3D打印乳腺癌模型及白藜芦醇与华蟾素药敏试验
3D Bioprinted Breast Cancer Model and Its Application in Drug Sensitivity Test of Resveratrol and Cinobufagin
DOI: 10.12677/HJBM.2023.134042, PDF, HTML, XML, 下载: 120  浏览: 235  科研立项经费支持
作者: 王 晗*:杭州医学院公共卫生学院,浙江 杭州;朱 莲:杭州医学院基础医学与法医学院,浙江 杭州;唐 靓, 杨亚冬, 赵思雨, 张文元#:杭州医学院检验医学院、生物工程学院,浙江 杭州
关键词: 3D生物打印3D乳腺癌模型白藜芦醇华蟾素药敏试验3D Bioprinting 3D Breast Cancer Model Resveratrol Cinobufagin Drug Sensitive Test
摘要: 目的:探讨三维(3D)生物打印MDA-MB-231乳腺癌细胞模型及其用于2种中药白藜芦醇与华蟾素药敏试验的可行性。方法:通过3D生物打印构建3D乳腺癌模型,采用该模型进行白藜芦醇、华蟾素药敏试验,并与二维(2D)培养比较。结果:在3D/2D培养下,随着这2种中药浓度的升高,乳腺癌细胞存活率成下降趋势;这2种中药在3D培养下对乳腺癌细胞的药敏性均显著低于2D培养。结论:使用3D生物打印技术构建的3D乳腺癌模型,可能更好地模拟体内乳腺癌肿瘤微环境,以提高临床前药物的预测能力,改善药物临床转化。
Abstract: Objective: To explore the feasibility of 3D bioprinted model of MDA-MB-231 breast cancer cells and its application in drug sensitivity test of resveratrol and cinobufagin. Methods: The 3D model of breast cancer was constructed by 3D bioprinting, then the model was used to test the drug sensitivity of resveratrol and cinbufosinthe, and the results were compared with those under 2D culture conditions. Results: The results showed that, in 3D/2D culture, the survival rate of breast cancer cells decreased with the increase of the concentrations of resveratrol and cinobufagin. The drug sensitivities of resveratrol and cinobufagin to breast cancer cells in 3D culture was significantly lower than those in 2D culture. Conclusion: The results indicate that the breast cancer model constructed by 3D bioprinting technology may better simulate the microenvironment of breast cancer in vivo, so as to improve the prediction ability of preclinical drug research and the clinical transformation of drugs.
文章引用:王晗, 朱莲, 唐靓, 杨亚冬, 赵思雨, 张文元. 3D打印乳腺癌模型及白藜芦醇与华蟾素药敏试验[J]. 生物医学, 2023, 13(4): 359-367. https://doi.org/10.12677/HJBM.2023.134042

1. 引言

乳腺癌是女性与癌症相关死亡的第二大原因 [1] 。寻找有效、安全、不良反应小的抗肿瘤药物倍受研究人员关注。二维(2D)和三维(3D)癌细胞增殖模型之间的药物反应往往不同。因为2D体外模型研究缺乏癌症转移过程中发生的复杂而动态的细胞–细胞通信和细胞–基质相互作用,缺乏天然ECM的空间和生化复杂性,对抗癌药物过度敏感,所以无法轻易地从2D研究中获得对癌症转移的基本认识 [2] 。因此,人们不再局限于2D模型来发现抗癌药物。与传统的2D培养相比,体外3D癌症模型能够更好地代表肿瘤生理学 [3] ,概括了体内肿瘤–基质的串扰,以服务于减少和取代动物实验的需要,并可建立基于人类细胞的体外测试系统,用于研究、创新和药物测试 [4] 。3D生物打印模型通过提供细胞–基质结合位点和促进癌细胞与其微环境之间的串扰,增加生物活性 [5] ,可更好地了解癌症的基本过程和药物筛选作用,被认为能够更好地复制自然生理和更好地预测药物疗效 [6] 。因此,3D生物打印模型为实验室研究提供了一种更有代表性的细胞培养方法,也为临床前研究的转化提供了更多的预测数据。可以提高对疾病的了解,并转化为临床患者更好的预后。2D与3D模型也可在药物开发过程中互补整合,如联合体外2D和3D分析,增加可预测性。以便更准确地预测体内性能,从而降低产品在后期临床开发中的失败风险。这将有助于预防和治疗这些毁灭性的恶性肿瘤,能够减少、甚至有可能绕过基于动物的临床前癌症模型的使用 [7] 。

临床上乳腺癌患者常采取手术治疗及放疗、化疗,各种化疗药物存在严重不良反应 [8] 。中药治疗是肿瘤防治的重要组成部分,是我国防治肿瘤的特色措施,具有多靶点、副作用小的独特优势,可作为长期补充和替代疗法,不仅可以缓解症状,还可抑制肿瘤生长,延长肿瘤患者生命 [9] 。中医药对乳腺癌的作用具有丰富的理论基础和临床应用,特别是在具有免疫抑制作用的肿瘤微环境中,中药可以通过上调免疫反应来发挥抗肿瘤作用 [10] 。其分子机制主要是改善肿瘤细胞微环境,调节肿瘤细胞上皮–间质转化(EMT)过程,抑制肿瘤细胞增殖、发育和转移 [11] [12] 。因此,中药和天然药物对肿瘤的抑制作用是多层次、多途径的,具有多靶点、副作用小的独特优势,可作为放化疗的长期补充和替代疗法 [13] 。也为中药新药开发提供了合理依据。白藜芦醇在受到刺激时可释放出的抗毒素,具有优良的抗癌性能 [14] [15] 。华蟾素是大蟾蜍皮的水制剂,主要包含蟾毒内脂等成分,可以通过不同靶点抑制肿瘤细胞增殖 [16] [17] 。研究数据证实,华蟾素通过影响Bax和Bcl-2的表达,在体外抑制乳腺癌MCF-7细胞的生长并引发细胞凋亡 [18] 。

3D生物打印允许在复杂的结构中沉积生物相容性材料和活细胞,并提供了一种更好地在体外复制生物组织壁龛的方法。在模拟癌症生态位和肿瘤微环境,以及与其之间的相互作用方面显示了巨大的潜力 [19] 。本实验通过结合海藻酸钠和明胶获得复合水凝胶,并将水凝胶和乳腺癌MDA-MB-231细胞混合,通过3D生物打印技术构建乳腺癌3D模型。分别采用白藜芦醇、华蟾素对乳腺癌MDA-MB-231细胞进行药敏试验,用Live/Dead染色法检测3D模型支架内乳腺癌细胞生长存活情况。并与2D培养比较。

2. 材料与方法

2.1. 材料

乳腺癌MDA-MB-231细胞(中科院上海细胞库);L15培养基(HyClone,产品编号:AG29798283);胎牛血清(Procell,批号:SA211028);海藻酸钠(Sigma,产品编号:SLBD5650V),明胶(Sigma,产品编号:SLBB0914V),钙黄绿素-AM (Solarbio,产品编号:N0405A),碘化丙啶(Solarbio,产品编号:N1025A)。白藜芦醇(meilunbio,产品编号:J1101A);华蟾素(麦克林,产品编号:H854446);CCK-8试剂盒(上海翊圣生物科技有限公司,产品编号:C8001420)。3D生物打印机(BioScaffolder2.1,德国GESIM公司);荧光倒置显微镜、多功能酶标仪(上海普丹光学仪器有限公司)。

2.2. 方法

2.2.1. 药物稀释

根据预实验结果,将白藜芦醇、华蟾素粉末均先用少量二甲基亚砜溶解,0.22 μm微型过滤器过滤,再用完全培养基(含10%胎牛血清的L15培养基)分别配置成工作浓度:12、24、48 μg∙mL−1

2.2.2. 乳腺癌细胞于2D培养下药敏试验

乳腺癌MDA-MB-231细胞使用含10%胎牛血清的L15培养基,于37℃和5% CO2培养箱中培养,常规消化传代。收集对数期生长的MDA-MB-231细胞,制成1 × 104 cells∙mL1细胞悬液,100 μL∙孔1均匀接种于96孔板。37℃、5% CO2培养箱培养24 h后,弃上清,分别各自加入不同浓度(12、24、48 μg∙mL1)的白藜芦醇、华蟾素,100 μL∙孔1,每个浓度设3个复孔。继续培养48 h后,每孔滴加10 μL CCK-8溶液,继续培养4 h,酶标仪测定450 nm处OD值。细胞存活率 = 加药处理OD值/未加药处理OD值 × 100%。

2.2.3. 3D生物打印构建乳腺癌模型

将1.2 g明胶粉末、1.6 g海藻酸钠粉末分别溶于10 ml 0.9% NaCl溶液中。每天70℃、30 min水浴一次,连续3天,对两种溶液进行灭菌。将MDA-MB-231细胞制成1 × 106 cells∙mL1细胞悬液,与明胶溶液和海藻酸钠溶液以1:2:2的体积比均匀混合为乳腺癌细胞/水凝胶,装入无菌打印筒,2000 r∙min1离心2 min消除气泡,37℃水浴加热5 min,连接内径0.17 mm的打印枪头,安装到3D生物打印机上。打印内部结构为网格状的结构体,网格结构为10 mm × 10 mm × 0.8 mm。该网状结构体由圆柱状微丝逐层交错堆积形成。料桶温度37℃,气压150 kPa,打印速度15 mm∙s1,无菌操作下挤压制备。将打印好的乳腺癌细胞/水凝胶结构体立即滴加5% CaCl2化学交联5 min,即为3D乳腺癌模型。PBS轻轻洗涤2~3次,放入24孔板中培养,每孔加1 mL培养基。

2.2.4. 3D条件下检测MDA-MB-231细胞的药物敏感性

上述3D乳腺癌模型培养1天后,吸掉培养基,分别各自加入不同工作浓度(12、24、48 μg∙mL1)的白藜芦醇、华蟾素,每孔加1 mL,每个浓度设3个复孔。继续培养48 h后,将Live/Dead双荧光染色剂4 μM钙黄绿素-AM和2 μM碘化丙啶混合并通过0.22 μm过滤器,均匀滴加于3D乳腺癌模型上,于37℃黑暗环境下孵育30 min,PBS洗涤3次。荧光倒置显微镜分别在488 nm (钙黄绿素-AM的激发波长)和543 nm (碘化丙啶的激发波长)处进行图像采集。每个样本选择三个随机位置,同一位置、深度拍摄细胞,绿色为活细胞,红色为死细胞,并合并活/死图像。细胞存活率 = (绿色染色细胞数/细胞总数) × 100%。

2.2.5. 统计分析

使用GraphPad Prism进行统计学处理。数据资料以 x ¯ ± s 表示,当P < 0.05时,认为差异有统计学意义。

3. 结果

3.1. 2D培养条件下2种中药分别对乳腺癌细胞增殖的影响

3.1.1. 白藜芦醇对2D培养乳腺癌细胞生长的影响

结果见图1。当白藜芦醇浓度12 μg∙mL1时,MDA-MB-231细胞已出现有一定程度的抑制。当浓度24 μg∙mL1时,细胞出现较为明显的抑制作用。当浓度48 μg∙mL1时,细胞大量死亡。

Figure 1. Effects of different concentrations of resveratrol on the survival of 2D cultured breast cancer MDA-MB-231 cells (100×)

图1. 不同浓度白藜芦醇对2D培养乳腺癌MDA-MB-231细胞存活的影响(100×)

3.1.2. 华蟾素对2D培养乳腺癌细胞生长的影响

结果见图2。当华蟾素浓度12 μg∙mL1时,MDA-MB-231细胞已被一定程度的抑制。当浓度24 μg∙mL1时,细胞出现较为明显的抑制。当浓度48 μg∙mL1时,绝大多数细胞已死亡。其结果与白藜芦醇作用情况相似。

Figure 2. Effects of different concentrations of cinobifagin on the survival of 2D cultured breast cancer MDA-MB-231 cells (100×)

图2. 不同浓度华蟾素对2D培养乳腺癌MDA-MB-231细胞存活的影响(100×)

3.2. 3D条件下2种中药对MDA-MB-231细胞生长的影响

3.2.1. 3D条件下白藜芦醇对MDA-MB-231细胞生长活性的影响

图3。在3D培养条件下不同浓度白藜芦醇对乳腺癌细胞–水凝胶结构体中MDA-MB-231细胞增殖活性的影响:随着白藜芦醇浓度的增加,MDA-MB-231细胞存活率逐渐下降。当白藜芦醇48 μg∙mL1时,MDA-MB-231活细胞数量明显减少,死细胞数量明显增多。

Figure 3. Effects of different concentrations of resveratrol on the survival of 3D cultured breast cancer MDA-MB-231 cells (100×)

图3. 不同浓度白藜芦醇对3D培养乳腺癌MDA-MB-231细胞存活的影响(100×)

结果表明,不同浓度的白藜芦醇在3D培养条件下对MDA-MB-231乳腺癌细胞的药敏性均显著低于2D培养条件下的药敏性。即与2D培养相比,3D细胞培养的耐药性显著增加。详见表1

Table 1. Effects of different concentrations of resveratrol on survival rate of MDA-MB-231 cells under 2D/3D culture conditions ( x ¯ ± s , n = 3)

表1. 2D/3D培养条件下不同浓度白藜芦醇对MDA-MB-231细胞存活率的影响( x ¯ ± s , n = 3)

与2D培养细胞存活率相比,aP < 0.05,bP < 0.001,cP < 0.0001。

3.2.2. 3D条件下华蟾素对MDA-MB-231细胞生长活性的影响

不同浓度华蟾素在3D培养条件下对乳腺癌细胞–水凝胶结构体中MDA-MB-231细胞增殖活性的影响:随着华蟾素浓度的递增,MDA-MB-231活细胞比例逐渐降低,死细胞比例逐渐增多。结果显示在华蟾素48 μg∙mL1时,MDA-MB-231活细胞数量明显减少,死细胞数量明显增多。见图4。结果与白藜芦醇作用相似。

Figure 4. Effects of different concentrations of cinobufagin on the survival of 3D cultured breast cancer MDA-MB-231 cells (100×)

图4. 不同浓度华蟾素对3D培养乳腺癌MDA-MB-231细胞存活的影响(100×)

与2D培养条件下相比,不同浓度的华蟾素在3D培养条件下对MDA-MB-231乳腺癌细胞的药物敏感性均显著低于2D培养。即与2D培养相比,3D细胞培养的耐药性显著增加。详见表2

Table 2. Effects of different concentrations of cinobufagin on survival rate of MDA-MB-231 cells under 2D/3D culture conditions ( x ¯ ± s , n = 3)

表2. 2D/3D培养条件下不同浓度华蟾素对MDA-MB-231细胞存活率的影响( x ¯ ± s , n = 3)

与2D培养细胞存活率相比,aP < 0.05,bP < 0.001,cP < 0.0001。

4. 讨论

乳腺癌是危害妇女健康的最常见的恶性肿瘤之一,近年来,发病率呈逐年上升的趋势。尤其在一些大中城市已经跃居女性恶性肿瘤发病率的首位,是目前女性最主要的癌症死亡原因之一 [20] [21] 。其中术后复发及转移性乳腺癌的疗效和预后都差强人意 [22] 。许多实验仍然沿用2D培养或动物模型进行。2D模型无法预测体内疗效,导致了较低的成功率和较高的成本。而动物体内模型往往过于复杂,无法研究特定的细胞–细胞间或细胞–细胞外基质间的相互作用。因此,研究人员越来越多地转向3D体外组织工程模型作为一种有用的折衷方案。3D细胞培养模型的技术进步填补了2D模型和体内模型之间的空白,提高了癌症药物发现的成功率 [23] 。3D打印提供了用活细胞创建复杂的3D结构能力。3D生物打印乳腺癌模型通过模拟3D复杂性,以及促进与生理相关的细胞–细胞和细胞–基质相互作用,比传统的2D模型有了显著的改进 [24] 。能更准确地再现人类实体肿瘤的结构和生物学特性。显示出与体内系统更接近的行为,在药物传递和癌症研究中都具有重要的作用 [25] ,成为体外2D细胞培养与体内实验之间的桥梁 [26] [27] ,是一种有前途和更可靠的新药开发工具。

不同于2D设置,在3D排列中癌细胞不是均匀地暴露在营养和氧气中 [28] ,因此,不是所有的肿瘤细胞都能获得足够的能量供应,这是造成生物状况不同的重要原因,例如癌症细胞在饥饿/缺氧条件下生长 [29] 。与2D相比,3D培养的细胞行为和基因表达发生了变化,与体内细胞具有更好的可比性。重要的是,建立模型主要是作为药物测试平台,能在抗癌治疗中起到效果。由于肿瘤细胞的异质性、多变性等特点,许多肿瘤患者对化疗药物不敏感,或者在化疗过程中逐渐对药物产生耐受性,从而导致肿瘤的复发或患者的死亡 [30] 。而且这种耐药性在化疗前是很难预知的,化疗失败和各种化疗方案的不断尝试,会导致患者身体受损、经济浪费和治疗时机的丧失 [31] 。3D生物打印似乎是尽可能地接近模拟体内肿瘤微环境的首选技术 [32] ,有望用于诊断、药物筛选和个性化医疗的精确工具 [33] 。3D生物打印水凝胶的优势在于能够更为准确地模仿细胞外基质 [34] ,以及具有高通量精确控制和确定多种类型细胞所需结构和位置的能力,具有竞争优势 [35] ,对个性化治疗和药物发现有着至关重要的作用 [36] 。

当前临床经验是采用手术以及放疗和化疗的方式进行治疗,虽然对抑制乳腺癌细胞的增生起到了一定的效果,但往往同时对患者的身体产生较大的毒副作用,给患者带来了极大的痛苦及严重的不良反应,甚至对正常细胞产生一定的杀伤力。中医药领域抗癌的研究异常活跃,中药抗癌作用具有多靶点、多环节、多效应的特点,同时性质比较温和,毒副作用低,能提高机体免疫力,不易产生耐药性 [37] 。中医药治疗或中西医结合治疗乳腺癌被越来越多的患者所接受,中医药治疗重视进行全身的整体治疗,对患者产生的副作用小,利于改善患者的生命质量 [38] 。中药或与放化疗相配合,具有提高患者生存质量、改善体质、缓解临床症状、减轻放化疗副作用,可在今后临床治疗乳腺癌中推广应用 [39] ,中西医结合治疗已成为重要的治疗手段。

5. 结论

实验结果显示,在3D/2D培养下,随着2种中药(白藜芦醇与华蟾素)浓度的升高,乳腺癌细胞存活率呈下降趋势;这2种中药在3D培养下对乳腺癌细胞的药物敏感性均显著低于2D培养。即与2D培养相比,乳腺癌细胞3D培养的耐药性显著增加。提示可能因为3D培养方法在能够维持细胞生长的前提下,允许细胞与基质之间的相互作用,可能更好地反映了肿瘤微环境,可能比单层细胞培养更类似于体内生长的形态。

综上所述,使用3D生物打印技术构建的MDA-MB-231乳腺癌细胞水凝胶结构体(3D乳腺癌模型)具有比2D培养更高的耐药性,细胞培养的空间维度及其与基质之间的相互作用对药物的耐药性评估有显著影响。相比于2D培养,使用3D生物打印技术构建的乳腺癌模型,可能更好地模拟体内乳腺癌肿瘤微环境,以提高临床前药物研究的预测能力,改善药物临床转化。

基金项目

浙江省中医药科技计划项目(项目编号2021ZB080,2022ZB223,2022ZB224,2023ZL358);杭州医学院基本科研业务费基础科研计划(项目编号KYYB202103);浙江省医药卫生科技计划项目(项目编号2021KY126,2021KY645,2022KY137,2022KY727,2022KY730)。

参考文献

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ahmad, A. (2019) Breast Cancer Statistics: Recent Trends. In: Ahmad, A., Ed., Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, Vol. 1152, Springer, Cham, 1-7.
https://doi.org/10.1007/978-3-030-20301-6_1
[2] Law, A.M.K., Fuente, L.R., Grundy, T.J., et al. (2021) Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Frontiers in Oncology, 11, Article 782766.
https://doi.org/10.3389/fonc.2021.782766
[3] Fröhlich, E. (2023) The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening. International Journal of Molecular Sciences, 24, Article No. 7116.
https://doi.org/10.3390/ijms24087116
[4] Sztankovics, D., Moldvai, D., Petővári, G., et al. (2023) 3D Bioprinting and the Revolution in Experimental Cancer Model Systems—A Review of Developing New Models and Experiences with in Vitro 3D Bioprinted Breast Cancer Tissue-Mimetic Structures. Pathology and Oncology Research, 29, Article ID: 1610996.
https://doi.org/10.3389/pore.2023.1610996
[5] Santiago, L., Volk, R.J., Checka, C.M., et al. (2021) Acceptability of 3D-Printed Breast Models and Their Impact on the Decisional Conflict of Breast Cancer Patients: A Feasibility Study. Journal of Surgical Oncology, 123, 1206-1214.
https://doi.org/10.1002/jso.26420
[6] Trivedi, P., Liu, R., Bi, H., et al. (2021) 3D Modeling of Epithelial Tumors—The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology. International Journal of Molecular Sciences, 22, Article No. 6225.
https://doi.org/10.3390/ijms22126225
[7] Roberts, S., Peyman, S. and Speirs, V. (2019) Current and Emerging 3D Models to Study Breast Cancer. In: Ahmad, A., Ed., Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, Vol. 1152, Springer, Cham, 413-427.
https://doi.org/10.1007/978-3-030-20301-6_22
[8] Mittal, S., Brown, N.J. and Holen, I. (2018) The Breast Tumor Microenvironment: Role in Cancer Development, Progression and Response to Therapy. Expert Review of Molecular Diagnostics, 18, 227-243.
https://doi.org/10.1080/14737159.2018.1439382
[9] 李孟, 梁则徐, 李冠男, 等. 中医中药治疗乳腺癌的研究进展[J]. 中医药学报, 2023, 51(2): 103-108.
[10] 张梦秋, 高静东. 中医中药治疗乳腺癌临床进展分析[J]. 中西医结合心血管病电子杂志, 2020, 8(6): 30-31.
[11] Jiang, H., Li, M., Du, K., et al. (2021) Traditional Chinese Medicine for Adjuvant Treatment of Breast Cancer: Taohong Siwu Decoction. Chinese Medicine, 16, Article No. 129.
https://doi.org/10.1186/s13020-021-00539-7
[12] Lu, Y., Ding, Y., Wei, J., et al. (2021) Anticancer Effects of Traditional Chinese Medicine on Epithelial-Mesenchymal Transition (EMT) in Breast Cancer: Cellular and Molecular Targets. European Journal of Pharmacology, 907, Article ID: 174275.
https://doi.org/10.1016/j.ejphar.2021.174275
[13] Yang, Z., Zhang, Q., Yu, L., et al. (2021) The Signaling Pathways and Targets of Traditional Chinese Medicine and Natural Medicine in Triple-Negative Breast Cancer. Journal of Ethnopharmacology, 264, Article ID: 113249.
https://doi.org/10.1016/j.jep.2020.113249
[14] Sun, Y., Zhou, Q.-M., Lu, Y.-Y., et al. (2019) Resveratrol Inhibits the Migration and Metastasis of MDA-MB-231 Human Breast Cancer by Reversing TGF-β1-Induced Epithelial-Mesenchymal Transition. Molecules, 24, Article No. 1131.
https://doi.org/10.3390/molecules24061131
[15] 王真, 陈立伟. 白藜芦醇抗肿瘤药理作用机制研究进展.药物评价研究, 2023, 46(2): 445-451.
[16] Wang, K., Chen, Q., Shao, Y., et al. (2021) Anticancer Activities of TCM and Their Active Components against Tumor Metastasis. Biomed Pharmacother, 133, Article ID: 111044.
https://doi.org/10.1016/j.biopha.2020.111044
[17] 闵思丹, 王宇. 华蟾素在抗肿瘤作用机制中的研究进展[J]. 中医药学报, 2022, 50(11): 96-101.
[18] Zhu, L., Chen, Y., Wei, C., et al. (2018) Anti-Proliferative and Pro-Apoptotic Effects of Cinobufagin on Human Breast Cancer MCF-7 Cells and Its Molecular Mechanism. Natural Product Research, 32, 493-497.
https://doi.org/10.1080/14786419.2017.1315575
[19] Bhuskute, H., Shende, P. and Prabhakar, B. (2021) 3d Printed Personalized Medicine for Cancer: Applications for Betterment of Diagnosis, Prognosis and Treatment. AAPS PharmSciTech, 23, Article No. 8.
https://doi.org/10.1208/s12249-021-02153-0
[20] Cheung, Y.T., Lee, H.H. and Chan, A. (2013) Exploring Clinical Determinants and Anxiety Symptom Domains among Asian Breast Cancer Patients. Supportive Care in Cancer, 21, 2185-2194.
https://doi.org/10.1007/s00520-013-1769-8
[21] Phi, X.A., Tagliafico, A., Houssami, N., et al. (2018) Digital Breast Tomosynthesis for Breast Cancer Screening and Diagnosis in Women with Dense Breasts—A Systematic Review and Meta-Analysis. BMC Cancer, 18, Article No. 380.
https://doi.org/10.1186/s12885-018-4263-3
[22] Furuta, S. and Bissell, M.J. (2016) Pathways Involved in Formation of Mammary Organoid Architecture Have Keys to Understanding Drug Resistance and to Discovery of Druggable Targets. Cold Spring Harbor Symposia on Quantitative Biology, 81, 207-217.
https://doi.org/10.1101/sqb.2016.81.030825
[23] Langer, E.M., Allen-Petersen, B.L., King, S.M., et al. (2019) Modeling Tumor Phenotypes in Vitro with Three-Di- mensional Bioprinting. Cell Reports, 26, 608-623.
https://doi.org/10.1016/j.celrep.2018.12.090
[24] Swaminathan, S., Hamid, Q., Sun, W., et al. (2019) Bioprinting of 3d Breast Epithelial Spheroids for Human Cancer Models. Biofabrication, 11, Article ID: 025003.
https://doi.org/10.1088/1758-5090/aafc49
[25] Souza, A.G., Silva, I.B.B., Campos-Fernandez, E., et al. (2018) Comparative Assay of 2D and 3D Cell Culture Models: Proliferation, Gene Expression and Anticancer Drug Response. Current Pharmaceutical Design, 24, 1689-1694.
https://doi.org/10.2174/1381612824666180404152304
[26] 关冀弛, 刘丹, 陈艳阁, 等. 肿瘤细胞三维培养技术研究进展[J]. 沈阳医学院学报, 2022, 24(6): 641-647.
[27] Hoarau-Véchot, J., Rafii, A., Touboul, C. and Pasquier, J. (2018) Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? International Journal of Molecular Sciences, 19, Article No. 181.
https://doi.org/10.3390/ijms19010181
[28] Li, Y. and Kilian, K.A. (2015) Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices. Advanced Healthcare Materials, 4, 2780-2796.
https://doi.org/10.1002/adhm.201500427
[29] Bahcecioglu, G., Basara, G., Ellis, B.W., Ren, X. and Zorlutuna, P. (2020) Breast Cancer Models: Engineering the Tumor Microenvironment. Acta Biomaterialia, 106, 1-21.
https://doi.org/10.1016/j.actbio.2020.02.006
[30] Lazzari, G., Nicolas, V., Matsusaki, M., et al. (2018) Multicellular Spheroid Based on a Triple CO-Culture: A Novel 3D Model to Mimic Pancreatic Tumor Complexity. Acta Biomaterialia, 78, 296-307.
https://doi.org/10.1016/j.actbio.2018.08.008
[31] Tomás-Bort, E., Kieler, M., Sharma, S., et al. (2020) 3D Approaches to Model the Tumor Microenvironment of Pancreatic Cancer. Theranostics, 10, 5074-5089.
https://doi.org/10.7150/thno.42441
[32] Sharifi, M., Bai, Q., Babadaei, M.M.N., et al. (2021) 3D Bioprinting of Engineered Breast Cancer Constructs for Personalized and Targeted Cancer Therapy. Journal of Controlled Release, 333, 91-106.
https://doi.org/10.1016/j.jconrel.2021.03.026
[33] Germain, N., Dhayer, M., Dekiouk, S. and Marchetti, P. (2022) Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine. International Journal of Molecular Sciences, 23, Article No. 3432.
https://doi.org/10.3390/ijms23073432
[34] Tiwari, A.P., Thorat, N.D., Pricl, S., et al. (2021) Bioink: A 3D-Bioprinting Tool for Anticancer Drug Discovery and Cancer Management. Drug Discovery Today, 26, 1574-1590.
https://doi.org/10.1016/j.drudis.2021.03.010
[35] Kang, Y., Datta, P., Shanmughapriya, S. and Ozbolat, I.T. (2020) 3D Bioprinting of Tumor Models for Cancer Research. ACS Applied Bio Materials, 3, 5552-5573.
https://doi.org/10.1021/acsabm.0c00791
[36] Kronemberger, G.S., Miranda, G.A.S.C., Tavares, R.S.N., et al. (2021) Recapitulating Tumorigenesis in Vitro: Opportunities and Challenges of 3D Bioprinting. Frontiers in Bioengineering and Biotechnology, 9, Article 682498.
https://doi.org/10.3389/fbioe.2021.682498
[37] Qi, F., Zhao, L., Zhou, A., et al. (2015) The Advantages of Using Traditional Chinese Medicine as an Adjunctive Therapy in the Whole Course of Cancer Treatment Instead of Only Terminal Stage of Cancer. BioScience Trends, 9, 16-34.
https://doi.org/10.5582/bst.2015.01019
[38] 吕威, 李帅杰, 严青, 等. 乳腺癌术后中西医结合治疗的研究进展[J]. 中国当代医药, 2022, 29(33): 28-31, 37.
[39] Liu, Y., Yang, S., Wang, K., et al. (2020) Cellular Senescence and Cancer: Focusing on Traditional Chinese Medicine and Natural Products. Cell Proliferation, 53, e12894.
https://doi.org/10.1111/cpr.12894