茶的生物活性成分对血管内皮功能障碍的影响
Effects of Bioactive Components of Tea on Vascular Endothelial Dysfunction
DOI: 10.12677/ACM.2023.13102346, PDF, HTML, XML, 下载: 230  浏览: 330 
作者: 呼 瑞, 王 婷, 翟佳诚:西安医学院研究生工作部,陕西 西安;刘富强, 王军奎:陕西省人民医院心血管内科,陕西 西安
关键词: 血管内皮功能障碍茶的生物活性成分NO生物利用度肠道菌群Vascular Endothelial Dysfunction Tea Bioactive Components of Tea NO Bioavailability Intestinal Flora
摘要: 近年来,研究发现血管内皮功能障碍参与心血管疾病(Cardiovascular disease, CVD)的发生发展,因此对血管内皮功能障碍进行干预治疗已经成为防治CVD的重要环节。茶依据发酵程度分为绿茶、红茶、黑茶,其生物活性成分主要包括茶多酚、茶多糖、茶色素,大量研究表明,茶的生物活性成分可改善血管内皮功能障碍。本综述首次系统、全面地阐述了茶的生物活性成分通过增加NO的生物利用度对血管内皮功能障碍的影响,以及通过茶调节肠道菌群改善血管内皮功能障碍已成为一种潜在的治疗靶点。
Abstract: In recent years, it has been found that vascular endothelial dysfunction is involved in the develop-ment of cardiovascular disease (CVD), therefore, intervention treatment for vascular endothelial dysfunction has become an important part of the prevention and treatment of CVD. Tea is catego-rized into green tea, black tea, and dark tea according to the degree of fermentation, and its bioac-tive components mainly include tea polyphenols, tea polysaccharides, and tea pigments, which have been shown in numerous studies to improve vascular endothelial dysfunction. This review is the first to systematically and comprehensively describe the effects of tea bioactive components on vascular endothelial dysfunction by increasing NO bioavailability, and the improvement of vascular endothelial dysfunction through the regulation of intestinal flora by tea has become a potential therapeutic target.
文章引用:呼瑞, 王婷, 翟佳诚, 刘富强, 王军奎. 茶的生物活性成分对血管内皮功能障碍的影响[J]. 临床医学进展, 2023, 13(10): 16760-16765. https://doi.org/10.12677/ACM.2023.13102346

1. 引言

健康的血管内皮功能是维系心血管系统稳态的基础,当血管内皮由生理状态转向功能失调状态,通常称为血管内皮功能障碍 [1] 。目前越来越多的证据表明,血管内皮功能障碍是导致CVD发病的重要步骤,多发生在CVD的早期及可治疗阶段,是心血管事件的独立预测因子 [2] 。Diana [3] 等发现保护血管内皮或逆转血管内皮功能障碍是降低心血管疾病风险的一个重要目标。近年来,人们对植物性饮食在预防和管理CVD方面的有益作用越来越感兴趣 [4] 。几个世纪以来,基于茶类产品的广泛以及频繁消费,茶的功能因此受到了广泛的关注。目前国内外大量研究显示,茶可以改善血管内皮功能障碍,这可限制动脉粥样硬化和CVD的发展 [5] 。因此,本文首次系统、全面地阐述了绿茶、红茶、黑茶对血管内皮细胞的影响,并为防治CVD提供潜在的治疗靶点。

2. 血管内皮功能障碍

血管内皮分泌的活性因子包括内皮源性收缩因子和舒张因子,它们之间存在一个平衡状态,当这种平衡状态失调时就被认为是血管内皮功能障碍,血管内皮功能障碍的特征性表现主要为血管舒张功能减弱、血栓形成和促炎状态 [1] 。血管收缩因子包括了内皮素1、血栓素A2,血管舒张因子包括了一氧化氮(Nitric Oxide, NO)、前列环素、内皮衍生超级化因子等,其中起重要功能的是NO,NO生物利用度降低是导致血管内皮功能障碍的首要原因 [6] 。氧化应激、炎症及剪应力会降低NO生物利用度,导致血管内皮功能障碍,参与了高胆固醇血症、糖尿病、高血压、动脉粥样硬化、心力衰竭等疾病的发生发展 [2] [7] [8] 。

3. 茶的品种及其生物活性成分

中国是茶的原产地,依据生产的工艺和发酵程度分为绿茶(未发酵茶)、红茶(完全发酵茶)、黑茶(后发酵茶)及其他种类 [9] 。大量研究证实,茶在CVD、肥胖、代谢综合征、癌症等多种疾病的预防和管理上可以达到良好的效果 [10] [11] 。茶中含有多种生物活性成分,主要包括茶多酚、茶多糖、茶色素 [9] 。绿茶的主要生物活性成分是儿茶素,占总茶多酚的30%~40% [9] 。儿茶素主要包括8种多酚类化合物,其中表没食子儿茶素没食子酸酯(Epigallocatechin-3-gallate, EGCG)为主要儿茶素,含量可高达总儿茶素的60%~65% [12] 。红茶是充分发酵的茶叶,其发酵过程中主要的步骤是氧化反应,将儿茶素类物质通过氧化缩合作用转化成茶色素,如茶黄素(Theaflavin, TF)和茶红素(Thearubigins, TRs),与绿茶的主要活性成分相比较,TRs是红茶的主要活性成分,占红茶成分的20%左右,其次是TF,占红茶成分的2%~6% [9] 。而黑茶不同于绿茶和红茶,它是一种特殊的后发酵茶,涉及固态微生物发酵,其发酵过程被认为是形成黑茶独特的风味品质和有益健康的关键,依据我国黑茶原料的原产地和制作方法,可将黑茶大致分为茯砖茶、普洱茶、六堡茶、青砖茶、黑砖茶、康砖茶、天尖茶等 [12] 。在黑茶中儿茶素衍生物的含量大约占10%,茶褐素(Theabrownin, TB)是TF、TRs进一步氧化、缩合及聚合形成的茶色素,经过固态微生物发酵后,TB的含量显著上升 [9] 。

4. 茶改善血管内皮功能障碍的途径

4.1. 茶的生物活性成分

值得我们关注的是,许多研究表明茶的生物活性成分与CVD死亡率降低、血流介导的血管扩张的增加有密切的关系 [13] (如图1)。

注:TRs,茶红素;TF,茶黄素;Vascular endothelial cell,血管内皮细胞;NO,一氧化氮;eNOS,内皮型NO合酶;miR-24,微小RNA-24;NRF2,核因子红系2-相关因子2;HO-1,血红素加氧酶-1;EGCG,表没食子儿茶素没食子酸酯;ox-LDL,低密度脂蛋白;Jagged-1,Notch配体蛋白;Notch,跨膜受体蛋白;AKT,丝氨酸–苏氨酸激酶;CaMKII,依赖钙调蛋白II;AMPK,腺苷酸活化蛋白激酶;PI3K,磷脂酰肌醇3激酶;TB,茶褐素。

Figure 1. Pathways of green, black, and dark teas to improve vascular endothelial dysfunction

图1. 绿茶、红茶、黑茶改善血管内皮功能障碍的途径

4.1.1. 绿茶的生物活性成分对血管内皮功能障碍的作用

绿茶中的EGCG可通过多种途径改善血管内皮功能障碍:① EGCG可通过清除活性氧和丙二醛、降低非对称二甲基精氨酸的水平来保护低密度脂蛋白引起的血管内皮功能障碍 [14] 。② EGCG可通过参与激活多种信号通路减轻血管内皮功能障碍:Yin等人 [15] 认为EGCG通过Notch配体蛋白(Jagged-1)/跨膜受体蛋白(Notch)信号通路可减轻低密度脂蛋白诱导的血管内皮功能障碍;Guo等 [16] 认为EGCG激活瞬时受体潜能香草酸1(TRPV1)会增加Ca2+的内流,进一步激活丝氨酸–苏氨酸激酶(AKT)-依赖钙调蛋白II (CaMKII)-腺苷酸活化蛋白激酶(AMPK)通路,促进了内皮型NO合酶(endothelial Nitric oxidesynthase, eNOS)的激活、增加了NO的生物利用度,最终改善了血管内皮功能障碍。Zhang等人 [17] 表明EGCG通过激活磷脂酰肌醇3激酶(PI3K)/AKT/eNOS信号通路来减轻高糖诱导的人脐静脉内皮细胞凋亡和血管内皮功能障碍。

4.1.2. 红茶的生物活性成分对血管内皮功能障碍的作用

红茶虽然儿茶素的含量不及绿茶,但红茶中含有丰富的茶色素(TRs、TF),可以在一定程度上弥补儿茶素的不足。Lorenz等 [18] 研究发现,TRs剂量依赖性地诱导牛主动脉内皮细胞中eNOS的活性增强,导致NO生物利用度增加和明显的血管舒张。Leung等 [19] 研究表明,红茶中的TF可降低去卵巢大鼠的血清总胆固醇、ROS和还原性烟酰胺腺嘌呤二核苷酸氧化酶的水平,提高eNOS的水平,提高了NO生物利用度,改善去卵巢大鼠的血管内皮功能障碍。TF亦可通过microRNA-24 (miR-24)显著上调核因子红系2-相关因子2 (Nuclear factor erythroid-2 related factor 2 NRF2)/血红素加氧酶1 (Heme oxygenase 1, HO-1)信号通路减轻氧化应激、提高NO水平、改善血管内皮功能障碍、控制动脉粥样硬化的发展 [20] 。

4.1.3. 黑茶的生物活性成分对血管内皮功能障碍的作用

黑茶中的TB、茶多糖、益生菌(如冠突散囊菌)具有抗氧化应激、降脂、抗动脉粥样硬化等作用,可改善血管内皮功能障碍 [21] 。茯砖茶被认为是黑茶中最具特色的品种,因为茯砖茶在经过微生物发酵后会经历一种特殊的发酵过程,称为“发花”,产生一种益生菌–冠突散囊菌 [12] [22] 。冠突散囊菌分泌一种名叫阿魏酸酯酶的胞外酶,阿魏酸酯酶经过水解可释放出游离的阿魏酸,大量临床及药理研究证明阿魏酸具有抗氧化、抗血栓、降血脂及增强免疫功能等功效 [23] 。

4.2. 调节肠道菌群

改善血管内皮功能障碍不仅可以通过茶的生物活性成分,也可以间接通过肠道菌群及其微生物代谢产物。多酚类物质(茶多酚)可影响肠道菌群,从而影响与相关靶点作用的代谢产物,因此针对肠道菌群是血管内皮功能障碍的一种潜在的治疗选择 [24] 。在一项大鼠研究中,肠道菌群失调反映在三甲胺-N-氧化物升高,导致氧化应激和血管炎症、eNOS被抑制、NO生物利用度降低和血管内皮功能障碍,而茶中的多酚类物质可以调节肠道菌群,影响三甲胺-N-氧化物的产生,影响血管内皮功能 [24] 。近期,张博等 [25] 发现经过黑茶(茯砖茶)中冠突散囊菌处理的小鼠,肠道菌群中厚壁菌门/拟杆菌门的比例降低,阿克曼氏菌、乳酸杆菌和双歧杆菌的丰度增加,从而使得短链脂肪酸的水平增加。短链脂肪酸是肠道菌群的主要代谢产物之一,伊纳基·罗伯斯–维拉 [26] 研究证实,短链脂肪酸可通过增加NO的生物利用度、降低细胞间黏附分子的表达来改善血管紧张素II诱导的血管内皮功能障碍。

5. 总结与展望

总的来说,血管内皮功能障碍是心血管疾病的初始、可逆步骤,它通常是由氧化应激、低密度脂蛋白、同型半胱氨酸、高血糖和炎症因子等多种因素诱导的,但主要原因是NO生物利用度降低。大量的实验研究证实,茶的生物活性成分在改善血管内皮功能障碍方面具有很大的潜力。绿茶中起主要作用的生物活性成分是儿茶素,尤其是EGCG,它通过减轻氧化应激和激活多种信号通路来改善血管内皮功能障碍。红茶中儿茶素的含量虽不及绿茶,但红茶中具有丰富的TRs和TF,在保护血管内皮功能方面与绿茶同等有效。黑茶经过固态微生物发酵后,TB的含量升高,TB、益生菌被证实具有抗氧化应激的作用。本文首次系统地阐述了不同品种的茶通过增加NO的生物利用度从而达到改善血管内皮功能的作用。

近年来,有研究发现调节肠道菌群是改善血管内皮功能障碍的一个潜在靶点,但目前影响机制还有待进一步研究。因此,未来需要通过宏基因组学及代谢组学分析茶对肠道菌群及代谢产物的影响,并明确某些肠道菌群及代谢产物是否有助于改善血管内皮功能障碍。

参考文献

[1] Wang, L., Cheng, C.K., Yi, M., et al. (2022) Targeting Endothelial Dysfunction and Inflammation. Journal of Molecular and Cellular Cardiology, 168, 58-67.
https://doi.org/10.1016/j.yjmcc.2022.04.011
[2] Poredos, P., Poredos, A.V. and Gregoric, I. (2021) Endothelial Dysfunction and Its Clinical Implications. Angiology, 72, 604-615.
https://doi.org/10.1177/0003319720987752
[3] Medina-Leyte, D.J., Zepeda-Garcia, O., Dominguez-Perez, M., et al. (2021) Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. International Journal of Molecular Sciences, 22, Article 3850.
https://doi.org/10.3390/ijms22083850
[4] Ditano-Vazquez, P., Torres-Pena, J.D., Galeano-Valle, F., et al. (2019) The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients, 11, Article 2833.
https://doi.org/10.3390/nu11112833
[5] Pang, J., Zhang, Z., Zheng, T.Z., et al. (2016) Green tea Consumption and Risk of Cardiovascular and Ischemic Related Diseases: A Meta-Analysis. International Journal of Cardiology, 202, 967-974.
https://doi.org/10.1016/j.ijcard.2014.12.176
[6] Vanhoutte, P.M., Shimokawa, H., Feletou, M., et al. (2017) En-dothelial Dysfunction and Vascular Disease—A 30th Anniversary Update. Acta Physiologica, 219, 22-96.
https://doi.org/10.1111/apha.12646
[7] Bai, B., Yang, Y., Wang, Q., et al. (2020) NLRP3 Inflammasome in En-dothelial Dysfunction. Cell Death & Disease, 11, Article No. 776.
https://doi.org/10.1038/s41419-020-02985-x
[8] Poznyak, A.V., Kashirskikh, D.A., Sukhorukov, V.N., et al. (2022) Cholesterol Transport Dysfunction and Its Involvement in Atherogenesis. International Journal of Molecular Sciences, 23, Article 1332.
https://doi.org/10.3390/ijms23031332
[9] Huang, Y., Xing, K., Qiu, L., et al. (2022) Therapeutic Implications of Functional Tea Ingredients for Ameliorating Inflammatory Bowel Disease: A Focused Review. Critical Reviews in Food Science and Nutrition, 62, 5307-5321.
https://doi.org/10.1080/10408398.2021.1884532
[10] Cao, S.Y., Zhao, C.N., Gan, R.Y., et al. (2019) Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Up-dated Review. Antioxidants, 8, Article 166.
https://doi.org/10.3390/antiox8060166
[11] Xu, X.Y., Zhao, C.N., Cao, S.Y., et al. (2020) Effects and Mecha-nisms of Tea for the Prevention and Management of Cancers: An Updated Review. Critical Reviews in Food Science and Nutrition, 60, 1693-1705.
https://doi.org/10.1080/10408398.2019.1588223
[12] Zhu, M.Z., Li, N., Zhou, F., et al. (2020) Microbial Biocon-version of the Chemical Components in Dark Tea. Food Chemistry, 312, Article ID: 126043.
https://doi.org/10.1016/j.foodchem.2019.126043
[13] Li, Y., Xu, Y., Le Roy, C., et al. (2023) Interplay between the (Poly) Phenol Metabolome, Gut Microbiome, and Cardiovascular Health in Women: A Cross-Sectional Study from the TwinsUK Cohort. Nutrients, 15, Article 1900.
https://doi.org/10.3390/nu15081900
[14] Yamagata, K. (2020) Protective Effect of Epigallocatechin Gallate on En-dothelial Disorders in Atherosclerosis. Journal of Cardiovascular Pharmacology, 75, 292-298.
https://doi.org/10.1097/FJC.0000000000000792
[15] Yin, J., Huang, F., Yi, Y., et al. (2016) EGCG Attenuates Atherosclerosis through the JAGGED-1/Notch Pathway. International Journal of Molecular Medicine, 37, 398-406.
https://doi.org/10.3892/ijmm.2015.2422
[16] Zhai, K., Liskova, A., Kubatka, P., et al. (2020) Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. International Journal of Molecular Sciences, 21, Article 4177.
https://doi.org/10.3390/ijms21114177
[17] Zhang, Z. and Zhang, D. (2020) (-)-Epigallocatechin-3-Gallate Inhibits eNOS Uncoupling and Alleviates High Glucose-Induced Dysfunction and Apoptosis of Human Umbilical Vein Endothelial Cells by PI3K/AKT/eNOS Pathway. Diabetes, Meta-bolic Syndrome and Obesity, 13, 2495-2504.
https://doi.org/10.2147/DMSO.S260901
[18] Lorenz, M., Urban, J., Engelhardt, U., et al. (2009) Green and Black Tea Are Equally Potent Stimuli of NO Production and Vasodilation: New Insights into Tea Ingredients Involved. Basic Research in Cardiology, 104, 100-110.
https://doi.org/10.1007/s00395-008-0759-3
[19] Leung, F.P., Yung, L.M., Ngai, C.Y., et al. (2016) Chronic Black Tea Extract Consumption Improves Endothelial Function in Ovariectomized Rats. European Journal of Nutrition, 55, 1963-1972.
https://doi.org/10.1007/s00394-015-1012-0
[20] Zeng, J., Deng, Z., Zou, Y., et al. (2021) Theaflavin Alleviates Oxidative Injury and Atherosclerosis Progress via Activating microRNA-24-Mediated Nrf2/HO-1 Signal. Phytotherapy Research, 35, 3418-3427.
https://doi.org/10.1002/ptr.7064
[21] Shi, J., Ma, W., Wang, C., et al. (2021) Impact of Various Microbi-al-Fermented Methods on the Chemical Profile of Dark Tea Using a Single Raw Tea Material. Journal of Agricultural and Food Chemistry, 69, 4210-4222.
https://doi.org/10.1021/acs.jafc.1c00598
[22] Song, F., Zhang, K., Yang, J., et al. (2023) The Hypolipidemic Characteristics of a Methanol Extract of Fermented Green Tea and Spore of Eurotium cristatum SXHBTBU1934 in Golden Hamsters. Nutrients, 15, Article 1329.
https://doi.org/10.3390/nu15061329
[23] Dinicolantonio, J.J., Mccarty, M.F., Assanga, S.I., et al. (2022) Ferulic Acid and Berberine, via Sirt1 and AMPK, May Act as Cell Cleansing Promoters of Healthy Longevity. Open Heart, 9, e001801.
https://doi.org/10.1136/openhrt-2021-001801
[24] De Bruyne, T., Steenput, B., Roth, L., et al. (2019) Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabo-lism. Nutrients, 11, Article 578.
https://doi.org/10.3390/nu11030578
[25] Zhang, B., Ren, D., Zhao, A., et al. (2022) Eurotium Cristatum Reduces Obesity by Alleviating Gut Microbiota Dysbiosis and Modulating Lipid and Energy Metabolism. Journal of the Science of Food and Agriculture, 102, 7039-7051.
https://doi.org/10.1002/jsfa.12065
[26] Robles-Vera, I., Toral, M., De La Visitacion, N., et al. (2020) Protective Effects of Short-Chain Fatty Acids on Endothelial Dysfunction Induced by Angiotensin II. Frontiers in Physiology, 11, Article 277.
https://doi.org/10.3389/fphys.2020.00277