晚期糖基化终产物在糖尿病肾病中的致病作用及防治策略
Pathogenic Role and Preventive Strategy of Advanced Glycation End Products in Diabetic Kidney Disease
DOI: 10.12677/ACM.2023.13102220, PDF, HTML, XML, 下载: 203  浏览: 371  科研立项经费支持
作者: 李 燕:暨南大学附属广州红十字会医院肾内科,广东 广州;暨南大学附属广州红十字会医院病态营养研究所临床营养科,广东 广州;谭荣韶*:暨南大学附属广州红十字会医院病态营养研究所临床营养科,广东 广州
关键词: 晚期糖基化终产物糖尿病肾病慢性肾脏病Advanced Glycation End Products Diabetic Kidney Disease Chronic Kidney Disease
摘要: 糖尿病肾病(DKD)是糖尿病主要的微血管并发症之一,是导致糖尿病患者发病和死亡的主要原因,也是导致终末期肾病(ESRD)的主要原因,严重危害人类健康。DKD的发生与持续高血糖密切相关,体内高糖环境下积聚的晚期糖基化终产物(AGEs)是DKD的主要致病因素。AGEs在体内的持续蓄积会引起一系列氧化应激等级联反应及激活多条信号通路,最终导致肾脏损伤。AGEs在DKD发生发展过程中的作用是近年来的研究热点。本文就AGEs的来源、生化特性、病理生理机制及相关防治策略作如下综述。
Abstract: Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus, which is the main cause of morbidity and mortality in diabetes mellitus patients, and also the main cause of end-stage renal disease (ESRD), which is a serious hazard to human health. DKD is closely related to persistent hyperglycemia, and the accumulation of advanced glycation end products (AGEs) in the body under the environment of high glucose is a major pathogenic factor in DKD. The accumulation of AGEs in the body causes a series of oxidative stress cascade reactions and activation of multiple signalling pathways, which ultimately leads to kidney injury. The role of AGEs in the de-velopment of DKD has been a hot topic of research in recent years. In this paper, we review the sources, biochemical properties, pathophysiological mechanisms and prevention strategies of AGEs.
文章引用:李燕, 谭荣韶. 晚期糖基化终产物在糖尿病肾病中的致病作用及防治策略[J]. 临床医学进展, 2023, 13(10): 15883-15890. https://doi.org/10.12677/ACM.2023.13102220

1. 引言

在过去的几十年里,在全球范围内,1型和2型糖尿病的发病率和死亡率呈快速上升趋势 [1] [2] 。糖尿病以持续高血糖为特征,高血糖是其伴随并发症发展的主要和关键因素。在糖尿病并发症中,糖尿病肾病(diabetic kidney disease, DKD)不仅是终末期肾病(end-stage renal disease, ESRD)的常见和主要原因 [3] ,还是心血管疾病的独立危险因素,在世界范围内,给透析和移植带来了沉重的医保负担。DKD病理表现为基底膜增厚、足突消失、系膜基质扩张、肾小球结节硬化和肾小管间质纤维化 [4] 。大量临床研究表明,高血糖是DKD发病的主要原因之一。与高血糖紧密相关的晚期糖基化终产物(advanced glycation endproducts, AGEs)的生成在DKD的病理机制中起着核心作用 [5] 。AGEs是氨基酸、蛋白质和脂类与葡萄糖等还原糖发生非酶糖基化反应而形成的大分子 [6] 。AGEs的主要危害是引发氧化应激和炎症 [7] 。最近的证据表明,AGEs与衰老相关的病理情况有关,如糖尿病及其并发症DKD [8] [9] 。AGEs受体(RAGE)在衰老肾脏和DKD中的表达增加,RAGE表达增加介导了核因子-κB (NF-κB)信号通路等氧化应激和炎症的激活 [10] [11] 。反过来,AGEs-RAGE诱导的氧化应激和炎症进一步促进了糖尿病环境下AGEs的形成,AGEs与RAGE介导的下游信号通路之间的正反馈机制导致了DKD的恶性循环 [12] 。目前,严格控制血糖和血压是DKD的主要治疗方法,但大多数DKD患者仍进展为ESRD,最终需要血液透析和移植 [7] 。这突出了独立于血糖控制,开发DKD发病机制的新的分子机制和治疗靶分子的迫切需求。因此,靶向RAGE及其配体诱导的氧化应激和慢性炎症可以被认为是DKD的一种干预策略。

2. AGEs

AGEs (advanced glycation endproducts, AGEs)是生物大分子(蛋白质、脂质或核酸)与葡萄糖等还原糖发生非酶糖基化反应而形成的一类异构分子 [6] 。AGEs由Maillard于1912年首次描述,指还原糖与蛋白质之间自发非酶促反应所产生的一类稳定化合物 [13] ,即Maillard反应。如之前的研究所述 [14] [15] ,该反应主要包括三个阶段:第一阶段,还原糖通过一系列反应附着在蛋白质的游离氨基上,形成可逆和不稳定的Schiff碱;第二阶段,经过几天时间,Schiff碱进行自发化学重排形成一种可逆但更稳定的氯胺酮复合物,称为Amadori产物。例如,糖化血红蛋白是红细胞中血红蛋白与葡萄糖反应形成的Amadori产物,在糖尿病人群中被证明是一个可靠的预后标志;第三阶段,逐渐蓄积的Amadori产物通过脱水、氧化、还原、化学重排、缩合等反应形成活性羰基化合物,包括但不限于乙二醛、甲基乙二醛(MGO)和3-脱氧葡萄糖,最后羰基化合物与游离胺、肽或蛋白质的氨基反应形成不可逆和稳定的AGE,此阶段需要几周至几个月的时间。Maillard反应存在于人体所有组织和体液中。

AGEs具有相对不溶性,呈黄褐色,大多数具有荧光特性 [16] 。在生理条件下AGEs生成相对缓慢,但一旦形成,这个过程几乎是不可逆转的,衰老和许多慢性疾病如慢性肾脏病(chronic kidney disease, CKD)所特有的促氧化和促炎环境导致了AGEs合成和解毒之间的不平衡。羧甲基赖氨酸、戊糖苷、羧乙基赖氨酸、MGO衍生的氢咪唑酮等是最常检测的AGE。目前AGEs主要检测方法包括荧光光谱法、高效液相色谱法、酶联免疫吸附法,其中皮肤荧光光谱法检测的皮肤AGEs (SAF)具有灵敏度高、无创等优点 [17] 。有研究强调了在透析早期测量SAF的重要性,并建议对SAF的最佳控制可能是改善血液透析(hemodialysis, HD)患者预后的一种策略 [18] ,但是SAF的测量易受皮肤色素沉着的影响 [15] 。

AGEs除了在体内形成,还通过外源性及医源性途径生成。外源性的AGEs来源于烘焙和加工的食物 [19] 。现代食品生产,包括使用高温、高压、脱水、减压、辐照、盐和防腐剂来延长保质期和适口性,显著改变了蛋白质和脂类,形成翻译后修饰,包括食品中的AGEs,AGEs被广泛用于改善风味、保质期、颜色、香气和质地 [19] [20] [21] 。外源性的还包括吸入的燃烧产物,如吸烟 [22] 。医源性的AGE主要来源于腹膜透析液。在腹膜透析(peritoneal dialysis, PD)患者中,高糖透析液可促进腹膜糖基化,AGE积累与腹膜血管生成受损和腹膜功能障碍显著相关 [23] 。透析年份已经被证明是SAF水平较高的一个因素,这表明终末期肾病(end stage kidney disease, ESRD)、PD和HD治疗本身可以促进AGEs的形成 [24] [25] [26] 。

肾脏中的AGE代谢是由近端小管细胞的内溶酶体装置来完成的,AGE代谢产物一部分在肾小球滤过后被近端小管重吸收,一部分通过尿液排出 [13] 。这说明AGE代谢与肾小球滤过及肾小管功能密切相关。对于CKD患者,AGE浓度的增加可能是由于肾脏清除减少和内源性AGE产生加快,而AGEs增多又会进一步加重肾脏损害,从而形成一个恶性循环。过度的氧化应激、慢性炎症和尿毒症都可能导致AGE形成的增加,从而促进CKD的发病率和死亡 [27] 。有研究表明,血清AGE浓度与残余肾功能呈负相关,在ESKD患者中可升高5~100倍 [28] 。因此,肾功能对AGE的稳态极其关键。

3. RAGE

AGE的有害影响可能取决于AGE受体(RAGE)的激活。除了AGE外,RAGE还可以结合其他分子,如S100钙颗粒蛋白、两性素/高迁移率族框1蛋白(HMGB1)、脂多糖、β淀粉样蛋白、甲状腺素转运蛋白、Mac-1、补体1q以及潜在的DNA [14] [29] ,因此,RAGE是免疫球蛋白超家族的一种多配体受体。RAGE在巨噬细胞、内皮细胞和神经细胞等多种细胞中表达。RAGE也在黏膜上高表达,如肺和胃肠道,以及免疫系统 [14] 。在健康肾脏中,RAGE定位和基因表达发生在血管平滑肌、近端和远端小管上皮中,并且在各种炎症和非炎症疾病环境中显著上调 [14] 。

4. AGE与糖尿病肾病

在机制方面,糖尿病肾病(diabetic nephropathy, DKD)的发生与三个主要途径有关,包括AGEs的过度形成、多元醇和蛋白激酶C途径的激活以及肾小球高滤过引起的肾小球内高血压 [4] [30] [31] 。尽管这些机制与DKD有关,但最令人信服的证据是AGEs在DKD的病理机制中起着核心作用 [5] 。20%~40%的1型和2型糖尿病患者发生DKD。DKD约占所有ESRD新发病例的三分之一 [16] 。DKD的严重程度与AGE蓄积程度和肾小球及肾小管间质RAGE表达有关。

AGEs通过多种机制参与DKD的发病机制。DKD的显著特征是AGEs在肾小球系膜、肾小管间质、肾小球基底膜(GBM)内细胞外基质(ECM)的蓄积 [32] 。AGEs解除了ECM成分合成和降解之间的平衡,尤其是胶原蛋白。胶原蛋白的老化修饰和其他ECM蛋白的交联导致结构改变,包括表面电荷和堆积密度的变化以及结构完整性的丧失。这导致糖尿病和CKD的血管硬化和细胞基底膜扩张 [32] [33] ,从而导致动脉血管壁和肾小球毛细血管的弹性下降。足细胞和肾毛细血管的ECM带负电荷,能够阻止血清白蛋白丢失到肾小球滤液中。然而,糖基化和肾毛细血管ECM成分中AGEs的积累会改变血管对白蛋白通透性的静电相互作用,也会捕获血浆蛋白、脂蛋白和免疫球蛋白,影响正常肾功能的稳态,加重肾小球硬化。

另外,AGEs通过NOx酶以RAGE依赖的方式增加氧化应激,介导细胞内ROS (H2O2 O 2 、NO等)的产生 [34] 。尤其肾脏中大量表达的NOX4是ROS的重要来源,其催化亚基依赖于p22phox [35] 。

除NOx介导的氧化应激外,还可诱发AGEs-RAGE轴的ERK1/2 (胞外信号调节蛋白激酶1/2)、p38 (p38丝裂原活化蛋白激酶)、JNK/SAPK (c-Jun氨基末端蛋白激酶/应激活化蛋白激酶)、PI3K (磷酸肌醇3-激酶)和JAK/STAT (Janus激酶/信号转导器和转录激活因子)。由这些分子诱导的核因子-κB (NF-κB)被进一步激活,调节促炎性细胞因子和其他介质的合成,影响细胞的存活、分化和增殖,并诱导代谢改变 [36] 。同时,NF-κB与RAGE启动子结合,可增强RAGE表达 [37] 。因此,AGEs对RAGE激活的同时诱导RAGE的表达。NF-κB还与乙二醛酶1 (GLO1)的启动子区相关,与RAGE不同,它抑制GLO1的表达。GLO1是催化解毒的限速酶,其活性强烈依赖于谷胱甘肽浓度,通过催化AGE前体转化为乳酸来降低AGE水平。因此,RAGE激活通过抑制GLO1的表达间接参与AGE的产生 [16] 。在生理条件下RAGE低水平表达,但在慢性炎症和氧化应激状态下表达上调,继而放大炎症反应 [38] [39] 。这激活了一个恶性循环,增加了ROS的细胞内合成和RAGE介导的反应,造成足细胞损伤、蛋白尿、局灶节段性肾小球硬化和肾小管间质纤维化的进展 [40] [41] 。

上述研究结果表明,在某些病理生理条件下,AGEs与RAGE结合后会导致肾脏的氧化应激增强,导致炎症和足细胞损伤,促进肾脏疾病的进展。因此,抗氧化和抗炎分子可能是预防DKD氧化应激和炎症的重要靶点。

5. AGEs的防治策略

5.1. 减少AGEs的摄入

在饮食中限制AGE有许多好处。在2型糖尿病和肾功能衰竭的个体中,过量的AGE摄入与血清氧化应激、炎症、内皮功能障碍、高血糖和高脂血症的生物标志物呈正相关 [29] [42] 。相反,健康个体和2型糖尿病患者的饮食AGE限制在降低血清AGE水平、改善胰岛素敏感性方面显示出良好的结果 [14] 。由于大多数AGEs是外源性的,主要来自食物,与干热烹调的食物(如烧烤等)相比,食用蒸煮炖的食物可减少AGE的形成 [43] 。因此,有必要进行饮食干预。饮食干预或许是抑制AGEs和糖尿病相关疾病的一种有希望的治疗方法。丙酮酸乙酯作为一种食品添加剂,在体外预防MGO衍生的AGEs和氧化性肾损伤,为抑制AGEs诱发的肾脏疾病提供了坚实的基础 [44] 。槲皮素是一种天然的糖基化抑制剂,在面包中加入槲皮素,研制出抗糖基化功能食品,其抗糖基化作用能使40%~50%总AGEs被抑制 [45] ,但对其功能和消费者的可接受性还缺乏验证。五环三萜类化合物(亚洲酸、桦木酸、冠索酸等)的有益生物活性近年来受到人们的关注,因为它们是保健品和复方药物的重要来源 [46] 。因此,通过饮食干预、戒烟、倡导健康的交通出行方式等似乎能有效降低体内AGEs形成的风险。

5.2. 降AGE药物

针对AGEs-RAGE轴的具体作用机制,学者们不断寻找可以降AGE的药物,希望通过阻断AGEs-RAGE信号转导通路来减轻AGEs对肾脏的损害。早期的临床研究证实,向链脲佐菌素诱导的糖尿病小鼠模型提供的抗RAGE抗体可改善肾损伤指数 [47] 。另一个是关于氨基胍的研究,该药物是一种羰基清除剂,化学性质活跃,能与很多种生物分子结合,但是该研究由于副作用而中止 [48] 。吡哆胺可清除非酶糖基化产生的羰基复合物,减少合成AGEs的产物,从而降低尿蛋白,维持肾小球系膜及肾小管完整性,减少氧化应激,进而改善肾功能 [49] 。格列齐特通过抑制RAGE-P22phox-NF-κB途径减轻肾小球系膜细胞和肾小管上皮细胞的损伤 [50] 。类似的还有N-苯酰基溴化噻唑(PTB)、Alagebrium、OPB-9195、LR-90、ALT-946、FPSZM1、TRC4186及TRC4149等AGE形成抑制剂。近几年有研究发现一些中成药成分也有治疗作用,如姜黄素、生姜、肉桂和丁香在体外都有抑制糖基化的作用,它们的抗糖基化潜力与其多酚含量有关 [16] 。糖尿病大鼠补充原花青素-B2表现出全身抗糖基化潜能,如降低糖化血红蛋白水平和糖基化倾向的红细胞-IgG交联 [51] ,从而改善糖尿病大鼠的蛋白尿。类似的还有丹参酸A、三七皂苷R1、土茯苓、甲氧基欧芹酚、白杨素、山柰苷等。尽管上述部分药物在动物实验中均取得良好效果,但在临床试验中的结果却不尽如人意,且仍无强有力的直接证据表明对人体有益,仍需更多的研究去证实。

5.3. GLO1激活剂

GLO1可抑制乙二醛介导的AGE蓄积,因此GLO1的激活可能对抗糖基化反应引起的器官功能障碍有益。反式白藜芦醇(Tres)联合橙皮素(HESP)通过诱导GLO1有助于改善超重和肥胖健康个体的血糖控制和血管炎症 [52] 。此外,0.2%三萜酸(齐墩果酸或熊果酸)剂量依赖性地增强GLO1活性,可显著降低山梨醇脱氢酶活性,上调GLO1 mRNA表达,降低糖尿病小鼠肾脏MGO水平 [53] 。因此,GLO1激活剂似乎是抗糖基化的有希望的药物,但需更多的研究去证实。

5.4. AGE适配体

适配体是人工合成的、与靶向蛋白质进行高亲和力、高特异性结合的单链寡核苷酸(DNA或RNA),其功能类似于抗体,但更优于抗体。新近研究发现,一个对AGE有高亲和力的DNA,即AGE适配体,可抑制肾小球增生肥大和ECM蛋白积累,降低尿白蛋白水平 [54] 。因此,AGE适配体可以通过阻碍AGE与RAGE结合,减少AGE蓄积。而巨噬细胞清道夫受体I、II型可与AGE适配体结合。这些受体在与AGE适配体结合后不引发信号转导,而是参与AGE的解毒和清除 [55] 。

5.5. 透析方式

PD治疗本身导致的AGEs积累的问题可以通过使用中性pH值和低AGEs含量的PD溶液来解决,这样可以减少腹膜纤维化和血管硬化 [56] 。HD治疗可有效地清除血浆游离AGE,但不能清除蛋白结合AGE,可通过使用超通量的HD膜及超纯HD液降低免疫调节及免疫反应来减少AGE的积累 [57] 。此外,一项研究表明,比起标准HD (4小时,3次/周),每日HD (2小时,6次/周)方案可有效地降低血浆AGE水平 [58] 。

综上所述,AGEs在细胞、组织及体液中的蓄积是外源性、内源性AGEs和肾脏代谢共同作用的结果。AGE通过与RAGE结合,激活AGE-RAGE轴,引发炎症、氧化应激,导致肾脏细胞受损,加速肾脏病进展,但是目前没有研究能表明AGE是否能作为诊断DKD的新靶点。此外,大多数AGEs是外源性的,主要来自食物,因此饮食干预或许是抑制AGE和防治DKD的一种有希望的方法。因此,未来仍需大量的基础及临床试验来证实AGE在DKD发生发展中的作用,以期为DKD的诊治提供新的思路。

基金项目

广州科技项目(项目编号:202201020033)。

NOTES

*通讯作者。

参考文献

[1] Vallon, V. and Thomson, S.C. (2020) The Tubular Hypothesis of Nephron Filtration and Diabetic Kidney Disease. Na-ture Reviews Nephrology, 16, 317-336.
https://doi.org/10.1038/s41581-020-0256-y
[2] Kato, M. and Natarajan, R. (2019) Epigenetics and Epigenomics in Diabetic Kidney Disease and Metabolic Memory. Nature Reviews Nephrology, 15, 327-345.
https://doi.org/10.1038/s41581-019-0135-6
[3] Anders, H.J., Huber, T.B., Isermann, B., et al. (2018) CKD in Diabetes: Diabetic Kidney Disease versus Nondiabetic Kidney Disease. Nature Reviews Nephrology, 14, 361-377.
https://doi.org/10.1038/s41581-018-0001-y
[4] Azushima, K., Gurley, S.B. and Coffman, T.M. (2018) Modelling Diabetic Nephropathy in Mice. Nature Reviews Nephrology, 14, 48-56.
https://doi.org/10.1038/nrneph.2017.142
[5] Molitch, M.E., Adler, A.I., Flyvbjerg, A., et al. (2015) Diabetic Kid-ney Disease: A Clinical Update from Kidney Disease: Improving Global Outcomes. Kidney International, 87, 20-30.
https://doi.org/10.1038/ki.2014.128
[6] Majchrzak, C., Cougnard-Gregoire, A., Le-Goff, M., et al. (2022) Skin Autofluorescence of Advanced Glycation End-Products and Mortality in Older Adults: The Roles of Chronic Kidney Disease and Diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 32, 2526-2533.
https://doi.org/10.1016/j.numecd.2022.08.009
[7] Wu, X.Q., Zhang, D.D., Wang, Y.N., et al. (2021) AGE/RAGE in Diabetic Kidney Disease and Ageing Kidney. Free Radical Biology and Medicine, 171, 260-271.
https://doi.org/10.1016/j.freeradbiomed.2021.05.025
[8] Byun, K., Yoo, Y., Son, M., et al. (2017) Advanced Glycation End-Products Produced Systemically and by Macrophages: A Common Contributor to Inflammation and De-generative Diseases. Pharmacology & Therapeutics, 177, 44-55.
https://doi.org/10.1016/j.pharmthera.2017.02.030
[9] Yacoub, R., Nugent, M., Cai, W., et al. (2017) Advanced Glycation end Products Dietary Restriction Effects on Bacterial Gutmicrobiota in Peritoneal Dialysis Patients; a Random-ized Open Label Controlled Trial. PLOS ONE, 12, e184789.
https://doi.org/10.1371/journal.pone.0184789
[10] Rungratanawanich, W., Qu, Y., Wang, X., et al. (2021) Ad-vanced Glycation End Products (AGEs) and Other Adducts in Aging-Related Diseases and Alcohol-Mediated Tissue Injury. Experimental & Molecular Medicine, 53, 168-188.
https://doi.org/10.1038/s12276-021-00561-7
[11] Yamagishi, S. and Matsui, T. (2010) Advanced Glycation End Products, Oxidative Stress and Diabetic Nephropathy. Oxidative Medicine and Cellular Longevity, 3, 101-108.
https://doi.org/10.4161/oxim.3.2.11148
[12] Shu, M., Cheng, W., Jia, X., et al. (2023) AGEs Promote Atheroscle-rosis by Increasing LDL Transcytosis across Endothelial Cells via RAGE/NF-kappaB/Caveolin-1 Pathway. Molecular Medicine, 29, Article No. 113.
https://doi.org/10.1186/s10020-023-00715-5
[13] Chaudhuri, J., Bains, Y., Guha, S., et al. (2018) The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metabo-lism, 28, 337-352.
https://doi.org/10.1016/j.cmet.2018.08.014
[14] Fotheringham, A.K., Gallo, L.A., Borg, D.J., et al. (2022) Ad-vanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutri-ents, 14, Article No. 2675.
https://doi.org/10.3390/nu14132675
[15] Steenbeke, M., Speeckaert, R., Desmedt, S., et al. (2022) The Role of Advanced Glycation End Products and Its Soluble Receptor in Kidney Diseases. International Journal of Molecular Sci-ences, 23, Article No. 3439.
https://doi.org/10.3390/ijms23073439
[16] Kumar, P.A., Chitra, P.S. and Reddy, G.B. (2016) Advanced Glycation End Products Mediated Cellular and Molecular Events in the Pathology of Diabetic Nephropathy. BioMolecular Con-cepts, 7, 293-309.
https://doi.org/10.1515/bmc-2016-0021
[17] 叶成松, 王贻坤, 叶山东. 晚期糖基化终末产物的特性及其检测[J]. 国际病理科学与临床杂志, 2013, 33(2): 175-178.
[18] Thurlow, J.S., Joshi, M., Yan, G., et al. (2021) Global Epidemiology of End-Stage Kidney Disease and Disparities in Kidney Replacement Therapy. American Journal of Nephrology, 52, 98-107.
https://doi.org/10.1159/000514550
[19] Poojary, M.M. and Lund, M.N. (2022) Chemical Stability of Proteins in Foods: Oxidation and the Maillard Reaction. Annual Review of Food Science and Technology, 13, 35-58.
https://doi.org/10.1146/annurev-food-052720-104513
[20] Poulsen, M.W., Hedegaard, R.V. andersen, J.M., et al. (2013) Advanced Glycation End Products in Food and Their Effects on Health. Food and Chemical Toxicol-ogy, 60, 10-37.
https://doi.org/10.1016/j.fct.2013.06.052
[21] Liang, Z., Chen, X., Yang, Z., et al. (2022) Sodium Ions Affect Pyrraline Formation in the Maillard Reaction with Lys-Containing Dipeptides and Tripeptides. Frontiers in Nutrition, 9, Article ID: 874650.
https://doi.org/10.3389/fnut.2022.874650
[22] Liu, R., Zhang, M., Xu, L., et al. (2022) Fluorescent Advanced Glycation End Products in Type 2 Diabetes and Its Association with Diabetes Duration, Hemoglobin A1c, and Diabetic Complications. Frontiers in Nutrition, 9, Article ID: 1083872.
https://doi.org/10.3389/fnut.2022.1083872
[23] Nakano, T., Mizumasa, T., Kuroki, Y., et al. (2020) Advanced Glycation End Products Are Associated with Immature Angiogenesis and Peritoneal Dysfunction in Patients on Perito-neal Dialysis. Peritoneal Dialysis International, 40, 67-75.
https://doi.org/10.1177/0896860819878344
[24] Jiang, J., Chen, P., Chen, J., et al. (2012) Accumulation of Tissue Advanced Glycation End Products Correlated with Glucose Exposure Dose and Associated with Cardiovascular Morbidity in Patients on Peritoneal Dialysis. Atherosclerosis, 224, 187-194.
https://doi.org/10.1016/j.atherosclerosis.2012.06.022
[25] Meerwaldt, R., Hartog, J.W., Graaff, R., et al. (2005) Skin Autofluorescence, a Measure of Cumulative Metabolic Stress and Advanced Glycation End Products, Pre-dicts Mortality in Hemodialysis Patients. Journal of the American Society of Nephrology, 16, 3687-3693.
https://doi.org/10.1681/ASN.2005020144
[26] Arsov, S., Graaff, R., Morariu, A.M., et al. (2010) Does Hepatitis C Increase the Accumulation of Advanced Glycation End Products in Haemodialysis Patients? Nephrology Dialysis Transplantation, 25, 885-891.
https://doi.org/10.1093/ndt/gfp564
[27] Koyama, H. and Nishizawa, Y. (2010) AGEs/RAGE in CKD: Irreversible Metabolic Memory Road toward CVD? European Journal of Clinical Investigation, 40, 623-635.
https://doi.org/10.1111/j.1365-2362.2010.02298.x
[28] Thornalley, P.J. (2006) Advanced Glycation End Products in Renal Failure. Journal of Renal Nutrition, 16, 178-184.
https://doi.org/10.1053/j.jrn.2006.04.012
[29] Dozio, E., Caldiroli, L., Molinari, P., et al. (2023) Accelerated AGEing: The Impact of Advanced Glycation End Products on the Prognosis of Chronic Kidney Disease. Antioxidants (Basel), 12, Article No. 584.
https://doi.org/10.3390/antiox12030584
[30] Gnudi, L., Coward, R. and Long, D.A. (2016) Diabetic Nephropathy: Perspective on Novel Molecular Mechanisms. Trends in Endocrinology and Metabolism, 27, 820-830.
https://doi.org/10.1016/j.tem.2016.07.002
[31] Reidy, K., Kang, H.M., Hostetter, T., et al. (2014) Molecular Mechanisms of Diabetic Kidney Disease. Journal of Clinical Investigation, 124, 2333-2340.
https://doi.org/10.1172/JCI72271
[32] Bansode, S., Bashtanova, U., Li, R., et al. (2020) Glycation Changes Mo-lecular Organization and Charge Distribution in Type I Collagen Fibrils. Scientific Reports, 10, Article No. 3397.
https://doi.org/10.1038/s41598-020-60250-9
[33] Hadley, J.C., Meek, K.M. and Malik, N.S. (1998) Glycation Changes the Charge Distribution of Type I Collagen Fibrils. Glycoconjugate Journal, 15, 835-840.
https://doi.org/10.1023/A:1006928403140
[34] Cepas, V., Collino, M., Mayo, J.C., et al. (2020) Redox Signaling and Advanced Glycation End Products (AGEs) in Diet-Related Diseases. Antioxidants (Basel), 9, Article No. 142.
https://doi.org/10.3390/antiox9020142
[35] Gill, P.S. and Wilcox, C.S. (2006) NADPH Oxidases in the Kidney. Antioxidants & Redox Signaling, 8, 1597-1607.
https://doi.org/10.1089/ars.2006.8.1597
[36] Dozio, E., Vettoretti, S., Lungarella, G., et al. (2021) Sarcopenia in Chronic Kidney Disease: Focus on Advanced Glycation End Products as Mediators and Markers of Oxidative Stress. Biomedicines, 9, Article No. 405.
https://doi.org/10.3390/biomedicines9040405
[37] Xie, J., Mendez, J.D., Mendez-Valenzuela, V., et al. (2013) Cellular Signalling of the Receptor for Advanced Glycation End Products (RAGE). Cell Signaling, 25, 2185-2197.
https://doi.org/10.1016/j.cellsig.2013.06.013
[38] Goldin, A., Beckman, J.A., Schmidt, A.M., et al. (2006) Ad-vanced Glycation End Products: Sparking the Development of Diabetic Vascular Injury. Circulation, 114, 597-605.
https://doi.org/10.1161/CIRCULATIONAHA.106.621854
[39] Liebisch, M., Bondeva, T., Franke, S., et al. (2014) Activation of the Receptor for Advanced Glycation End Products Induces Nuclear Inhibitor of Protein Phospha-tase-1 Suppression. Kidney International, 86, 103-117.
https://doi.org/10.1038/ki.2014.3
[40] Matoba, K., Takeda, Y., Nagai, Y., et al. (2020) Targeting Redox Imbalance as an Approach for Diabetic Kidney Disease. Biomedicines, 8, Article No. 40.
https://doi.org/10.3390/biomedicines8020040
[41] Duni, A., Liakopoulos, V., Roumeliotis, S., et al. (2019) Oxida-tive Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. International Journal of Molecular Sciences, 20, Article No. 3711.
https://doi.org/10.3390/ijms20153711
[42] Chao, P.C., Huang, C.N., Hsu, C.C., et al. (2010) Association of Die-tary AGEs with Circulating AGEs, Glycated LDL, IL-1alpha and MCP-1 Levels in Type 2 Diabetic Patients. European Journal of Nutrition, 49, 429-434.
https://doi.org/10.1007/s00394-010-0101-3
[43] Uribarri, J. and He, J.C. (2015) The Low AGE Diet: A Neglected Aspect of Clinical Nephrology Practice? Nephron, 130, 48-53.
https://doi.org/10.1159/000381315
[44] Jung, E., Kang, W.S., Jo, K., et al. (2019) Ethyl Pyruvate Prevents Renal Damage Induced by Methylglyoxal-Derived Advanced Glycation End Products. Journal of Diabetes Research, 2019, Article ID: 4058280.
https://doi.org/10.1155/2019/4058280
[45] Lin, J., Gwyneth, T.Y., Leong, L.P., et al. (2018) Steamed Bread En-riched with Quercetin as an Antiglycative Food Product: Its Quality Attributes and Antioxidant Properties. Food & Func-tion, 9, 3398-3407.
https://doi.org/10.1039/C8FO00818C
[46] Yin, M.C. (2015) Inhibitory Effects and Actions of Pentacyclic Triter-penes upon Glycation. Biomedicine (Taipei), 5, Article No. 13.
https://doi.org/10.7603/s40681-015-0013-x
[47] Jensen, L.J., Denner, L., Schrijvers, B.F., et al. (2006) Renal Ef-fects of a Neutralising RAGE-Antibody in Long-Term Streptozotocin-Diabetic Mice. Journal of Endocrinology, 188, 493-501.
https://doi.org/10.1677/joe.1.06524
[48] Thornalley, P.J. (2003) Use of Aminoguanidine (Pimagedine) to Prevent the Formation of Advanced Glycation End Products. Archives of Biochemistry and Biophysics, 419, 31-40.
https://doi.org/10.1016/j.abb.2003.08.013
[49] Degenhardt, T.P., Alderson, N.L., Arrington, D.D., et al. (2002) Pyridoxamine Inhibits Early Renal Disease and Dyslipidemia in the Streptozotocin-Diabetic Rat. Kidney International, 61, 939-950.
https://doi.org/10.1046/j.1523-1755.2002.00207.x
[50] Yang, P.Y., Li, P.C. and Feng, B. (2019) Protective Effects of Gliclazide on High Glucose and AGEs-Induced Damage of Glomerular Mesangial Cells and Renal Tubular Epithelial Cells via Inhibiting RAGE-p22phox-NF-κB Pathway. European Review for Medical and Pharmacological Sciences, 23, 9099-9107.
[51] Muthenna, P., Raghu, G., Kumar, P.A., et al. (2014) Effect of Cinnamon and Its Procyanidin-B2 En-riched Fraction on Diabetic Nephropathy in Rats. Chemico-Biological Interactions, 222, 68-76.
https://doi.org/10.1016/j.cbi.2014.08.013
[52] Rabbani, N. and Thornalley, P.J. (2019) Glyoxalase 1 Modulation in Obesity and Diabetes. Antioxidants & Redox Signaling, 30, 354-374.
https://doi.org/10.1089/ars.2017.7424
[53] Wang, Z.H., Hsu, C.C., Huang, C.N., et al. (2010) Anti-Glycative Ef-fects of Oleanolic Acid and Ursolic Acid in Kidney of Diabetic Mice. European Journal of Pharmacology, 628, 255-260.
https://doi.org/10.1016/j.ejphar.2009.11.019
[54] Kaida, Y., Fukami, K., Matsui, T., et al. (2013) DNA Aptamer Raised against AGEs Blocks the Progression of Experimental Diabetic Nephropathy. Diabetes, 62, 3241-3250.
https://doi.org/10.2337/db12-1608
[55] Bucciarelli, L.G., Wendt, T., Rong, L., et al. (2002) RAGE Is a Mul-ti-Ligand Receptor of the Immunoglobulin Super-Family: Implications for Homeostasis and Chronic Disease. Cellular and Molecular Life Sciences, 59, 1117-1128.
https://doi.org/10.1007/s00018-002-8491-x
[56] Kawanishi, K., Honda, K., Tsukada, M., et al. (2013) Neutral So-lution Low in Glucose Degradation Products Is Associated with Less Peritoneal Fibrosis and Vascular Sclerosis in Pa-tients Receiving Peritoneal Dialysis. Peritoneal Dialysis International, 33, 242-251.
https://doi.org/10.3747/pdi.2011.00270
[57] Van Tellingen, A., Schalkwijk, C.G., Teerlink, T., et al. (2005) Influ-ence of Different Haemodialysis Modalities on AGE Peptide Levels: Intradialytic versus Long-Term Results. Nephron Clinical Practice, 100, c1-c7.
https://doi.org/10.1159/000084106
[58] Floridi, A., Antolini, F., Galli, F., et al. (2002) Daily Haemodialysis Im-proves Indices of Protein Glycation. Nephrology Dialysis Transplantation, 17, 871-878.
https://doi.org/10.1093/ndt/17.5.871