内皮糖萼在脓毒血症中的研究进展
Research Progress of Endothelial Glycocalyx in Sepsis
DOI: 10.12677/ACM.2023.13102361, PDF, HTML, XML, 下载: 178  浏览: 292 
作者: 何 锋*:承德医学院研究生学院,河北 承德;刘秀娟*#:秦皇岛市第一医院重症医学科一病区,河北 秦皇岛
关键词: 糖萼脓毒血症内皮损伤Glycocalyx Sepsis Endothelial Injury
摘要: 脓毒血症指局部器官或组织感染后细菌、毒素入血造成的多器官功能障碍,是一种由感染引起的全身炎症反应综合征(systemic inflammatory response syndrome, SIRS),其病死率高达30%~50%。糖萼作为血管内皮的组成,是覆盖于血管内皮细胞管腔侧表面的多绒毛状结构,它是炎症反应时最早被损伤的部位之一。研究内皮糖萼是诊治脓毒血症不可或缺的物质。这篇综述是对脓毒血症中糖萼研究进展的总结。
Abstract: Sepsis refers to the multiple organ dysfunction caused by the blood inflow of bacteria and toxins af-ter local organ or tissue infection. It is a systemic inflammatory response syndrome (SIRS) caused by infection, and its mortality rate is as high as 30%~50%. Calyx, as a component of vascular endo-thelium, is a multivilli structure covering the lumen surface of vascular endothelial cells. It is one of the earliest damaged parts during inflammation. Study on endothelial glycocalyx is an indispensa-ble substance in the diagnosis and treatment of sepsis. This review summarizes the research pro-gress of glycocalyx in sepsis.
文章引用:何锋, 刘秀娟. 内皮糖萼在脓毒血症中的研究进展[J]. 临床医学进展, 2023, 13(10): 16856-16862. https://doi.org/10.12677/ACM.2023.13102361

1. 引言

脓毒血症是细菌、真菌或病毒感染活体宿主所引起的全身炎症反应综合征(systemic inflammatory response syndrome, SIRS) [1] 。在脓毒血症进展过程中,可能出现微循环障碍,即炎性因子、促炎因子的释放入血,使血管通透性增加,血管内大量清蛋白和液体渗出,引起有效循环血量减低、出现顽固性低血压、多器官功能损伤 [2] [3] [4] [5] 。在临床中我们所遇到的炎症多数被治愈,少数被迁延为慢性炎症,极少数可蔓延扩散至全身,其中蔓延扩散大致分为局部蔓延、淋巴道蔓延、血行蔓延;而炎症中的病原微生物可直接或间接通过淋巴道侵入血液循环,病原微生物的毒性产物也可进入血循环,引起菌血症、败血症、毒血症、脓毒败血症。其中急性炎症反应主要发生血管反应和白细胞反应;而内皮糖萼作为血管内皮的组成,是覆盖于血管内皮细胞管腔侧表面的多绒毛状结构,它是炎症反应时血管最早被损伤的部位之一 [6] 。这篇综述简述了糖萼的结构、功能、脱落降解产物,并对脓毒血症时不同损伤部位内皮糖萼的研究总结。

2. 糖萼的结构

2.1. 糖萼的组成、骨架

血管内皮表面覆盖有一层绒毛状物质,称为糖萼。它由血管内皮细胞合成并延伸至血管腔和表面。已知其由蛋白聚糖(Proteoglycans, PG)、糖胺聚糖(Glycosaminoglycal, GAG)、糖蛋白(Glycoproteins)及血浆蛋白组成的聚合物 [7] 。其中作为核心蛋白的PG是Syndecan (多配体聚糖)和Glypican (蛋白多糖)家族的成员,而Syndecan更是研究脓毒血症的重点相关标记物 [8] 。Syndecan家族包括4名成员:syndecan-1、syndecan-2、syndecan-3、和syndecan-4,其中血内皮细胞表达的syndecan-1可以结合硫酸肝素(HS)、硫酸肝素(CS)、硫酸皮肤素(DS)、可能还有硫酸角质素(KS)等 [9] ,是我们研究的重点之一。Glypican家族的成员包括:Glypican-1、Glypican-2、Glypican-3、Glypican-4、Glypican-5和Glypican-6 [10] 。

糖萼的骨架蛋白:GLYs(膜糖蛋白)作为一种糖萼的骨架蛋白,为内皮细胞表面的粘附分子,主要由选择素家族、整合素家族和免疫球蛋白超家族的成员组成。在内皮细胞表面表达的选择素家族成员主要包括E.P-选择素两种,主要参与白细胞和内皮细胞的黏附 [11] 。内皮细胞表面整合素家族的主要功能是介导内皮细胞和血小板的黏附以及细胞外基质的连接 [12] ,其主要分子包括细胞间黏附分子1和2 (ICAM-1和-2)、血管细胞黏附分子1 (VCAM-1)和血小板/内皮细胞黏附分子1 (PECAM-1) [13] 。GAGs作为另一种糖萼的骨架蛋白,它的侧链与内皮细胞表面的核心蛋白或CD44受体的主要部分结合,GAG有5种类型,即HS、CS、硫酸皮肤素、硫酸角质素和HA (或透明质酸),其中HS占50%~90%、CS和硫酸皮肤素,其含量约为HS的25% [14] [15] 。其中HS、CS和带负电荷的硫酸皮肤素通过共价结合与核心蛋白结合。而不带电荷的非硫酸化HA不与核心蛋白结合,其通过CD44受体与细胞膜共价结合 [16] [17] 。

图像和版权信息在PMC中(图1)中:磷脂酰肌醇蛋白聚糖类及其硫酸乙酰肝素链(蓝色点状线)定位此区域。跨膜Syndecan显示聚集在胞膜的外缘。除硫酸肝素外,多配体蛋白聚糖还含有硫酸软骨素,下调核心蛋白(绿色点状线)。图中间部分显示一个带有其短寡糖支链的糖蛋白及其伴生的SA“帽”(绿色)。透明质酸(橙色点状线)一种非常长的糖胺聚糖,它织入糖萼中,与CD44结合。跨膜CD44可有硫酸软骨素、硫酸肝素和寡糖附着在其上,并定位于胞膜。血浆蛋白(灰色),沿与阳离子和阳离子氨基酸(红圈)一起,已知与糖胺聚糖有关。(A) 多配体蛋白聚糖的胞质结构域将其与细胞骨架元件(红线)连接。(B) [18] 。

Figure 1. Skeleton protein of glycocalyx

图1. 糖萼的骨架蛋白

2.2. 糖萼功能特征

内皮糖萼特异性地在介导剪切应力和一氧化氮的产生以及血管保护酶(例如,超氧化物歧化酶)和广泛的抗凝血因子(如抗凝血酶、蛋白C、组织因子途径抑制剂等)的中发挥关键作用 [19] 。此外,内皮糖萼还介导白细胞黏附以及多种炎症介质如趋化因子、细胞因子和生长因子的结合来调节炎症反应 [20] [21] [22] ,内皮糖萼对于维持血管屏障有重要作用 [23] 。

2.3. 糖萼裂解产物

主要包括多配体蛋白聚糖-1、硫酸乙酰肝素、乙酰肝素酶、内皮细胞特异分子和血管紧张素。

3. 脓毒血症时不同损伤部位内皮糖萼的研究

3.1. 脑

感染性脑病(SE)是脓毒症的常见神经系统并发症 [24] 。全身炎症和窒息可强烈降低EGL的完整性 [25] [26] 。SE在多大程度上可引起脑EGL的改变 [27] ,使脑EGL衍生的黏结蛋白聚糖-1水平降低 [28] 。脓毒血症时,内皮细胞糖萼降解释放硫酸乙酰肝素片段穿透海马血脑屏障,抑制BDNF介导的LTP(海马长时程增强),导致患者发生记忆障碍,并可通过刺激BDNF信号而逆转,提示存在局部BDNF抑制剂,研究发现硫酸乙酰肝素在2-O-和N-硫酸化双糖中富集于脓毒症患者血液中,提示研究循环中的2-O-和N-硫酸化肝素硫酸片段有助于感染性认知障碍 [29] 。

3.2. 肺

脓毒血症可导致严重的急性肺损伤、ARDS。脓毒症相关的乙酰肝素酶(heparanase,一种硫酸乙酰肝素特异性的内切葡糖醛酸酶)的激活可能导致内皮糖萼降解,进而导致肺损伤;即炎症发生时,肝素酶介导的ESL损伤,使肺内皮表面黏附分子(如ICAM-1、VCAM-1)与循环的粒细胞接触,促进粒细胞黏附和外渗,从而发生肺间质性水肿,而间质水肿可抑制肺泡间气体扩散,导致通气/血流(V/Q)比例失调,发生严重的肺损伤、ARDS [30] [31] 。

3.3. 肠道屏障

脓毒血症的早期可出现肠道损伤,菌群失调及内毒素移位致肠道屏障功能障碍,脓毒血症肠损伤的早期病理生理改变。同时肠道亦是脓毒症的受累器官。研究表明:肠上皮屏障中肝素酶的表达,增加了HS的脱落,使肠上皮黏结蛋白聚糖-1 (syndecan-1)脱落增加 [32] ;有文献报道:syndecan-1水平升高可使肠道通透性增加,造成肠黏膜屏障损害 [33] 。

3.4. 肾脏

肾脏是脓毒症期间最早受伤的器官之一。目前的估计表明,脓毒症相关性急性肾损伤(S-AKI)影响10%至67%的脓毒症患者,更具体地说,多达三分之二的脓毒症或脓毒性休克患者会发生S-AKI [34] 。其机制可能是:脓毒血症时肾脏血管内皮损伤;肝素酶激活是一种新发现的肾小球损伤发展途径,尤其与白蛋白选择性损伤有关;肝素酶可以通过降解HSPGs和促进炎症细胞募集参与肾小球损伤的发生发展 [35] 。

3.5. 凝血相关

脓毒血症凝血功能易发生障碍,其中抗凝血酶加速活化血小板,使纤维蛋白(Fibrinogen)原活为纤维蛋白(Fibrin),致凝血紊乱,甚者发展成为弥散性血管内凝血(DIC),DIC会促进机体炎性反应 [36] ,糖萼可与抗凝血酶Ⅲ、血栓调节素和组织因子途径抑制物(TFPI)相互作用达到抗凝作用。其主要机制包括:1) 糖萼上的硫酸乙酰肝素与抗凝血酶Ⅲ结合增强其抗凝作用;2) 硫酸软骨素与血栓调节蛋白能与实践相结合,能够转化凝血酶为蛋白C通路的激活剂,从而形成抗凝途径;3) 组织因子抑制物(tissue factor pathway inhibitor, TFPI)是控制凝血启动阶段的一种体内天然抗凝蛋白,它对组织因子途径(即外源性凝血途径)具有特异性抑制作用;作为F Ⅶa和FⅩa的有效抑制剂,它通过硫酸乙酰肝素与糖萼相互作用达到抗凝作用 [37] ;此外,有抗凝血酶(AT)是在肝脏合成,与蛋白质C和蛋白质S一起,是三种主要的内源性抗凝剂之一。其功能特性产生于两个截然不同的结合位点:一是与凝血因子蛋白酶的活性位点相互作用,二是与细胞表面含有3-OS修饰的治疗性肝素和糖胺聚糖(GAGs)结合 [38] 。虽然AT单独发挥抑制活性 [39] ,但它与肥大细胞源性肝素或内皮GAGs结合,如硫酸乙酰肝素或肝素酶,启动构象变化,导致AT活性增加几个数量级 [40] [41] 。

3.6. 外科手术相关

外科手术可能引发全身炎症,导致促炎细胞因子分泌、内皮功能障碍、糖萼损伤、中性粒细胞激活,最终发生脓毒血症,导致组织和多系统器官破坏,其主要涉及DAMPs的释放,炎症细胞的募集和活化以及内皮屏障的破坏 [42] 。但目前总体研究偏向围手术期液体治疗对内皮糖萼的研究,而外科手术感染发生后对内皮糖萼的研究相对缺乏,就手术应激及术后感染导致内皮糖萼脱落的研究亦在少数。

4. 总结与展望

严重的脓毒血症导致多器官功能衰竭,从上述的研究资料中发现目前缺乏糖萼损伤与脓毒血症导致的肝损伤,更多的是肝脏移植方面相关研究,而作为人体的重要的酶学器官,研究脓毒血症时肝脏血管内皮糖萼损伤是必要的,但炎症的发生多数涉及全身血管,研究局部血管糖萼损伤难度相对较大,希望通过对这些方面的研究能更加充分认识内皮糖萼、更好的指导脓毒血症的诊治,改善患者预后。

NOTES

*共一作者。

#通讯作者。

参考文献

[1] Rello, J., Valenzuela-Sánchez, F., Ruiz-Rodriguez, M., et al. (2017) Sepsis: A Review of Advances in Management. Advances in Therapy, 34, 2393-2411.
https://doi.org/10.1007/s12325-017-0622-8
[2] Robinson, B.D., Shaji, C.A., Lomas, A., et al. (2018) Measurement of Microvascular Endothelial Barrier Dysfunction and Hyperpermeability in Vitro. In: Tharakan, B., Ed., Traumatic and Ischemic Injury Methods and Protocols, Methods in Molecular Biology, Vol. 1717, Springer, Berlin, 237-242.
https://doi.org/10.1007/978-1-4939-7526-6_19
[3] 翟建华, 卢斌, 刘晨燕, 等. 脓毒症患者毛细血管渗漏综合征的危险因素分析[J]. 继续医学教育, 2019, 33(5): 85-87.
[4] Chaudhry, H., Zhou, J., Zhong, Y., et al. (2013) Role of Cytokines as a Double-Edged Sword in Sepsis. In Vivo, 27, 669-684.
[5] Kumar, A. (2016) Systematic Bias in Meta-Analyses of Time to Antimicrobial in Sepsis Studies. Critical Care Medicine, 44, e234-e235.
https://doi.org/10.1097/CCM.0000000000001512
[6] Miranda, M., Balarini, M., Caixeta, D., et al. (2016) Microcirculatory Dysfunction in Sepsis: Pathophysiology, Clinical Monitoring, and Potential Therapies. The American Journal of Physiology-Heart and Circulatory Physiology, 311, H24- H35.
https://doi.org/10.1152/ajpheart.00034.2016
[7] Moore, K.H., Murphy, H.A. and George, E.M. (2021) The Gly-cocalyx: A Central Regulator of Vascular Function. American Journal of Physiology. Regulatory, Integrative and Com-parative Physiology, 320, R508-R518.
https://doi.org/10.1152/ajpregu.00340.2020
[8] Purcell, S.C. and Godula, K. (2019) Synthetic Glycoscapes: Ad-dressing the Structural and Functional Complexity of the Glycocalyx. Interface Focus, 9, Article ID: 20180080.
https://doi.org/10.1098/rsfs.2018.0080
[9] Koo, A., Dewey, C.F. and García-Cardeña, G. (2013) Hemodynamic Shear Stress Characteristic of Atherosclerosis-Re- sistant Regions Promotes Glycocalyx Formation in Cultured Endothe-lial Cells. American Journal of Physiology-Cell Physiology, 304, C137-C146.
https://doi.org/10.1152/ajpcell.00187.2012
[10] Iba, T. and Levy, J.H. (2019) Derangement of the Endothelial Glycocalyx in Sepsis. Journal of Thrombosis and Haemostasis, 17, 283-294.
https://doi.org/10.1111/jth.14371
[11] Sperandio, M. (2006) Selectins and Glycosyltransferases in Leukocyte Roll-ing in Vivo. FEBS Journal, 273, 4377-4389.
https://doi.org/10.1111/j.1742-4658.2006.05437.x
[12] Bombeli, T., Schwartz, B.R. and Harlan, J.M. (1998) Ad-hesion of Activated Platelets to Endothelial Cells: Evidence for a GPIIbIIIa-Dependent Bridging Mechanism and Novel Roles for Endothelial Intercellular Adhesion Molecule 1 (ICAM-1), αvβ3 Integrin, and GPIbalpha. Journal of Experi-mental Medicine, 187, 329-339.
https://doi.org/10.1084/jem.187.3.329
[13] Liu, H.Q., Li, J., Xuan, C.L. and Ma, H.C. (2020) A Review on the Physiological and Pathophysiological Role of Endothelial Glycocalyx. Journal of Biochemical and Molecular Toxicology, 34, e22571.
https://doi.org/10.1002/jbt.22571
[14] Pries, A.R., Secomb, T.W. and Gaehtgens, P. (2000) The En-dothelial Surface Layer. Pflügers Archiv, 440, 653-666.
https://doi.org/10.1007/s004240000307
[15] Rapraeger, A., Jalkanen, M., Endo, E., et al. (1985) The Cell Surface Proteoglycan from Mouse Mammary Epithelial Cells Bears Chondroitin Sulfate and Heparan Sulfate Glycosaminogly-cans. Journal of Biological Chemistry, 260, 11046-11052.
[16] van den Berg, B.M., Nieuwdorp, M., Stroes, E.S., et al. (2006) Glycocalyx and Endothelial (dys) Function: From Mice to Men. Pharmacological Reports, 58, 75-80.
[17] Reitsma, S., Slaaf, D.W., Vink, H., et al. (2007) The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflügers Archiv, 454, 345-359.
https://doi.org/10.1007/s00424-007-0212-8
[18] Tarbell, J.M. (2010) Shear Stress and the Endothelial Transport Barrier. Cardiovascular Research, 87, 320-330.
https://doi.org/10.1093/cvr/cvq146
[19] Burke-Gaffney, A. and Evans, T.W. (2012) Lest We Forget the Endothelial Glycocalyx in Sepsis. Critical Care, 16, Article No. 121.
https://doi.org/10.1186/cc11239
[20] Chelazzi, C., Villa, G., Mancinelli, P., et al. (2015) Glycocalyx and Sepsis-Induced Alterations in Vascular Permeability. Critical Care, 19, Article No. 26.
https://doi.org/10.1186/s13054-015-0741-z
[21] Karamysheva, A.F. (2008) Mechanisms of Angi-ogenesis. Biochemistry (Moscow), 73, 751-762.
https://doi.org/10.1134/S0006297908070031
[22] Menger, M.D. and Vollmar, B. (2007) Pathomechanisms of Is-chemia-Reperfusion Injury as the Basis for Novel Preventive Strategies: Is It Time for the Introduction of Pleiotropic Compounds? Transplantation Proceedings, 39, 485- 488.
https://doi.org/10.1016/j.transproceed.2007.01.022
[23] Alphonsus, C.S. and Rodseth, R.N. (2014) The Endotheli-al Glycocalyx: A Review of the Vascular Barrier. Anaesthesia, 69, 777-784.
https://doi.org/10.1111/anae.12661
[24] Ziaja, M. (2013) Septic Encephalopathy. Current Neurology and Neuro-science Reports, 13, Article No. 383.
https://doi.org/10.1007/s11910-013-0383-y
[25] Margraf, A., Herter, J.M., Kühne, K., et al. (2018) 6% Hydroxy-ethyl Starch (HES 130/0.4) Diminishes Glycocalyx Degradation and Decreases Vascular Permeability during Systemic and Pulmonary Inflammation in Mice. Critical Care, 22, Article No. 111.
https://doi.org/10.1186/s13054-017-1846-3
[26] Zhu, J., Li, X., Yin, J., et al. (2018) Glycocalyx Degradation Leads to Blood-Brain Barrier Dysfunction and Brain Edema after Asphyxia Cardiac Arrest in Rats. Journal of Cerebral Blood Flow & Metabolism, 38, 1979-1992.
[27] Danielski, L.G., Giustina, A.D., Badawy, M., et al. (2018) Brain Bar-rier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Molecular Neurobiology, 55, 1045-1053.
https://doi.org/10.1007/s12035-016-0356-7
[28] Hempel, C., Sporring, J. and Kurtzhals, J.A.L. (2019) Experi-mental Cerebral Malaria Is Associated with Profound Loss of both Glycan and Protein Components of the Endothelial Glycocalyx. FASEB Journal, 33, 2058-2071.
https://doi.org/10.1096/fj.201800657R
[29] Hippensteel, J.A., Anderson, B.J., Orfila, J.E., et al. (2019) Circulating Heparan Sulfate Fragments Mediate Septic Cognitive Dysfunction. Journal of Clinical Investigation, 129, 1779-1784.
[30] Yang, Y. and Schmidt, E.P. (2013) The Endothelial Glycocalyx: An Important Regulator of the Pul-monary Vascular Barrier. Tissue Barriers, 1, e23494.
[31] Oshima, K., King, S.I., McMurtry, S.A., et al. (2021) Endo-thelial Heparan Sulfate Proteoglycans in Sepsis: The Role of the Glycocalyx. Seminars in Thrombosis and Hemostasis, 47, 274-282.
https://doi.org/10.1055/s-0041-1725064
[32] Chen, S., He, Y., Hu, Z., et al. (2017) Heparanase Me-diates Intestinal Inflammation and Injury in a Mouse Mode l of Sepsis. Journal of Histochemistry & Cytochemistry, 65, 241-249.
https://doi.org/10.1369/0022155417692536
[33] 颜娟, 曾志伟, 谢晓云. 肠上皮Syndecan-1对艰难梭菌所致腹泻患者的肠黏膜屏障保护作用分析[J]. 中国实用医药, 2018, 13(5): 35-36.
https://doi.org/10.14163/j.cnki.11-5547/r.2018.05.019
[34] White, L.E., Hassoun, H.T. and Bihorac, A. (2013) Acute Kidney Injury Is Surprisingly Common and a Powerful Predictor of Mortality in Surgical Sepsis. Journal of Trauma and Acute Care Surgery, 75, 432-438.
https://doi.org/10.1097/TA.0b013e31829de6cd
[35] Szymczak, M., Kuźniar, J. and Klinger, M. (2010) The Role of Heparanase in Diseases of the Glomeruli. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 58, 45-56.
https://doi.org/10.1007/s00005-009-0061-6
[36] Meziani, F., Gando, S. and Vincent, J.L. (2017) Should All Pa-tients with Sepsis Receive Anticoagulation? Yes. Intensive Care Medicine, 43, 452-454.
https://doi.org/10.1007/s00134-016-4621-z
[37] Kozar, R.A. and Pati, S. (2015) Syndecan-1 Restitution by Plasma after Hemorrhagic Shock. Journal of Trauma and Acute Care Surgery, 78, S83-S86.
https://doi.org/10.1097/TA.0000000000000631
[38] DeAgostini, A.I., Watkins, S.C., Slayter, H.S., et al. (1990) Localization of Anticoagulantly Active Heparan Sulfate Proteoglycans in Vascular Endothelium: Antithrombin Binding on Cultured Endothelial Cells and Perfused Rat Aorta. Journal of Cell Biology, 111, 1293-1304.
https://doi.org/10.1083/jcb.111.3.1293
[39] Guo, C., Fan, X., Qiu, H., et al. (2015) High-Resolution Probing Hep-aran Sulfate-Antithrombin Interaction on a Single Endothelial Cell Surface: Single-Molecule AFM Studies. Physical Chemistry Chemical Physics, 17, 13301-13306.
https://doi.org/10.1039/C5CP01305D
[40] Bohdan, N., Espín, S., Águila, S., et al. (2016) Heparanase Activates Antithrombin through the Binding to Its Heparin Binding Site. PLOS ONE, 11, e0157834.
https://doi.org/10.1371/journal.pone.0157834
[41] Marcum, J.A., McKenney, J.B. and Rosenberg, R.D. (1984) Acceleration of Thrombin-Antithrombin Complex Formation in Rat Hindquarters via Heparin-Like Molecules Bound to the Endothelium. Journal of Clinical Investigation, 74, 341-350.
https://doi.org/10.1172/JCI111429
[42] Margraf, A., Ludwig, N., Zarbock, A. and Rossaint, J. (2020) Systemic Inflammatory Response Syndrome after Surgery: Mecha-nisms and Protection. Anesthesia & Analgesia, 131, 1693-1707.
https://doi.org/10.1213/ANE.0000000000005175