P-糖蛋白在肿瘤中的研究新进展
New Research Progress of P-Glycoprotein in Tumor
DOI: 10.12677/WJCR.2023.134022, PDF, HTML, XML, 下载: 229  浏览: 856  科研立项经费支持
作者: 邹 青, 吕 圆*:湖南环境生物职业技术学院医药技术学院,湖南 衡阳
关键词: P-糖蛋白肿瘤药物P-Glycoprotein Tumor Drug
摘要: P-糖蛋白是一种位于细胞膜上,对疏水性及两性化合物具有特异性的一类转运蛋白。在生理条件下,P-糖蛋白分布在机体内多种组织、器官中,在药物的吸收、分布、代谢及排泄过程中都发挥着重要的作用。P-糖蛋白广泛存在于各种肿瘤细胞,与其发展密切相关。P-糖蛋白可加速机体抗癌药物产生耐药,调控P-糖蛋白水平可以调控肿瘤的发展和减少肿瘤药物耐药性。
Abstract: P-glycoprotein is a kind of transporter which is located on the cell membrane and has specificity for hydrophobic and amphoteric compounds. Under physiological conditions, P-glycoprotein is distributed in various tissues and organs in the body, and plays an important role in the absorption, distribution, metabolism and excretion of drugs. P-glycoprotein exists widely in various tumor cells and is closely related to its development. P-glycoprotein can accelerate anti-cancer drug resistance in the body, and regulate P-glycoprotein level which can regulate tumor development and reduce drug resistance.
文章引用:邹青, 吕圆. P-糖蛋白在肿瘤中的研究新进展[J]. 世界肿瘤研究, 2023, 13(4): 155-163. https://doi.org/10.12677/WJCR.2023.134022

1. P-糖蛋白概述

1976年,ABC转运蛋白是Juliano和Ling第一个发现的,命名为P-糖蛋白 [1] 。P-糖蛋白在全身各处表达,主要是在胃肠道、肝脏、肾脏、睾丸、卵巢、肾上腺和脑垂体、胎盘、脉络膜丛和大脑的毛细血管 [2] [3] [4] [5] 。学者发现P-糖蛋白存在于血脑屏障的毛细血管内皮细胞的血腔膜中,抑制机体对外源性物质的摄取,发挥保护大脑的作用 [6] 。在CD34+造血干细胞、T细胞和CD8+T细胞上表达P-糖蛋白 [7] 。表1总结了P-糖蛋白表达的主要组织。

Table 1. Expression of P-glycoprotein in tissues

表1. P-糖蛋白在组织中的表达

P-糖蛋白编码基因全长4669 bp,成熟分子质量约为1.7 × 105 Da,定位于细胞膜上。P-糖蛋白的二级结构比较复杂,包含32%~43% α螺旋、16%~26% β折叠、15%~29% β转角和13%~26%无规则卷曲 [8] [9] 。P-糖蛋白由四个结构域组成,胞浆内的2个亲水性核苷酸结合区域(Nucleotide-Binding Domains, NBD),每个结构域含有1个ATP酶位点;2个疏水性跨膜区域(Transmembrane Domain, TMD),每个结构域包含6个跨膜α-螺旋,主要是用于识别和结合底物分子,如图1所示。

Figure 1. Structure of P-glycoprotein

图1. P-糖蛋白的结构

P-糖蛋白是一种转运蛋白,可以外排各种亲脂性药物,转运内源性物质,在体内发挥重要的生理作用。表2总结了常见的P-糖蛋白转运的外源性和内源性物质。

Table 2. Common P-glycoprotein transport substances

表2. 常见的P-糖蛋白转运的物质

2. P-糖蛋白与肿瘤

2.1. P-糖蛋白在肿瘤的表达

P-糖蛋白在癌症干细胞(CSCs)中高表达,肿瘤发展与P-糖蛋白表达密切相关。即使成神经细胞不表达P-糖蛋白,但是成神经细胞瘤与其相关 [10] 。转运蛋白能够运输多种底物、增强CSCs表达和增加线粒体ATP输出 [11] 。在结肠癌中P-糖蛋白低于正常水平,通过增加细胞内P-糖蛋白底物可促进癌变 [12] 。白血病、淋巴瘤和多发性骨髓瘤中P-糖蛋白表达偏低,但是在化疗和复发的治疗过程中需要过度表达P-糖蛋白,防止疾病的复发 [13] 。在急性髓系白血病患者中,约30%患者表达P-糖蛋白,大多数在复发时表达 [14] 。P-糖蛋白在正常膀胱癌和高级别膀胱癌组织中有较高表达,但在低级别膀胱癌组织中表达水平较低。研究发现,非小细胞肺癌(NSCLC)中P-糖蛋白表达水平与正常上皮细胞相似;临床研究发现P-糖蛋白表达水平通常与生存率有关,与肿瘤预后密不可分;学者发现在前列腺癌患者诱导P-糖蛋白基因的组蛋白修饰和DNA甲基化,导致其沉默,病情好转 [15] [16] 。在大脑中,80%脑肿瘤患者中的毛细血管内皮细胞中表达P-糖蛋白,20%患者肿瘤细胞中表达P-糖蛋白。有趣的是,在其他原发性肿瘤的新生血管中没有表达P-糖蛋白 [17] [18] [19] 。毛细胞星形细胞瘤和少突胶质细胞瘤均表达P-糖蛋白。在胶质母细胞瘤和继发性胶质母细胞瘤中,P-糖蛋白均有异质性表达 [19] 。有趣的是,P-糖蛋白在转移性脑肿瘤中并不常见。表3总结了不同肿瘤类型下P-糖蛋白的表达情况。

Table 3. Expression of P-glycoprotein in tumors

表3. P-糖蛋白在肿瘤中的表达情况

2.2. P-糖蛋白促进MDR和侵袭性肿瘤表型

CD44蛋白是细胞表面糖蛋白透明质酸(HA)受体家族的粘附分子,与细胞运动、粘附和转移有关,P-糖蛋白可以与CD44蛋白相互作用 [20] 。罗德里格斯小组的一项研究表明P-糖蛋白与CD44的表达存在相关性,一种蛋白质直接影响另一种蛋白质的表达。研究表明这两个蛋白质在细胞膜内共定位,破坏这种相互作用可显著降低耐药性、细胞迁移和体外侵袭 [21] 。此外,细胞中CD44表达增加P-糖蛋白的表达,CD44下调干扰P-糖蛋白介导的MDR药物外排机制。在乳腺癌MCF-7/ADR细胞中膜联蛋白A2与P-糖蛋白免疫沉淀共定位。膜联蛋白A2与P-糖蛋白相互作用导致癌细胞恶性表型增强 [22] [23] 。钙依赖性磷脂结合蛋白上调与不同癌症中细胞增殖、细胞活力、肌动蛋白重排、血管生成和转移的增加有关 [24] 。此外,它与化疗后的快速复发有显著关联 [25] 。乳腺癌研究显示,P-糖蛋白通过与Src激酶相互作用,导致Anxa2磷酸化增强,癌细胞侵袭性增加,使用siRNA敲低P-糖蛋白或使用P-糖蛋白抑制剂可以抑制这种效应 [26] 。

在肝细胞癌、结直肠癌、前列腺癌和胃癌的研究中,P-糖蛋白与癌细胞凋亡有密不可分的关系。P -糖蛋与Bcl-xL蛋白相互作用,抑制Caspase介导凋亡。在一项幽门螺杆菌感染胃癌研究中,P-糖蛋白与Bcl-xL在线粒体膜上共定位,而在正常胃黏膜细胞中没有发现P-糖蛋白 [27] 。凋亡抑制因子survivin在转录水平上受到P-糖蛋白调控,survivin可阻断多种凋亡触发因子诱导的凋亡 [28] 。研究表明,P-糖蛋白特异性抑制剂维拉帕米通过PI3K-Akt抑制乳腺癌MCF-7/ADR细胞中survivin启动子活性,细胞凋亡加快。在氧化应激条件下,siRNA敲低P-糖蛋白导致胃癌细胞凋亡指数显著升高。大量研究证明P-糖蛋白与Caspase水平降低有关,但是抗凋亡确切机制尚不清楚,有待学者进一步探讨 [29] [30] 。

2.3. 癌症中P-糖蛋白信号通路

尽管调节P-糖蛋白的信号通路的机理仍未完全阐明,目前发现核因子κB (NF-κB)、PI3K-Akt和环氧合酶2 (COX2)等致癌信号分子在耐药转运蛋白、CSCs繁殖和分化中发挥重要作用 [31] 。MDR胶质母细胞瘤细胞中PI3K/Akt-NF-κB通路调控P-糖蛋白水平 [31] 。骨肉瘤中药物LY294002抑制PI3K通路,抑制P-糖蛋白和ABCC4表达,阻断干细胞周期,从而诱导细胞凋亡 [32] 。Katayama等人的研究表明泛素–蛋白酶体途径调控P-糖蛋白降解 [33] 。Huang等人证明了肾细胞癌通过PI3K/Akt和MAPK/ERK通路调控P-糖蛋白表达 [34] 。转录因子如c-Jun和c-Fos与P-糖蛋白启动子结合,调节P-糖蛋白的转录。MAPK/ERK通路激活可以上调P-糖蛋白。骨肉瘤细胞研究中,Chen等雌激素相关受体α与转录因子SP3结合,增加P-糖蛋白转录 [35] 。在长春新碱耐药白血病细胞系中,miR-138上调P-糖蛋白 [36] 。

3. P-糖蛋白与其他疾病

徐敏、Sisodiya SM等在动物实验和临床患者中发现癫痫患者P-糖蛋白水平高于正常组 [37] [38] 。大量临床发现,癫痫发作后海马部位脑内P-糖蛋白表达明显上升,同时在内皮细胞上显著表达,在神经元、小胶质细胞、星形胶质细胞上也存在P-糖蛋白过表达。大量动物模型以及人脑组织研究表明,P-糖蛋白的过度表达与难治性癫痫的多药耐药性呈正相关。β-淀粉样蛋白聚集是导致阿尔兹海默症的重要因素,β-淀粉样蛋白是P-糖蛋白的底物,P-糖蛋白是β-淀粉样蛋白转运体 [39] 。在阿尔兹海默症转基因小鼠模型中,P-糖蛋白水平降低,恢复P-糖蛋白的表达能有效减少β-淀粉样蛋白积聚 [40] 。正常衰老和阿尔兹海默症都会导致P-糖蛋白水平下降,这可能会加速β-淀粉样蛋白转运速度减慢,大脑内β-淀粉样蛋白沉积增多;β-淀粉样蛋白沉积增多导致P-糖蛋白表达降低,进一步加速β-淀粉样蛋白沉积,加剧阿尔兹海默症的发展,形成一个恶性循环 [41] 。

淋巴结结核患者P-糖蛋白显著高于健康对照组,用利福平治疗,血液中利福平浓度降低,从而导致耐药,降低利福平的治疗作用 [42] 。粉防己碱是从传统中药防己中分离得到的一种双苄基异喹啉生物碱。根据研究证实,粉防己碱通过抑制P-糖蛋白部分功能来增强糖皮质激素的药效学 [43] 。P-糖蛋白过表达能增加大鼠胰岛β细胞株胰岛素的分泌,增加胰岛素水平 [44] 。研究证实P-糖蛋白在早孕和晚孕中高表达,P-糖蛋白在早孕期间通过子宫上皮细胞转运物质,在着床和早期胚胎发生期间保护胚胎,以免受有毒物质的伤害 [45] ,故推测P-糖蛋白失调可能参与早期妊娠的病理过程,从而提示P-糖蛋白参与早期妊娠。P-糖蛋白在机体内广泛表达,参与多种疾病的进程,调控P-糖蛋白的水平是一种有效的治疗手段。

4. P-糖蛋白药物

多药耐药性是癌症长期治疗的主要障碍。P-糖蛋白定位于耐药细胞的高尔基体和粗面内质网上,与肿瘤药物耐药密切有关 [46] [47] 。P-糖蛋白能够将药物分子排出癌细胞,导致化疗效率降低,降低药物疗效。促肿瘤MCD2巨噬细胞、抗肿瘤NK细胞和CD4T细胞亚群免疫组显示P-糖蛋白表达增强,药物疗效降低。研究表明膀胱黏膜细胞中P-糖蛋白的含量较低,但是在膀胱癌症化疗患者中发现P-糖蛋白显著增加,化疗药物上调P-糖蛋白水平,增加机体的耐药性,降低化疗药物的疗效。在临床上有多种治疗药物,糖皮质激素是抗癌过程中常用的免疫抑制剂。在癌症患者中P-糖蛋白过表达,使用糖皮质激素出现明显的耐药。研究证实姜黄素逆转P-糖蛋白介导的多药耐药;其次,新型热休克蛋白90抑制剂降低癌细胞中P-糖蛋白活性,逆转多药耐药性,说明新型热休克蛋白90抑制剂是逆转机体耐药性的新型药物 [48] 。青蒿素衍生物也能够扭转P-糖蛋白介导的多药耐药,为研究、开发新型抗癌青蒿素衍生物逆转P-糖蛋白介导的多药耐药提供前期的基础 [49] 。阿魏酸通过抑制PI3K/AKT/NF-κB信号通路逆转P-糖蛋白介导的多药耐药 [50] 。藤黄酸逆转P-糖蛋白介导的HepG2/ADR细胞多药耐药,是肝癌治疗的有效药物 [51] 。黄酮类化合物可以调节P-糖蛋白过表达介导的多药耐药 [52] 。

目前,特异性靶向P-糖蛋白逆转MDR药物没有用于临床。尽管在细胞培养环境中成功逆转MDR,但临床实验中具有低特异性和高毒性的缺点,主要原因是这些药物具有较低的选择性,造成严重的不良反应。最近,研究主要集中在两种选择上:开发具有更高选择性新一代P-糖蛋白抑制剂,以及防止非靶器官中抑制的新递送方法。第一代抑制剂和第二代抑制剂维拉帕米、奎宁、环孢素A和戊司泊达是首先作为P-糖蛋白底物 [53] ,改变许多抗癌药物的药代动力学,从而改善MDR [53] 。第三代P-糖蛋白抑制剂XR9576在低剂量下,对其他膜转运蛋白和CYP3A的影响最小,抑制作用更强,并在实体性乳腺肿瘤患者的临床研究中不干扰阿霉素或紫杉醇的耐药性 [54] ,但是在多个临床研究显示出毒性,因而放弃了III期试验 [55] 。其他第三代抑制剂尚未显示出临床效果,例如新药LY-335979的III期试验,在急性髓系白血病患者中没有改善结果 [56] 。P-糖蛋白底物酪氨酸激酶抑制剂吉非替尼在胶质母细胞瘤靶向治疗方案中尚未成功。氨酸激酶抑制剂与P-糖蛋白抑制剂联合用药,作为治疗胶质母细胞瘤方法。学者提出P-糖蛋白抑制剂的临床试验受到肿瘤浸润的影响 [57] ,但是具体机制尚未明确。直接抑制P-糖蛋白功能是临床上克服MDR的主要方法 [58] [59] 。反义寡核苷酸、核酶和RNA干扰等方法沉默P-糖蛋白,可以提供更高的疗效和特异性。这些方法在体外实验中有效,但在体内实验中成功率有限,目前尚未进行临床试验。在临床试验中,由于药代动力学或药效学相互作用和毒性问题,没有特异性靶向P-糖蛋白抑制剂能够安全、完全逆转MDR。

5. 结论

迄今为止,人体中已发现大约50种ABC转运体。其中,至少14种转运蛋白在外源性物质运输中发挥作用。P-糖蛋白是机体重要的转运蛋白,广泛分布在机体的各个器官。P-糖蛋白与肿瘤耐药机制密不可分,然而,它们在肿瘤发生过程中的确切作用仍不清楚。P-糖蛋白表达水平在不同的肿瘤组织上调或下调,这表明可能存在一种组织特异性的基因表达模式,需要我们进一步探讨P-糖蛋白在肿瘤中扮演的角色。P-糖蛋白与心血管系统药物耐药、神经系统疾病和淋巴结等有关,具体机制尚未阐明,进一步研究其作用机制,便于开发更加安全、更加有效的药物,从而为临床提供合理的用药指导。通过P-糖蛋白调控机制的基础研究,发现多条信号通路可调控其表达,但是目前还是缺少特异性作用的药物,并仍需解决药物药代动力学或药效学毒理学的问题。

基金项目

湖南省自然科学基金项目(2022JJ60049);2022年度湖南省教育厅科学研究项目(22C0909);衡阳市2020年指导性项目(2020jh042671);衡阳市2021年科技创业计划项目(202121034369);衡阳市2021年科技创业计划项目(202121034379)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Juliano, R.L. and Ling, V. (1976) A Surface Glycoprotein Modulating Drug Permeability in Chinese Hamster Ovary Cell Mutants. Biochimica et Biophysica Acta, 455, 152-162.
https://doi.org/10.1016/0005-2736(76)90160-7
[2] Dietrich, C.G., Geier, A. and Oude Elferink, R.P. (2003) ABC of Oral Bioavailability: Transporters as Gatekeepers in the Gut. Gut, 52, 1788-1795.
https://doi.org/10.1136/gut.52.12.1788
[3] Balça-Silva, J., Matias, D., Carmo, A.D., et al. (2019) Cellular and Molecular Mechanisms of Glioblastoma Malignancy: Implications in Resistance and Therapeutic Strategies. Seminars in Cancer Biology, 58, 130-141.
https://doi.org/10.1016/j.semcancer.2018.09.007
[4] Karthika, C., Sureshkumar, R., Zehravi, M., et al. (2022) Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life (Basel), 12, Article No. 897.
https://doi.org/10.3390/life12060897
[5] 杨晓波, 刘克辛. P-糖蛋白分子结构及转运机制[J]. 药物评价研究, 2018, 41(1): 1-4.
[6] 张海威, 张力. 血脑脊液屏障上P-糖蛋白的研究进展[J]. 神经药理学报, 2016, 6(2): 53-64.
[7] Klimecki, W.T., Futscher, B.W., Grogan, T.M., et al. (1994) P-Glycoprotein Expression and Function in Circulating Blood Cells from Normal Volunteers. Blood, 83, 2451-2458.
https://doi.org/10.1182/blood.V83.9.2451.2451
[8] Kim, Y. and Chen, J. (2018) Molecular Structure of Human P-Glycoprotein in the ATP-Bound, Outward-Facing Conformation. Science, 359, 915-919.
https://doi.org/10.1126/science.aar7389
[9] Robinson, K. and Tiriveedhi, V. (2020) Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Frontiers in Oncology, 10, Article No. 265.
https://doi.org/10.3389/fonc.2020.00265
[10] 王慧. P-糖蛋白在神经细胞内的降解机制及其临床意义[D]: [硕士学位论文]. 泰安: 泰山医学院, 2014.
[11] Begicevic, R.R. and Falasca, M. (2017) ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. International Journal of Molecular Sciences, 18, Article No. 2362.
https://doi.org/10.3390/ijms18112362
[12] Andersen, V., Vogel, U., Godiksen, S., et al. (2013) Low ABCB1 Gene Expression Is an Early Event in Colorectal Carcinogenesis. PLOS ONE, 8, e0072119.
https://doi.org/10.1371/journal.pone.0072119
[13] Ahrweiler-Sawaryn, M.C., Biswas, A., Frias, C., et al. (2023) Novel Gold (I) Complexes Induce Apoptosis in Leukemia Cells via the ROS-Induced Mitochondrial Pathway with an Upregulation of Harakiri and Overcome Multi-Drug Resistances in Leukemia and Lymphoma Cells and Sensitize Drug Resistant Tumor Cells to Apoptosis in Vitro. Biomedicine & Pharmacotherapy, 161, Article ID: 114507.
https://doi.org/10.1016/j.biopha.2023.114507
[14] Xavier, A.C., Suzuki, R. and Attarbaschi, A. (2023) Diagnosis and Management of Rare Paediatric Non-Hodgkin Lymphoma. Best Practice & Research Clinical Haematology, 12, Article ID: 101440.
https://doi.org/10.1016/j.beha.2023.101440
[15] Henrique, R., Oliveira, A.I., Costa, V.L., Baptista, T., et al. (2013) Epigenetic Regulation of MDR1 Gene through Post-Translational Histone Modifications in Prostate Cancer. BMC Genomics, 14, Article No. 898.
https://doi.org/10.1186/1471-2164-14-898
[16] Demidenko, R., Razanauskas, D., Daniunaite, K., Lazutka, J.R., et al. (2015) Frequent Down-Regulation of ABC Transporter Genes in Prostate Cancer. BMC Cancer, 15, Article No. 683.
https://doi.org/10.1186/s12885-015-1689-8
[17] Chatterjee, S., Deshpande, A.A. and Shen, H. (2023) Recent Advances in the in Vitro and in Vivo Methods to Assess Impact of P-Glycoprotein and Breast Cancer Resistance Protein Transporters in Central Nervous System Drug Disposition. Biopharmaceutics & Drug Disposition, 44, 7-25.
https://doi.org/10.1002/bdd.2345
[18] Gan, H.K., Day, B.W., Harrup, R., et al. (2023) Clinical Trials in the Brain Tumour Population: Challenges and Strategies for the Future. Current Oncology Reports, 25, 589-598.
https://doi.org/10.1007/s11912-023-01394-5
[19] Heming, C.P., Muriithi, W., Macharia, L.W., et al. (2022) P-Glycoprotein and Cancer: What Do We Currently Know? Heliyon, 8, e11171.
https://doi.org/10.1016/j.heliyon.2022.e11171
[20] Abd El-Fattah, E.E. (2023) Tumor Lysis Syndrome Promotes Cancer Chemoresistance and Relapse through AMPK Inhibition. International Immunopharmacology, 114, Article ID: 109568.
https://doi.org/10.1016/j.intimp.2022.109568
[21] Miletti-González, K.E., Chen, S., Muthukumaran, N., et al. (2005) The CD44 Receptor Interacts with P-Glycoprotein to Promote Cell Migration and Invasion in Cancer. Cancer Research, 65, 6660-6667.
https://doi.org/10.1158/0008-5472.CAN-04-3478
[22] Zhang, F., Zhang, L., Zhang, B., et al. (2009) Anxa2 Plays a Critical Role in Enhanced Invasiveness of the Multidrug Resistant Human Breast Cancer Cells. Journal of Proteome Research, 8, 5041-5047.
https://doi.org/10.1021/pr900461c
[23] Zhang, H.C., Zhang, F., Wu, B., et al. (2012) Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-Resistant Human Breast Cancer Cells. Cancer Biology & Medicine, 9, 99-104.
[24] Lokman, N.A., Ween, M.P., Oehler, M.K., et al. (2011) The Role of Annexin A2 in Tumorigenesis and Cancer Progression. Tumor Microenvironment, 4, 199-208.
https://doi.org/10.1007/s12307-011-0064-9
[25] Wang, T., Wang, Z., Niu, R., et al. (2019) Crucial Role of Anxa2 in Cancer Progression: Highlights on Its Novel Regulatory Mechanism. Cancer Biology & Medicine, 16, 671-687.
https://doi.org/10.20892/j.issn.2095-3941.2019.0228
[26] Zhang, F., Zhang, H., Wang, Z., et al. (2014) P-Glycoprotein Associates with Anxa2 and Promotes Invasion in Multidrug Resistant Breast Cancer Cells. Biochemical Pharmacology, 87, 292-302.
https://doi.org/10.1016/j.bcp.2013.11.003
[27] Goebel, J., Chmielewski, J. and Hrycyna, C.A. (2021) The Roles of the Human ATP-Binding Cassette Transporters P-Glycoprotein and ABCG2 in Multidrug Resistance in Cancer and at Endogenous Sites: Future Opportunities for Structure-Based Drug Design of Inhibitors. Cancer Drug Resistance, 4, 784-804.
https://doi.org/10.20517/cdr.2021.19
[28] George, R., Hehlgans, S., Fleischmann, M., et al. (2022) Advances in Nanotechnology-Based Platforms for Survivin-Targeted Drug Discovery. Expert Opinion on Drug Discovery, 17, 733-754.
https://doi.org/10.1080/17460441.2022.2077329
[29] Liu, F., Liu, S., He, S., et al. (2010) Survivin Transcription Is Associated with P-Glycoprotein/MDR1 Overexpression in the Multidrug Resistance of MCF-7 Breast Cancer Cells. Oncology Reports, 23, 1469-1475.
https://doi.org/10.3892/or_00000786
[30] Coley, H.M. (2010) Overcoming Multidrug Resistance in Cancer: Clinical Studies of p-Glycoprotein Inhibitors. Methods in Molecular Biology, 596, 341-358.
https://doi.org/10.1007/978-1-60761-416-6_15
[31] Ranasinghe, R., Mathai, M. and Zulli, A. (2022) Revisiting the Therapeutic Potential of Tocotrienol. BioFactors, 48, 813-856.
https://doi.org/10.1002/biof.1873
[32] Fang, Y., Ji, W. and Yan, C. (2022) Research Progress of PI3K/PTEN/AKT Signaling Pathway Associated with Renal Cell Carcinoma. Disease Markers, 2022, Article ID: 1195875.
https://doi.org/10.1155/2022/1195875
[33] Katayama, K., Noguchi, K. and Sugimoto, Y. (2013) FBXO15 Regulates P-Glycoprotein/ABCB1 Expression through the Ubiquitin-Proteasome Pathway in Cancer Cells. Cancer Science, 104, 694-702.
https://doi.org/10.1111/cas.12145
[34] Huang, B., Fu, S.J., Fan, W.Z., et al. (2016) PKCε Inhibits Isolation and Stemness of Side Population Cells via the Suppression of ABCB1 Transporter and PI3K/Akt, MAPK/ERK Signaling in Renal Cell Carcinoma Cell Line 769P. Cancer Letters, 376, 148-154.
https://doi.org/10.1016/j.canlet.2016.03.041
[35] Chen, Y., Zhang, K., Li, Y., et al. (2019) Oestrogen-Related Receptor Alpha Mediates Chemotherapy Resistance of Osteosarcoma Cells via Regulation of ABCB1. Journal of Cellular and Molecular Medicine, 23, 2115-2124.
https://doi.org/10.1111/jcmm.14123
[36] Zhao, X., Yang, L., Hu, J. and Ruan, J. (2010) miR-138 Might Reverse Multidrug Resistance of Leukemia Cells. Leukemia Research, 34, 1078-1082.
https://doi.org/10.1016/j.leukres.2009.10.002
[37] Verscheijden, L.F.M., van Hattem, A.C., Pertijs, J.C.L.M., et al. (2020) Developmental Patterns in Human Blood-Brain Barrier and Blood-Cerebrospinal Fluid Barrier ABC Drug Transporter Expression. Histochemistry and Cell Biology, 154, 265-273.
https://doi.org/10.1007/s00418-020-01884-8
[38] 徐敏, 刘春风, 吴小伟, 等. 慢性癫痫SD大鼠模型海马P-糖蛋白表达的研究[J]. 苏州大学学报, 2007, 4(2): 193-195.
[39] Lazarowski, A. and Czornyj, L. (2011) Potential Role of Multidrug Resistant Proteins in Refractory Epilepsy and Antiepileptic Drugs Interactions. Drug Metabolism and Drug Interactions, 26, 21-26.
https://doi.org/10.1515/dmdi.2011.006
[40] Wang, C., Hong, Z. and Chen, Y. (2015) Involvement of p38 MAPK in the Drug Resistance of Refractory Epilepsy through the Regulation Multidrug Resistance-Associated Protein 1. Neurochemical Research, 40, 1546-1553.
https://doi.org/10.1007/s11064-015-1617-y
[41] 郑玲艳, 韩瑞兰, 曹俊彦. β-淀粉样蛋白在阿尔茨海默病中的作用[J]. 内蒙古医科大学学报, 2016, 38(2): 147-150.
[42] 郑伟. hSIR2/SIRT1降低蒽环类抗肿瘤药多柔比星的心脏毒性[D]: [博士学位论文]. 北京: 中国协和医科大学, 2009: 45-59.
[43] 杨兴艳, 薛月珍. 紫杉醇心脏毒性研究进展[J]. 医药导报, 2009, 28(8): 1064-1067.
[44] Nath, A., Kumar Rai, M., Hashim, Z., et al. (2020) Prevalence of p-Glycoprotein (PGP) Expression, Function and Its Effect on Efficacy of Rifampicin in Patients with Lymph Node Tuberculosis. Indian Journal of Tuberculosis, 67, 172-176.
https://doi.org/10.1016/j.ijtb.2019.11.015
[45] Cort, A. and Ozben, T. (2015) Natural Product Modulators to Overcome Multidrug Resistance in Cancer. Nutrition and Cancer, 67, 411-423.
https://doi.org/10.1080/01635581.2015.1002624
[46] Cabaud, O., Berger, L., Crompot, E., Adélaide, J., Finetti, P., Garnier, S., et al. (2022) Overcoming Resistance to Anti-Nectin-4 Antibody-Drug Conjugate. Molecular Cancer Therapeutics, 21, 1227-1235.
https://doi.org/10.1158/1535-7163.MCT-22-0013
[47] Qin, S., Zhang, Z., Huang, Z., Luo, Y., Weng, N., Li, B., et al. (2023) CCT251545 Enhances Drug Delivery and Potentiates Chemotherapy in Multidrug-Resistant Cancers by Rac1-Mediated Macropinocytosis. Drug Resistance Updates, 66, Article ID: 100906.
https://doi.org/10.1016/j.drup.2022.100906
[48] 雷思羽, 何屹. P-糖蛋白与膀胱肿瘤耐药关系的研究进展[J]. 江苏医药, 2019, 45(10): 1065-1068.
[49] 乔婉晴, 涂巍. 乳腺癌实施化疗后癌干细胞同P-糖蛋白及耐药蛋白在残存癌组织中表达的相关性[J]. 中国医学前沿杂志, 2014, 6(5): 123-125.
[50] Dinić, J., Podolski-Renić, A., Jovanović, M., et al. (2019) Novel Heat Shock Protein 90 Inhibitors Suppress P-Glycoprotein Activity and Overcome Multidrug Resistance in Cancer Cells. International Journal of Molecular Sciences, 20, Article No. 4575.
https://doi.org/10.3390/ijms20184575
[51] Wang, Y., Li, Y., Shang, D., et al. (2019) Interactions between Artemisinin Derivatives and P-Glycoprotein. Phytomedicine, 60, Article ID: 152998.
https://doi.org/10.1016/j.phymed.2019.152998
[52] Mellor, H.R. and Callaghan, R. (2011) Accumulation and Distribution of Doxorubicin in Tumour Spheroids: The Influence of Acidity and Expression of P-Glycoprotein. Cancer Chemotherapy & Pharmacology, 68, 1179-1190.
https://doi.org/10.1007/s00280-011-1598-8
[53] Finch, A. and Pillans, P. (2014) P-Glycoprotein and Its Role in Drug-Drug Interactions. Australian Prescriber, 37, 137-139.
https://doi.org/10.18773/austprescr.2014.050
[54] Harmsze, A.M., Robijns, K., van Werkum, J.W., et al. (2010) The Use of Amlodipine, but Not of P-Glycoprotein Inhibiting Calcium Channel Blockers Is Associated with Clopidogrel Poor-Response. Thrombosis and Haemostasis, 103, 920-925.
https://doi.org/10.1160/TH09-08-0516
[55] Pusztai, L., Wagner, P., Ibrahim, N., et al. (2005) Phase II Study of Tariquidar, a Selective P-Glycoprotein Inhibitor, in Patients with Chemotherapy-Resistant, Advanced Breast Carcinoma. Cancer, 104, 682-691.
https://doi.org/10.1002/cncr.21227
[56] Tamaki, A., Ierano, C., Szakacs, G., et al. (2011) The Controversial Role of ABC Transporters in Clinical Oncology. Essays in Biochemistry, 50, 209-232.
https://doi.org/10.1042/bse0500209
[57] Cripe, L.D., Uno, H., Paietta, E.M., et al. (2010) Zosuquidar, a Novel Modulator of P-Glycoprotein, Does Not Improve the Outcome of Older Patients with Newly Diagnosed Acute Myeloid Leukemia: A Randomized, Placebo-Controlled Trial of the Eastern Cooperative Oncology Group 3999. Blood, 116, 4077-4085.
https://doi.org/10.1182/blood-2010-04-277269
[58] Halder, J., Pradhan, D., Kar, B., Ghosh, G., et al. (2022) Nanotherapeutics Approaches to Overcome P-Glycoprotein- Mediated Multi-Drug Resistance in Cancer. Nanomedicine, 40, Article ID: 102494.
https://doi.org/10.1016/j.nano.2021.102494
[59] Labbozzetta, M., Poma, P. and Notarbartolo, M. (2023) Natural Inhibitors of P-Glycoprotein in Acute Myeloid Leukemia. International Journal of Molecular Sciences, 24, Article No. 4140.
https://doi.org/10.3390/ijms24044140