与ER氧化还原酶的上调有关,而且还与ER内Ca2+稳态失衡有关。缺血后的肝组织中CHOP含量明显升高,导致ER内的谷胱甘肽(GSH)被消耗,氧化型谷胱甘肽(GSSG)与GSH比例失衡,ROS水平增加,进而加剧ERS,诱导细胞凋亡 [37] 。Wu等研究报道,肝毒物可促进OS和Ca2+紊乱,从而介导细胞凋亡,引起肝损伤。而4-PBA作为ERS抑制剂可减轻ROS含量,缓解Ca2+失衡造成的ERS,表明Ca 2+/ERS信号通路在肝损伤中起着关键的调控作用 [38] 。Qiu等首次探讨了关于OS能否通过介导线粒体功能障碍和ERS造成肝细胞凋亡的问题,结果发现氧化还原失衡能促进细胞凋亡,这主要与ERS相关通路BiP/IRE1α/CHOP的激活和Ca2+超载有关,且ERS会因OS介导的线粒体功能障碍而增强 [39] 。

IRE1介导的细胞凋亡通路与肝损伤关系密切。ERS时,IRE1特异性结合TNF受体相关因子2 (TRAF2),激活凋亡信号调节激酶1 (ASK1)和JNK,诱导下游因子(如FasL、Bcl-2家族蛋白、Bax等)的表达,从而启动死亡受体凋亡途径和线粒体凋亡途径 [40] 。红景天苷在多种肝脏疾病中具有潜在的防治价值。其机制之一可以通过IRE1α/JNK通路抑制ERS介导的细胞凋亡减轻肝脏受损程度 [41] 。薯蓣皂甙元属于抗癌药物的一种,Zhong等在高脂饮食建立的脂肪性肝炎大鼠模型中发现,给予薯蓣皂甙元后,可以通过改善血脂异常和线粒体功能,以及降低PERK和IRE1的水平发挥保肝作用 [42] 。

caspase-12是位于ER膜上的一种半胱氨酸天冬氨酸蛋白酶,仅在ERS时被激活,随后作用于caspase-3和caspase-9,引发细胞凋亡 [43] 。体内实验表明,在肝纤维化、肝硬化大鼠模型以及衣霉素处理的ALI小鼠模型中均有caspase-12的上调,可进一步加重肝组织损伤,而抑制caspase-12的表达则可减轻由ERS介导的细胞凋亡 [44] [45] 。此外,Hong等对体外BRL-3A细胞进行毒性处理后发现,GRP78、CHOP、caspase-12水平的升高是发生ERS的主要原因,下调其表达,则可缓解ERS,从而抑制细胞凋亡,减轻肝损伤 [46] 。

3.4. 介导自噬参与ALI

自噬是一种溶酶体降解过程。在肝损伤早期阶段,自噬通过清除体内受损细胞和肝毒性因子,促进细胞存活,但在肝损伤晚期阶段,受阻的自噬会诱导细胞凋亡或死亡 [47] 。近年来,ERS介导的自噬被发现与许多肝脏疾病的预后有关 [48] 。当UPR通路被激活后,ER中Ca2+的释放以及CHOP的激活可促使其下游转录因子腺苷酸激活蛋白激酶(AMPK)或tribbles同源蛋白3 (TRB3)来抑制哺乳动物雷帕霉素靶蛋白1 (mTORC1)的表达,从而将UNC-51样激酶1 (ULK1)磷酸化来调控自噬 [49] 。此外,PERK-eIF2α-ATF4通路通过增强应激诱导蛋白Sestrin2和DDIT4的表达,抑制mTORC1活性,继而诱导自噬。IRE1α也可以通过与TRAF2结合形成IRE1-TRAF2-ASK1复合物,将JNK和Bcl2磷酸化,使Bcl2从Beclin1中解离以介导自噬 [50] 。Pang等证实积雪草酸具有保肝作用,涉及机制与PERK/ATF6和IRE1通路,促进自噬,抑制细胞凋亡有关 [51] 。Yao等报道在TNF-α构建的肝细胞损伤模型中,ASPP2通过上调与mTORC1和ERS相关的蛋白,诱导细胞凋亡但抑制自噬。然而,ASPP2对自噬和凋亡的影响被mTORC1和ERS干扰剂逆转,表明ASPP2可以通过mTORC1-ERS通路调控细胞自噬和细胞凋亡 [52] 。

4. 针对ERS的潜在治疗策略

4.1. 缓解ERS

持续的ERS通过激活UPR途径引起细胞死亡,从而参与多种肝脏疾病的发生。日前,很多学者尝试通过抑制ERS来减轻肝损伤。例如,4-PBA可通过抑制ERS和多药耐药相关蛋白2 (MRP2)泛素化降解来降低血清总胆红素浓度,从而减轻肝损伤 [53] 。另外,一些传统中草药也被发现具有抑制ERS,改善肝功能的能力。Wang等发现在急性肝衰竭小鼠模型中,山奈酚对其发挥保护作用,其机制与调节ERS-GRP78-CHOP信号通路抑制肝细胞凋亡有关 [54] 。缓解ERS可能成为防治ALI的一种有效策略。

4.2. 激活ERS

除了抑制ERS外,激活ERS以启动细胞凋亡途径也可以保护肝脏免受损害,但这种方法可能仅适用于肝癌的治疗 [55] 。激活的ERS,一方面可以增强其在一定范围内调节不良反应的能力,例如增加GRP78蛋白合成以提高其处理未折叠蛋白的能力或通过泛素化降解错误折叠的蛋白 [56] ,另一方面可以诱导受损细胞死亡来避免更严重的损伤。现有研究发现,人参皂苷辛酸酯可以通过激活ERS促进细胞钙网蛋白(CRT)膜外翻,从而诱导肝癌细胞凋亡 [57] 。Li等发现氧化钛(TiO2)可通过激活PERK/ATF6/Bax通路抑制肝癌细胞生长 [58] 。另有研究表明,激活ERS通路可诱导细胞凋亡以此产生抗肿瘤的作用 [59] 。激活ERS为肝损伤的治疗提供了希望。

5. 总结与展望

ERS在多种疾病的发展进程中发挥重要的调控作用。轻度的ERS可以通过UPR促进细胞存活,长时间的ERS将诱导细胞凋亡、自噬或死亡。未折叠或错误折叠蛋白的积累被认为是诱导ERS的主要因素,然而目前对这些蛋白的了解知之甚少,分析不同肝损伤疾病诱导的ERS中积累的蛋白质,进一步探索疾病发生的分子机制,为临床治疗提供新思路是可行的。迄今为止,对ERS在ALI发病机制中的研究多有报道,但ERS影响ALI的确切机制仍未阐明。首先,UPR的三条通路是否可以共同作用于ALI,如何作用;其次,ERS在肝损伤的不同阶段作用是否一致;最后,抑制ERS或激活ERS都是应用于动物或细胞模型,而缺乏临床试验研究,所以通过ERS通路治疗临床疾病的方案是否可行。只有解决目前存在的局限性,ERS才有可能成为防治ALI的一种新型医疗策略。

基金项目

内蒙古自治区自然科学基金资助(2020MS08040)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Chen, T., Li, R. and Chen, P. (2021) Gut Microbiota and Chemical-Induced Acute Liver Injury. Frontiers in Physiology, 12, Article 688780.
https://doi.org/10.3389/fphys.2021.688780
[2] Phipps, M.M., Barraza, L.H., LaSota, E.D., et al. (2020) Acute Liver Injury in COVID-19: Prevalence and Association with Clinical Outcomes in a Large U.S. Cohort. Hepatology, 72, 807-817.
https://doi.org/10.1002/hep.31404
[3] Tang, Y.-J., Chen, H., Yi, Y., et al. (2020) Inhi-bition of eIF2α Dephosphorylation Protects Hepatocytes from Apoptosis by Alleviating ER Stress in Acute Liver Injury. BioMed Research International, 2020, Article ID: 2626090.
https://doi.org/10.1155/2020/2626090
[4] 胡雨荣, 陈勇, 刘勇. 内质网应激响应在脂肪组织中的代谢调节作用[J]. 生理学报, 2021, 73(1): 115-125.
[5] 陈娜子, 姜潮, 李校堃. 内质网应激与疾病[J]. 中国生物工程杂志, 2016, 36(1): 76-85.
[6] Ni, L., Yuan, C. and Wu, X. (2021) Endoplasmic Reticulum Stress in Diabetic Nephrology: Regulation, Pathological Role, and Therapeutic Potential. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 7277966.
https://doi.org/10.1155/2021/7277966
[7] Qiao, D., Zhang, Z., Zhang Y., et al. (2021) Regulation of Endoplasmic Reticulum Stress-Autophagy: A Potential Therapeutic Target for Ulcerative Colitis. Frontiers in Pharmacology, 12, Arti-cle 697360.
https://doi.org/10.3389/fphar.2021.697360
[8] Huang, W., Liao, C.-C., Han, Y., et al. (2020) Co-activation of Akt, NrF2, and NF-κB Signals under Uprer in Torpid Myotis ricketti Bats for Survival. Communications Biology, 3, Article No. 658.
https://doi.org/10.1038/s42003-020-01378-2
[9] Hernandez, C., Blanc, E.B., Pène, V., et al. (2020) Impact of Hepatitis C Virus and Alcohol, Alone and Combined, on the Unfolded Protein Response in Primary Human Hepatocytes. Biochimie, 168, 17-27.
https://doi.org/10.1016/j.biochi.2019.10.012
[10] Hu, H., Tian, M., Ding, C., and Yu, S. (2019) The C/EBP Ho-mologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Mi-crobial Infection. Frontiers in Immunology, 9, Article 3083.
https://doi.org/10.3389/fimmu.2018.03083
[11] Fu, X., Cui, J., Meng, X., et al. (2021) Endoplasmic Reticulum Stress, Cell Death and Tumor: Association between Endoplasmic Reticulum Stress and the Apoptosis Pathway in Tumors. Oncology Reports, 45, 801-808.
https://doi.org/10.3892/or.2021.7933
[12] Di Conza, G. and Ho, P.-C. (2020) ER Stress Responses: An Emerging Modulator for Innate Immunity. Cells, 9, Article No. 695.
https://doi.org/10.3390/cells9030695
[13] Yang, Y., Feng, Y., Huang, H., Cui, L. and Li, F. (2021) PM2.5 Exposure Induces Reproductive Injury through IRE1/JNK/Autophagy Signaling in Male Rats. Ecotoxicol Environ Ecotoxicology and Environmental Safety, 211, Article ID: 111924.
https://doi.org/10.1016/j.ecoenv.2021.111924
[14] Grandjean, J.M.D. and Wiseman, R.L. (2020) Small Molecule Strategies to Harness the Unfolded Protein Response: Where Do We Go from Here? Journal of Biologi-cal Chemistry, 295, 15692-15711.
https://doi.org/10.1074/jbc.REV120.010218
[15] Wang, X., Zhang, T., Mao, H., et al. (2016) Grass Carp (Cte-nopharyngodon idella) ATF6 (Activating Transcription Factor 6) Modulates the Transcriptional Level of GRP78 and GRP94 in CIK Cells. Fish & Shellfish Immunology, 52, 65-73.
https://doi.org/10.1016/j.fsi.2016.03.028
[16] Zhang, H.-H., Li, C., Ren, J.-W., et al. (2021) OTUB1 Facilitates Bladder Cancer Progression by Stabilizing ATF6 in Response To Endoplasmic Reticulum Stress. Cancer Science, 112, 2199-2209.
https://doi.org/10.1111/cas.14876
[17] Stengel, S.T., Fazio, A., Lipinski, S., et al. (2020) Activating Transcription Factor 6 Mediates Inflammatory Signals in Intestinal Epithelial Cells Upon Endoplasmic Reticulum Stress. Gastroenterology, 159, 1357-1374.
https://doi.org/10.1053/j.gastro.2020.06.088
[18] 抗晶晶, 曹翔. 内质网应激在缺血性脑卒中发病机制中的作用研究进展[J]. 中国神经免疫学和神经病学杂志, 2022, 29(5): 423-427.
[19] van der Pol, A., van Gilst, W.H., Voors, A.A. and van der Meer, P. (2019) Treating Oxidative Stress in Heart Failure: Past, Present and Future. European Journal of Heart Failure, 21, 425-435.
https://doi.org/10.1002/ejhf.1320
[20] Cui, X., Zhang, Y., Lu, Y. and Xiang, M. (2022) ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Frontiers in Pharmacology, 13, Arti-cle 879204.
https://doi.org/10.3389/fphar.2022.879204
[21] Wang, J., He, W., Tsai, P.-J., et al. (2020) Mutual In-teraction between Endoplasmic Reticulum and Mitochondria in Nonalcoholic Fatty Liver Disease. Lipids in Health and Disease, 19, Article No. 72.
https://doi.org/10.1186/s12944-020-01210-0
[22] Ali, E.S., Rychkov, G.Y. and Barritt, G.J. (2021) TRPM2 Non-Selective Cation Channels in Liver Injury Mediated by Reactive Oxygen Species. Antioxidants, 10, Article No. 1243.
https://doi.org/10.3390/antiox10081243
[23] Rozpedek, W., Pytel, D., Mucha, B., et al. (2016) The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression during Endoplasmic Reticulum Stress. Current Molecular Medicine, 16, 533-544.
https://doi.org/10.2174/1566524016666160523143937
[24] Johnson, B.D., Geldenhuys, W.J. and Hazlehurst, L.A. (2020) The Role of ERO1α in Modulating Cancer Progression and Immune Escape. Journal of Cancer Immunology, 2, 103-115.
https://doi.org/10.33696/cancerimmunol.2.023
[25] 石洁, 王宁, 赵芯欣, 张锐. 内质网应激在胰岛损伤中作用的研究进展[J]. 医学研究杂志, 2020, 49(7): 17-21.
[26] Wang, Z., Ka, S.-O., Han, Y.T. and Bae, E.J. (2018) Dihydropyranoaurone Compound Damaurone D Inhibits LPS-Induced Inflammation and Liver Injury by Inhibit-ing NF-κB and MAPK Signaling Independent of AMPK. Archives of Pharmacal Research, 41, 314-323.
https://doi.org/10.1007/s12272-017-1001-3
[27] Ye, L., Zhao, D., Xu, Y., et al. (2021) LncRNA-Gm9795 Pro-motes Inflammation in Non-Alcoholic Steatohepatitis via NF-[Formula: See Text]B/JNK Pathway by Endoplasmic Retic-ulum Stress. Journal of Translational Medicine, 19, Article No. 101.
https://doi.org/10.1186/s12967-021-02769-7
[28] Yuan, F., Xu, X., Wu, Y., Duan, S. and Wu, H. (2019) Gastro-din Ameliorates Acute Rejection via IRE1α/TRAF2/ NF-κB in Rats Receiving Liver Allografts. BioMed Research Inter-national, 2019, Article ID: 9276831.
https://doi.org/10.1155/2019/9276831
[29] Qiu, J., Zhang, T., Zhu, X., et al. (2019) Hyperoside Induces Breast Cancer Cells Apoptosis via ROS-Mediated NF-κB Signaling Pathway. International Journal of Molecular Sciences, 21, Article No. 131.
https://doi.org/10.3390/ijms21010131
[30] Xiao, L., Zhong, M., Huang, Y., et al. (2020) Puerarin Alleviates Os-teoporosis in the Ovariectomy-Induced Mice by Suppressing Osteoclastogenesis via Inhibition of TRAF6/ROS-Dependent MAPK/NF-κB Signaling Pathways. Aging, 12, 21706-21729.
https://doi.org/10.18632/aging.103976
[31] 胡雪, 江应安. 内质网应激与肝衰竭的相关研究[J]. 胃肠病学和肝病学杂志, 2021, 30(5): 501-504.
[32] Bailey, K.A., Moreno, E., Haj, F.G., et al. (2019) Mechanoregulation of p38 Activity Enhances Endoplasmic Reticulum Stress-Mediated Inflammation by Arterial Endothelium. The FASEB Journal, 33, 12888-12899.
https://doi.org/10.1096/fj.201900236R
[33] Wang, X., Zhang, C., Zou, N., et al. (2022) Lipocalin-2 Silencing Suppresses Inflammation and Oxidative Stress of Acute Respiratory Distress Syndrome by Ferroptosis via Inhibition of MAPK/ERK Pathway in Neonatal Mice. Bioengineered, 13, 508-520.
https://doi.org/10.1080/21655979.2021.2009970
[34] Wu, H., Guo, H., Liu, H., et al. (2020) Copper Sul-fate-Induced Endoplasmic Reticulum Stress Promotes Hepatic Apoptosis by Activating CHOP, JNK and Caspase-12 Signaling Pathways. Ecotoxicology and Environmental Safety, 191, Article ID: 110236.
https://doi.org/10.1016/j.ecoenv.2020.110236
[35] Wu, Y.-L., Li, Z.-L., Zhang, X.-B. and Liu, H. (2019) Yin-chenhao Decoction Attenuates Obstructive Jaundice-Induced Liver Injury and Hepatocyte Apoptosis by Suppressing Protein Kinase RNA-Like Endoplasmic Reticulum Kinase-Induced Pathway. World Journal of Gastroenterology, 25, 6205-6221.
https://doi.org/10.3748/wjg.v25.i41.6205
[36] Jo, H.J., Yang, J.W., Park, J.H., et al. (2019) Endoplasmic Reticu-lum Stress Increases DUSP5 Expression via PERK-CHOP Pathway, Leading to Hepatocyte Death. International Jour-nal of Molecular Sciences, 20, Article No. 4369.
https://doi.org/10.3390/ijms20184369
[37] Zhou, S., Rao, Z., Xia, Y., et al. (2023) CCAAT/Enhancer-Binding Protein Homologous Protein Promotes ROS-Mediated Liver Ischemia and Reperfusion Injury by Inhibiting Mitophagy in Hepatocytes. Transplantation, 107, 129-139.
https://doi.org/10.1097/TP.0000000000004244
[38] Wu, D., Yang, C., Yang, M., et al. (2022) Citrinin-Induced Hepatotoxicity in Mice Is Regulated by the Ca2+/Endoplasmic Reticulum Stress Signaling Pathway. Toxins, 14, Article No. 259.
https://doi.org/10.3390/toxins14040259
[39] Qiu, L.-Z., Yue, L.-X., Ni, Y.-H., et al. (2021) Emodin-Induced Oxidative Inhibition of Mitochondrial Function Assists BiP/IRE1α/CHOP Signaling-Mediated ER-Related Apoptosis. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 8865813.
https://doi.org/10.1155/2021/8865813
[40] Huang, R., Hui, Z., Wei, S., et al. (2022) IRE1 Signaling Regulates Chondrocyte Apoptosis and Death Fate in the Osteoarthritis. Journal of Cellular Physiology, 237, 118-127.
https://doi.org/10.1002/jcp.30537
[41] Xiong, Y., Wang, Y., Xiong, Y., Gao, W. and Teng, L. (2020) Salidroside Alleviated Hypoxia-Induced Liver Injury by Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis via IRE1α/JNK Pathway. Biochemical and Biophysical Research Communications, 529, 335-340.
https://doi.org/10.1016/j.bbrc.2020.06.036
[42] Zhong, Y., Li, Z., Jin, R., et al. (2022) Diosgenin Ameliorated Type II Diabetes-Associated Nonalcoholic Fatty Liver Disease through Inhibiting De Novo Lipogenesis and Improving Fatty Acid Oxidation and Mitochondrial Function in Rats. Nutrients, 14, Article No. 4994.
https://doi.org/10.3390/nu14234994
[43] Lee, K.-I., Su, C.-C., Fang, K.-M., et al. (2020) Ultrafine Silicon Dioxide Nanoparticles Cause Lung Epithelial Cells Apoptosis via Oxidative Stress-Activated PI3K/Akt-Mediated Mitochondria- and Endoplasmic Reticulum Stress-Dependent Signaling Pathways. Scientific Reports, 10, Article No. 9928.
https://doi.org/10.1038/s41598-020-66644-z
[44] Ma, Z., Sheng, L., Li, J., et al. (2022) Resveratrol Alleviates He-patic Fibrosis in Associated with Decreased Endoplasmic Reticulum Stress-Mediated Apoptosis and Inflammation. In-flammation, 45, 812-823.
https://doi.org/10.1007/s10753-021-01586-w
[45] 李晓明, 常伟, 刘浩. 丹参酮IIA通过调控Grp78/caspase-12通路改善小鼠内质网应激性肝损伤[J]. 中国药理学通报, 2021, 37(8): 1081-1086.
[46] Hong, Z., Minghua, W., Bo, N., et al. (2021) Rosmarinic Acid Attenuates Acrylamide Induced Apoptosis of BRL-3A Cells by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress. Food and Chemical Toxicology, 151, Article ID: 112156.
https://doi.org/10.1016/j.fct.2021.112156
[47] Boutouja, F., Stiehm, C.M. and Platta, H.W. (2019) MTOR: A Cel-lular Regulator Interface in Health and Disease. Cells, 8, Article No. 18.
https://doi.org/10.3390/cells8010018
[48] Hu, C., Zhao, L., Shen, M., Wu, Z. and Li, L. (2020) Autophagy Regu-lation Is an Effective Strategy to Improve the Prognosis of Chemically Induced Acute Liver Injury Based on Experimental Studies. Journal of Cellular and Molecular Medicine, 24, 8315-8325.
https://doi.org/10.1111/jcmm.15565
[49] Bhardwaj, M., Leli, N.M., Koumenis, C. and Amaravadi, R.K. (2020) Regulation of Autophagy by Canonical and Non-Canonical ER Stress Responses. Seminars in Cancer Biology, 66, 116-128.
https://doi.org/10.1016/j.semcancer.2019.11.007
[50] Zhu, P., Li, T., Li, Q., et al. (2022) Mechanism and Role of Endoplasmic Reticulum Stress in Osteosarcoma. Biomolecules, 12, Article No. 1882.
https://doi.org/10.3390/biom12121882
[51] Pang, X., Qiao, Q., Vonglorkham, S., et al. (2020) Asiatic Acid Ame-liorates Acute Hepatic Injury by Reducing Endoplasmic Reticulum Stress and Triggering Hepatocyte Autophagy. Bio-medicine & Pharmacotherapy, 129, Article ID: 110375.
https://doi.org/10.1016/j.biopha.2020.110375
[52] Yao, J., Yang, H., Wang, H., et al. (2022) ASPP2 Coordinates ERS-Mediated Autophagy and Apoptosis Through mTORC1 Pathway in Hepatocyte Injury Induced by TNF-α. Frontiers in Pharmacology, 13, Article 865389.
https://doi.org/10.3389/fphar.2022.865389
[53] Chen, J., Wu, H., Tang, X. and Chen, L. (2022) 4-Phenylbutyrate Protects against Rifampin-Induced Liver Injury via Regulating MRP2 Ubiquitination through Inhibiting Endoplasmic Re-ticulum Stress. Bioengineered, 13, 2866-2877.
https://doi.org/10.1080/21655979.2021.2024970
[54] Wang, H., Chen, L., Zhang, X., et al. (2019) Kaempferol Protects Mice from D-GalN/LPS-Induced Acute Liver Failure by Regulating the ER Stress-Grp78-CHOP Signaling Pathway. Biomedicine & Pharmacotherapy, 111, 468-475.
https://doi.org/10.1016/j.biopha.2018.12.105
[55] Kim, C. and Kim, B. (2018) Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients, 10, Article No. 1021.
https://doi.org/10.3390/nu10081021
[56] Zhang, J., Guo, J., Yang, N., et al. (2022) Endoplasmic Reticulum Stress-Mediated Cell Death in Liver Injury. Cell Death & Disease, 13, Article No. 1051.
https://doi.org/10.1038/s41419-022-05444-x
[57] 戴珍珍, 黄青昕, 胡淇睿, 等. 人参皂苷辛酸酯通过内质网应激诱导肝癌细胞免疫原性细胞死亡的机制研究[J/OL]. 中国免疫学杂志, 2022: 1-14. http://kns.cnki.net/kcms/detail/22.1126.R.20221228.1510.001.html, 2023-09-25.
[58] Li, Z., He, J., et al. (2020) Tita-nium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Apoptotic Cell Death in Liver Cancer Cells. Journal of International Medical Research, 48, Article ID: 300060520903652.
https://doi.org/10.1177/0300060520903652
[59] Xiao, B., Liu, C., Liu, B.T., et al. (2016) TTF1-NPs Induce ERS-Mediated Apoptosis and Inhibit Human Hepatoma Cell Growth in Vitro and in Vivo. Oncology Research, 23, 311-320.
https://doi.org/10.3727/096504016X14567549091341