|
[1]
|
Brainin, M., Feigin, V.L., Norrving, B., Martins, S.C.O., Hankey, G.J. and Hachinski, V. (2020) Global Prevention of Stroke and Dementia: The WSO Declaration. The Lancet Neurology, 19, 487-488. [Google Scholar] [CrossRef]
|
|
[2]
|
Liu, L., Chen, W., Zhou, H., Duan, W., Li, S., Huo, X., et al. (2020) Chinese Stroke Association Guidelines for Clinical Management of Cerebrovascular Disorders: Executive Sum-mary and 2019 Update of Clinical Management of Ischaemic Cerebrovascular Diseases. Stroke and Vascular Neurology, 5, 159-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ma, J., Qiao, P., Li, Q., Wang, Y., Zhang, L., Yan, L.J. and Cai, Z. (2019) Vagus Nerve Stimulation as a Promising Adjunctive Treatment for Ischemic Stroke. Neurochemistry Internation-al, 131, Article ID: 104539. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yap, J.Y.Y., Keatch, C., Lambert, E., Woods, W., Stoddart, P.R. and Kameneva, T. (2020) Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Frontiers in Neuroscience, 14, Article No. 284. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, Y., Liu, J., Li, H., Yan, Z., Liu, X., Cao, J., et al. (2019) Transcutaneous Auricular Vagus Nerve Stimulation at 1 Hz Modulates Locus Coeruleus Activity and Resting State Functional Connectivity in Patients with Migraine: An fMRI Study. NeuroImage: Clinical, 24, Article ID: 101971. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Panebianco, M., Rigby, A., Weston, J. and Marson, A.G. (2015) Vagus Nerve Stimulation for Partial Seizures. Cochrane Database of Systematic Reviews, 2015, CD002896. [Google Scholar] [CrossRef]
|
|
[7]
|
Conway, C.R. and Xiong, W. (2018) The Mechanism of Action of Vagus Nerve Stimulation in Treatment-Resistant Depression. Psychiatric Clinics of North America, 41, 395-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Young, A.H., Juruena, M.F., De Zwaef, R. and Demyt-tenaere, K. (2020) Vagus Nerve Stimulation as Adjunctive Therapy in Patients with Difficult-to-Treat Depression (RESTORE-LIFE): Study Protocol Design and Rationale of a Real-World Post-Market Study. BMC Psychiatry, 20, Ar-ticle No. 471. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Khodaparast, N., Hays, S.A., Sloan, A.M., Hulsey, D.R., Ruiz, A., Pantoja, M., Rennaker, R.L. and Kilgard, M.P. (2013) Vagus Nerve Stimulation during Rehabil-itative Training Improves Forelimb Strength Following Ischemic Stroke. Neurobiology of Disease, 60, 80-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pruitt, D.T., Schmid, A.N., Kim, L.J., Abe, C.M., Trieu, J.L., Choua, C., et al. (2016) Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury. Journal of Neurotrauma, 33, 871-879. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Farrand, A.Q., Helke, K.L., Gregory, R.A., Gooz, M., Hinson, V.K. and Boger, H.A. (2017) Vagus Nerve Stimulation Improves Locomotion and Neuronal Populations in a Model of Par-kinson’s Disease. Brain Stimulation, 10, 1045-1054. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Vargas-Caballero, M., Warming, H., Walker, R., Holmes, C., Cruickshank, G. and Patel, B. (2022) Vagus Nerve Stimulation as a Potential Therapy in Early Alzheimer’s Disease: A Review. Frontiers in Human Neuroscience, 16, Article ID: 866434. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Butt, M.F., Albusoda, A., Farmer, A.D. and Aziz, Q. (2019) The Anatomical Basis for Transcutaneous Auricular Vagus Nerve Stimulation. Journal of Anatomy, 236, 588-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hilz, M.J. (2022) Transcutaneous Vagus Nerve Stimulation—A Brief In-troduction and Overview. Autonomic Neuroscience, 243, Article ID: 103038. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bonaz, B., Sinniger, V. and Pellissier, S. (2016) An-ti-Inflammatory Properties of the Vagus Nerve: Potential Therapeutic Implications of Vagus Nerve Stimulation. The Journal of Physiology, 594, 5781-5790. [Google Scholar] [CrossRef]
|
|
[16]
|
Hoover, D.B. (2017) Cholinergic Modulation of the Immune System Pre-sents New Approaches for Treating Inflammation. Pharmacology & Therapeutics, 179, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lu, X.-X., Hong, Z.-Q., Tan, Z., Sui, M.-H., Zhuang, Z.-Q., Liu, H.-H., et al. (2017) Nicotinic Acetylcholine Receptor Alpha7 Subunit Mediates Vagus Nerve Stimulation-Induced Neuroprotection in Acute Permanent Cerebral Ischemia by a7nAchR/JAK2 Pathway. Medical Science Monitor, 23, 6072-6081. [Google Scholar] [CrossRef]
|
|
[18]
|
Li, J., Zhang, Q., Li, S., Niu, L., Ma, J., Wen, L., Zhang, L. and Li, C. (2020) α7nAchR Mediates Transcutaneous Auricular Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Enhancing Axonal Plasticity. Neuroscience Letters, 730, Article ID: 135031. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, T.-T., Morais, A., Takizawa, T., Mulder, I., Simon, B.J., Chen, S.-P., et al. (2022) Efficacy Profile of Noninvasive Vagus Nerve Stimulation on Cortical Spreading Depression Susceptibility and the Tissue Response in a Rat Model. The Journal of Headache and Pain, 23, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jia, G.-W., Yu, L.-H., Liu, Y.-L., Wang, S.-R. and Ma, J.-X. (2023) Vagus Nerve Stimulation Is a Potential Treatment for Ischemic Stroke. Neural Regeneration Research, 18, 825-831. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, C. (2015) PPARγ Upregulation Induced by Vagus Nerve Stimulation Exerts Anti-Inflammatory Effect in Cerebral Ischemia/Reperfusion Rats. Medical Science Monitor, 21, 268-275. [Google Scholar] [CrossRef]
|
|
[22]
|
Jiang, X. andjelkovic, A.V., Zhua, L., Yang, T., Bennett, M.V.L., Chen, J., Keep, R.F. and Shi, Y. (2018) Blood-Brain Barrier Dysfunction and Recovery after Ischemic Stroke. Progress in Neurobiology, 163-164, 144-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., et al. (2009) Cellular Mechanisms of IL-17-Induced Blood-Brain Barrier Disruption. The FASEB Journal, 24, 1023-1034. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhao, X.-P., Zhao, Y., Qin, X.-Y., Wan, L.-Y. and Fan, X.-X. (2018) Non-Invasive Vagus Nerve Stimulation Protects against Cerebral Ischemia/Reperfusion Injury and Promotes Microglial M2 Polarization via Interleukin-17A Inhibition. Journal of Molecular Neuroscience, 67, 217-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yang, Y., Yang, L.Y., Orban, L., Cuylear, D., Thompson, J., Si-mon, B. and Yang, Y. (2018) Non-Invasive Vagus Nerve Stimulation Reduces Blood-Brain Barrier Disruption in a Rat Model of Ischemic Stroke. Brain Stimulation, 11, 689-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chen, X., He, X., Luo, S., Feng, Y., Liang, F., Shi, T., Huang, R., Pei, Z. and Li, Z. (2018) Vagus Nerve Stimulation Attenu-ates Cerebral Microinfarct and Colitis-Induced Cerebral Microinfarct Aggravation in Mice. Frontiers in Neurology, 9, Article No. 798. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kaya, M., Orhan, N., Karabacak, E., Bahceci, M.B., Arican, N., Ahishali, B., Kemikler, G., Uslu, A., et al. (2013) Vagus Nerve Stimulation Inhibits Seizure Activity and Protects Blood-Brain Barrier Integrity in Kindled Rats with Cortical Dysplasia. Life Sciences, 92, 289-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lopez, N.E., Krzyzaniak, M.J., Costantini, T.W., Putnam, J., Ha-geny, A.-M., Eliceiri, B., Coimbra, R. and Bansal, V. (2012) Vagal Nerve Stimulation Decreases Blood-Brain Barrier Disruption after Traumatic Brain Injury. Journal of Trauma and Acute Care Surgery, 72, 1562-1566. [Google Scholar] [CrossRef]
|
|
[29]
|
Liu, J., Wang, Y., Akamatsu, Y., Lee, C.C., Stetler, R.A., Lawton, M.T. and Yang, G.-Y. (2014) Vascular Remodeling after Ischemic Stroke: Mechanisms and Therapeutic Poten-tials. Progress in Neurobiology, 115, 138-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sun, Z., Baker, W., Hiraki, T. and Greenberg, J.H. (2012) The Effect of Right Vagus Nerve Stimulation on Focal Cerebral Ischemia: An Experimental Study in the Rat. Brain Stim-ulation, 5, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jiang, Y., Li, L., Ma, J., Zhang, L., Niu, F., Feng, T. and Li, C. (2016) Auricular Vagus Nerve Stimulation Promotes Functional Recovery and Enhances the Post-Ischemic Angiogenic Response in an Ischemia/Reperfusion Rat Model. Neurochemistry International, 97, 73-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ma, J., Zhang, L., He, G., Tan, X., Jin, X. and Li, C. (2016) Transcutaneous Auricular Vagus Nerve Stimulation Regulates Expression of Growth Differentiation Factor 11 and Ac-tivin-Like Kinase 5 in Cerebral Ischemia/Reperfusion Rats. Journal of the Neurological Sciences, 369, 27-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ma, J., Zhang, L., Niu, T., Ai, C., Jia, G., Jin, X., et al. (2018) Growth Differentiation Factor 11 Improves Neurobehavioral Recovery and Stimulates Angiogenesis in Rats Subjected to Cerebral Ischemia/Reperfusion. Brain Research Bulletin, 139, 38-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Katsimpardi, L., Litterman, N.K., Schein, P.A., Miller, C.M., Loffredo, F.S., Wojtkiewicz, G.R., et al. (2014) Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors. Science, 344, 630-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
McKenney, J.K., Weiss, S.W. and Folpe, A.L. (2000) CD31 Expres-sion in Intratumoral Macrophages. The American Journal of Surgical Pathology, 25, 1167-1173. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
de Melo, P.S., Parente, J., Rebello-Sanchez, I., Marduy, A., Gianlorenco, A.C., Kyung Kim, C., et al. (2023) Understanding the Neuroplastic Effects of Auricular Vagus Nerve Stimulation in Animal Models of Stroke: A Systematic Review and Meta-Analysis. Neurorehabilitation and Neural Re-pair, 37, 564-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Tache, Y., Jiang, Y., Li, L., Liu, B., Zhang, Y., Chen, Q. and Li, C. (2014) Vagus Nerve Stimulation Attenuates Cerebral Ischemia and Reperfusion Injury via Endogenous Cholinergic Pathway in Rat. PLOS ONE, 9, e102342. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, L., Ma, J., Jin, X., Jia, G., Jiang, Y. and Li, C. (2016) L-PGDS Mediates Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Suppress-ing the Apoptotic Response. Neurochemical Research, 42, 644-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, L.-N., Zhang, X.-W., Li, C.-Q., Guo, J., Chen, Y.-P. and Chen, S.-L. (2021) Vagal Nerve Stimulation Protects against Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting Autophagy and Apoptosis. Neuropsychiatric Disease and Treatment, 17, 905-913. [Google Scholar] [CrossRef]
|
|
[40]
|
Biggio, F., Gorini, G., Utzeri, C., Olla, P., Marrosu, F., Mocchetti, I. and Follesa, P. (2009) Chronic Vagus Nerve Stimulation Induces Neuronal Plasticity in the Rat Hippocampus. The In-ternational Journal of Neuropsychopharmacology, 12, 1209-1221. [Google Scholar] [CrossRef]
|
|
[41]
|
Meyers, E.C., Solorzano, B.R., James, J., Ganzer, P.D., Lai, E.S., Rennaker, R.L., Kilgard, M.P. and Hays, S.A. (2018) Vagus Nerve Stimulation Enhances Stable Plasticity and Generalization of Stroke Recovery. Stroke, 49, 710-717. [Google Scholar] [CrossRef]
|
|
[42]
|
Zuo, Y.T., Smith, D.C. and Jensen, R.A. (2007) Vagus Nerve Stimulation Potentiates Hippocampal LTP in Freely Moving Rats. Physiology & Behavior, 90, 583-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Hays, S.A., Rennaker, R.L. and Kilgard, M.P. (2013) Target-ing Plasticity with Vagus Nerve Stimulation to Treat Neurological Disease. In: Progress in Brain Research, Elsevier, Amsterdam, 275-299. [Google Scholar] [CrossRef]
|
|
[44]
|
Mouillet-Richard, S., Furmaga, H., Carreno, F.R. and Frazer, A. (2012) Vagal Nerve Stimulation Rapidly Activates Brain-Derived Neurotrophic Factor Receptor TrkB in Rat Brain. PLOS ONE, 7, e34844. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Loerwald, K.W., Borland, M.S., Rennaker, R.L., Hays, S.A. and Kilgard, M.P. (2018) The Interaction of Pulse Width and Current Intensity on the Extent of Cortical Plasticity Evoked by Vagus Nerve Stimulation. Brain Stimulation, 11, 271-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Vanneste, S., Martin, J., Rennaker, R.L. and Kilgard, M.P. (2017) Pairing Sound with Vagus Nerve Stimulation Modulates Cortical Synchrony and Phase Coherence in Tinnitus: An Ex-ploratory Retrospective Study. Scientific Reports, 7, Article No. 17345. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hays, S.A., Khodaparast, N., Hulsey, D.R., Ruiz, A., Sloan, A.M., Rennaker, R.L. and Kilgard, M.P. (2014) Vagus Nerve Stimulation during Rehabilitative Training Improves Func-tional Recovery after Intracerebral Hemorrhage. Stroke, 45, 3097-3100. [Google Scholar] [CrossRef]
|
|
[48]
|
Smith, D.C., Modglin, A.A., Roosevelt, R.W., Neese, S.L., Jensen, R.A., Browning, R.A. and Clough, A.R.W. (2005) Electrical Stimulation of the Vagus Nerve Enhances Cognitive and Motor Recovery Following Moderate Fluid Percussion Injury in the Rat. Journal of Neurotrauma, 22, 1485-1502. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Chunchai, T., Samniang, B., Sripetchwandee, J., Pin-tana, H., Pongkan, W., Kumfu, S., et al. (2016) Vagus Nerve Stimulation Exerts the Neuroprotective Effects in Obese-Insulin Resistant Rats, Leading to the Improvement of Cognitive Function. Scientific Reports, 6, Article No. 26866. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Harvey, R.L. and Nudo, R.J. (2014) Cortical Brain Stimulation: A Potential Therapeutic Agent for Upper Limb Motor Recovery Following Stroke. Topics in Stroke Rehabilitation, 14, 54-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Harris, J.E. and Eng, J.J. (2007) Paretic Upper-Limb Strength Best Explains Arm Activity in People with Stroke. Physical Therapy, 87, 88-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Porter, B.A., Khodaparast, N., Fayyaz, T., Cheung, R.J., Ahmed, S.S., Vrana, W.A., Rennaker, R.L. and Kilgard, M.P. (2011) Repeatedly Pairing Vagus Nerve Stimulation with a Movement Reorganizes Primary Motor Cortex. Cerebral Cortex, 22, 2365-2374. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Khodaparast, N., Hays, S.A., Sloan, A.M., Fayyaz, T., Hulsey, D.R., Rennaker, R.L. and Kilgard, M.P. (2014) Vagus Nerve Stimulation Delivered during Motor Rehabilitation Improves Re-covery in a Rat Model of Stroke. Neurorehabilitation and Neural Repair, 28, 698-706. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Khodaparast, N., Kilgard, M.P., Casavant, R., Ruiz, A., Qureshi, I., Ganzer, P.D., Rennaker, R.L. and Hays, S.A. (2015) Vagus Nerve Stimulation during Rehabilitative Training Im-proves Forelimb Recovery after Chronic Ischemic Stroke in Rats. Neurorehabilitation and Neural Repair, 30, 676-684. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Hays, S.A., Ruiz, A., Bethea, T., Khodaparast, N., Carmel, J.B., Rennaker, R.L. and Kilgard, M.P. (2016) Vagus Nerve Stimulation during Rehabilitative Training Enhances Recovery of Forelimb Function after Ischemic Stroke in Aged Rats. Neurobiology of Aging, 43, 111-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Dawson, J., Pierce, D., Dixit, A., Kimberley, T.J., Rob-ertson, M., Tarver, B., Hilmi, O., et al. (2016) Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired with Upper-Limb Rehabilitation after Ischemic Stroke. Stroke, 47, 143-150. [Google Scholar] [CrossRef]
|
|
[57]
|
Kimberley, T.J., Pierce, D., Prudente, C.N., Francisco, G.E., Yozbatiran, N., Smith, P., et al. (2018) Vagus Nerve Stimulation Paired with Upper Limb Rehabilitation after Chronic Stroke. Stroke, 49, 2789-2792. [Google Scholar] [CrossRef]
|
|
[58]
|
Dawson, J., Engineer, N.D., Prudente, C.N., Pierce, D., Francisco, G., Yozbatiran, N., et al. (2020) Vagus Nerve Stimulation Paired with Upper-Limb Rehabilitation after Stroke: One-Year Follow-Up. Neurorehabilitation and Neural Repair, 34, 609-615. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Jesse Dawson, C. (2021) Vagus Nerve Stimulation Paired with Rehabilitation for Upper Limb Motor Function after Ischaemic Stroke (VNS-REHAB): A Randomised, Blinded, Pivotal, Device Trial. The Lancet, 397, 1545-1553. [Google Scholar] [CrossRef]
|
|
[60]
|
Capone, F., Miccinilli, S., Pellegrino, G., Zollo, L., Simo-netti, D., Bressi, F., et al. (2017) Transcutaneous Vagus Nerve Stimulation Combined with Robotic Rehabilitation Im-proves Upper Limb Function after Stroke. Neural Plasticity, 2017, Article ID: 7876507. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Redgrave, J.N., Moore, L., Oyekunle, T., Ebrahim, M., Falidas, K., Snowdon, N., Ali, A. and Majid, A. (2018) Transcutaneous Auricular Vagus Nerve Stimulation with Concurrent Upper Limb Repetitive Task Practice for Poststroke Motor Recovery: A Pilot Study. Journal of Stroke and Cerebrovascular Diseases, 27, 1998-2005. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wu, D., Ma, J., Zhang, L., Wang, S., Tan, B. and Jia, G. (2020) Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study. Neural Plasticity, 2020, Article ID: 8841752. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Connell, L., Lincoln, N. and Radford, K. (2008) Somatosen-sory Impairment after Stroke: Frequency of Different Deficits and Their Recovery. Clinical Rehabilitation, 22, 758-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Sullivan, J.E. and Hedman, L.D. (2015) Sensory Dysfunction Following Stroke: Incidence, Significance, Examination, and Intervention. Topics in Stroke Rehabilitation, 15, 200-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Tyson, S.F., Hanley, M., Chillala, J., Selley, A.B. and Tallis, R.C. (2007) Sensory Loss in Hospital-Admitted People with Stroke: Characteristics, Associated Factors, and Relationship with Func-tion. Neurorehabilitation and Neural Repair, 22, 166-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Kilgard, M.P., Rennaker, R.L., Alexander, J. and Dawson, J. (2018) Vagus Nerve Stimulation Paired with Tactile Training Improved Sensory Function in a Chronic Stroke Patient. NeuroRehabilitation, 42, 159-165. [Google Scholar] [CrossRef]
|
|
[67]
|
Darrow, M.J., Mian, T.M., Torres, M., Haider, Z., Danaphongse, T., Rennaker, R.L., Kilgard, M.P. and Hays, S.A. (2020) Restoration of Somatosensory Function by Pairing Vagus Nerve Stimulation with Tactile Rehabilitation. Annals of Neurology, 87, 194-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Baig, S.S., Falidas, K., Laud, P.J., Snowdon, N., Farooq, M.U., Ali, A., Majid, A. and Redgrave, J.N. (2019) Transcutaneous Auricular Vagus Nerve Stimulation with Upper Limb Repetitive Task Practice May Improve Sensory Recovery in Chronic Stroke. Journal of Stroke and Cerebrovascular Diseases, 28, Article ID: 104348. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Niu, L.-C., Li, J.-N., Xie, C.-C., Li, C.-Q., Zhang, G.-F., Tang, H., et al. (2022) Efficacy and Safety of Transcutaneous Auricular Vagus Nerve Stimulation Combined with Conventional Rehabilitation Training in Acute Stroke Patients: A Randomized Controlled Trial Conducted for 1 Year In-volving 60 Patients. Neural Regeneration Research, 17, 1809-1813. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Sucholeiki, R., Alsaadi, T.M., Morris III, G.L., Ulmer, J.L., Biswal, B. and Mueller, W.M. (2002) fMRI in Patients Implanted with a Vagal Nerve Stimulator. Seizure, 11, 157-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Colzato, L.S., Ritter, S.M. and Steenbergen, L. (2018) Transcutaneous Vagus Nerve Stimulation (tVNS) Enhances Divergent Thinking. Neuropsychologia, 111, 72-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
McIntire, L.K., McKinley, R.A., Goodyear, C., McIn-tire, J.P. and Brown, R.D. (2021) Cervical Transcutaneous Vagal Nerve Stimulation (ctVNS) Improves Human Cogni-tive Performance under Sleep Deprivation Stress. Communications Biology, 4, Article No. 634. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Kar, S.K. and Sarkar, S. (2016) Neuro-Stimulation Techniques for the Management of Anxiety Disorders: An Update. Clinical Psychopharmacology and Neuroscience, 14, 330-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Carreno, F.R. and Frazer, A. (2017) Vagal Nerve Stimulation for Treatment-Resistant Depression. Neurotherapeutics, 14, 716-727. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Das, J. and Rajanikant, G.K. (2018) Post Stroke Depression: The Sequelae of Cerebral Stroke. Neuroscience & Biobehavioral Reviews, 90, 104-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Yesiltepe, M., Cimen, B. and Sara, Y. (2022) Effects of Chronic Vagal Nerve Stimulation in the Treatment of β-Amyloid-Induced Neuropsychiatric Symptoms. European Jour-nal of Pharmacology, 931, Article ID: 175179. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
George, M.S., Ward, H.E., Ninan, P.T., Pollack, M., Nahas, Z. anderson, B., Kose, S., et al. (2008) A Pilot Study of Vagus Nerve Stimulation (VNS) for Treatment-Resistant Anxiety Disorders. Brain Stimulation, 1, 112-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Furmaga, H., Shah, A. and Frazer, A. (2011) Serotonergic and Noradrenergic Pathways Are Required for the Anxiolytic-Like and Antidepressant-Like Behavioral Effects of Repeated Vagal Nerve Stimulation in Rats. Biological Psychiatry, 70, 937-945. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Shah, A.P., Carreno, F.R., Wu, H., Chung, Y.A. and Frazer, A. (2016) Role of TrkB in the Anxiolytic-Like and Antidepressant-Like Effects of Vagal Nerve Stimulation: Comparison with Desipramine. Neuroscience, 322, 273-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Noble, L.J., Gonzalez, I.J., Meruva, V.B., Callahan, K.A., Belfort, B.D., Ramanathan, K.R., et al. (2017) Effects of Vagus Nerve Stimulation on Extinction of Conditioned Fear and Post-Traumatic Stress Disorder Symptoms in Rats. Translational Psychiatry, 7, e1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Austelle, C.W., O’Leary, G.H., Thompson, S., Gruber, E., Kahn, A., Manett, A.J., Short, B. and Badran, B.W. (2022) A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodulation: Technology at the Neural Interface, 25, 309-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Kamel, H., Arnold, M., Liesirova, K., Broeg-Morvay, A., Meisterernst, J., Schlager, M., et al. (2016) Dysphagia in Acute Stroke: Incidence, Burden and Impact on Clinical Outcome. PLOS ONE, 11, e0148424. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Cohen, D.L., Roffe, C., Beavan, J., Blackett, B., Fairfield, C.A., Hamdy, S., et al. (2016) Post-Stroke Dysphagia: A Review and Design Considerations for Future Trials. International Journal of Stroke, 11, 399-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Long, L., Zang, Q., Jia, G., Fan, M., Zhang, L., Qi, Y., Liu, Y., Yu, L. and Wang, S. (2022) Transcutaneous Auricular Vagus Nerve Stimulation Promotes White Matter Repair and Im-proves Dysphagia Symptoms in Cerebral Ischemia Model Rats. Frontiers in Behavioral Neuroscience, 16, Article ID: 811419. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Wang, Y., He, Y., Jiang, L., Chen, X., Zou, F., Yin, Y., Li, J., Li, C., Zhang, G., Ma, J. and Niu, L. (2022) Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Post-Stroke Dysphagia. Journal of Neurology, 270, 995-1003. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Kahlow, H. and Olivecrona, M. (2013) Complications of Vagal Nerve Stimulation for Drug-Resistant Epilepsy. Seizure, 22, 827-833. [Google Scholar] [CrossRef] [PubMed]
|