维生素D在慢性肾脏病中保护作用的研究进展
Research Progress on the Protective Effect of Vitamin D in Chronic Kidney Disease
DOI: 10.12677/ACM.2023.13112385, PDF, HTML, XML, 下载: 200  浏览: 468 
作者: 周 洪, 欧云塔娜, 张 蕾*:新疆医科大学第五附属医院肾病科,新疆 乌鲁木齐
关键词: 维生素D慢性肾脏病保护作用研究进展Vitamin D Chronic Kidney Disease Protective Effect Research Progress
摘要: 维生素D是人体产生的一种类固醇激素,与核激素受体维生素D受体(vitamin D receptor, VDR)联合后出现生物学反应。慢性肾脏病(chronic kidney disease, CKD)是一种不可逆的慢性疾病,发病率呈递增趋势。经检测CKD患者大多缺乏维生素D,近年来多项研究均表明维生素D缺乏可以引起钙磷代谢、甲状旁腺功能紊乱,还能促进CKD进展,从而使心脑血管病、骨质疏松、肾性贫血等并发症的风险增加。故本文主要就慢性肾脏病中维生素D保护作用机制的研究进展进行综述。
Abstract: Vitamin D is a steroid hormone produced by the body that reacts biologically in combination with the nuclear hormone receptor vitamin D receptor (VDR). Chronic kidney disease (CKD) is an irre-versible chronic disease with an increasing incidence. It has been detected that most CKD patients lack vitamin D. In recent years, a number of studies have shown that vitamin D deficiency can cause calcium and phosphorus metabolism, parathyroid dysfunction, and promote the progression of CKD, thus increasing the risk of complications such as cardiovascular and cerebrovascular disease, oste-oporosis, and renal anemia. Therefore, this article mainly reviews the research progress of the pro-tective mechanism of vitamin D in chronic kidney disease.
文章引用:周洪, 欧云塔娜, 张蕾. 维生素D在慢性肾脏病中保护作用的研究进展[J]. 临床医学进展, 2023, 13(11): 17030-17036. https://doi.org/10.12677/ACM.2023.13112385

1. 引言

随着医学领域的不断发展和进步,慢性肾脏病(chronic kidney disease, CKD)的检出率逐年提升,1990年至2017年,全球CKD的全年龄患病率增加了29.3%,其中2017年CKD导致120万人死亡,是全球第12大死因 [1] ,故而该病成为一种高患病率、高死亡率、医疗费用高及并发症多等特征的疾病,严重危害全球人类健康 [2] 。据统计分析,全球大约有6.98亿CKD患者,而其中又有1/3分布在我国和印度 [3] 。我国有1.32亿CKD患者,成人发病率为10.8% [4] 。所以,怎样延缓CKD的进展及提高CKD患者的生活质量、减少CKD患者的死亡率,一直广受社会各界的关注。随着对CKD的研究加深,发现维生素D和CKD的进展密切相关,其对CKD的预后有着一定影响。在CKD中,维生素D的经典作用是调节甲状旁腺激素(parathyroid hormone, PTH)、钙、磷的代谢,近些年发现高浓度的活性维生素D还可以抑制炎症因子的产生和释放,减少尿蛋白的产生,控制肾脏系膜细胞的增生分化,使心血管病、贫血、感染等疾病的发病风险降低,改善CKD患者的预后情况。本文就维生素D在CKD中保护作用的研究进展进行综述。

2. 维生素D的合成、代谢

维生素D作为人体内的激素活性物质,大部分都在皮肤中合成,通过表皮角质产成细胞内7-脱氢胆固醇(7-DHC)在照射紫外线下,从而产生维生素D3前体,再经过温促反应异构生成维生素D3,这是维生素D合成的主要途径。只有少部分维生素D是通过食用植物或动物获取的。在皮肤形成的维生素D是没有生物活性的,首先维生素D结合蛋白(vitamin D-binding protein, DBP)与之结合后运输至肝脏,在那里它经历第一次羟基化,并以25(OH)D3的形式释放出来 [5] 。Lee [6] 等人通过对208名CKD患者的分析,证实了25(OH)D3是评估维生素D情况的生物标志物,并且这种结构是维生素D在体内最稳定的形态,钙、磷和PTH水平对其无法造成影响,是评估维生素D营养状况的最佳指标 [7] 。而后DBP再次与25(OH)D3结合转运至肾脏,经过肾小球的滤过,被近曲小管上皮细胞吸收后,再从近端小管溶酶体中释放出来,转运至线粒体后被1α羟化酶二次羟基化为1,25(OH)2D3,最终形成有活性的维生素D。核激素受体维生素D受体(vitamin D receptor, VDR)是广泛存在于机体各器官、组织和细胞中的一种转录因子,1,25(OH)2D3同时也是一种类固醇激素,通过激活VDR后发挥相应的生物学效应 [8] 。

3. CKD患者的维生素D情况

维生素D的最佳范围是多少呢?关注这一问题的研究团队基本认为维生素D缺乏的范围是低于20 ng/mL,维生素D不足的范围在20~29 ng/mL之间,维生素D充足的范围 ≥ 30 ng/mL [9] 。有研究发现,高达80%以上的CKD患者存在维生素D缺乏 [10] ,其中终末期肾脏病患者较为常见。在一项包括1056个美国透析单位的队列研究横断面分析中,Bhan [11] 等人发现908名血液透析的患者中,有79%的患者25(OH)D3水平 < 30 ng/mL,其中又有57%的患者25(OH)D3水平 < 20 ng/mL。然而目前我们还不能确定CKD患者应维持的25(OH)D3的最佳水平,因此我们仍然参考一般人群的建议 [12] 。

4. 维生素D的肾脏保护机制

维生素D与CKD的进展息息相关。随着CKD的发展,维生素D通过抑制肾素–血管紧张素系统(rennin angiotensin system, RAS)、抑制炎性反应、抑制足细胞死亡、抑制系膜细胞增生、抑制肾小管纤维化等作用,延缓病程进展,进一步保护肾脏功能。

4.1. 抑制肾素–血管紧张素系统

肾素–血管紧张素系统(RAS)的不适当激活是CKD进展的主要危险因素 [13] ,维生素D抑制RAS的发现在该领域引起了极大的影响。血管紧张素II (angiotensinII, AngII)是评价RAS活性的间接指标,有报道指出 [14] :25(OH)D3不足或缺乏的患者体内AngII水平较高,且肾脏血流对Ang II的敏感度下降,说明缺乏维生素D可以激活RAS。根据Xu [15] 等人的研究,发现维生素D可以通过调节RAS来抑制血管紧张素转换酶、肾素和AngII的表达。也有学者通过大鼠肾脏部分切除来模拟肾衰竭进行实验,分组后予以注射不同剂量的帕立骨化醇,观察8周后发现使用帕立骨化醇后大鼠尿蛋白减少,肾功能得到改善,说明维生素D可以保护残余肾功能。另外,Vaidya [16] 等人发现,在非糖尿病、肥胖且合并高血压及维生素D缺乏的个体中给予高剂量胆骨化醇可以降低肾素及血管紧张素。其他研究已经成功地证明了胆骨化醇在降低肾素、改善内皮功能和血浆醛固酮方面的作用 [17] 。综上所述,这些研究表明维生素D通过抑制RAS来保护肾脏,这对指导临床研究应用维生素D及其类似物治疗CKD有重要意义 [13] 。

4.2. 抑制炎性反应

CKD是一种长期和逐渐丧失肾功能的疾病,而炎症是导致CKD发展的关键事件,抑制炎症反应能够延缓肾脏病的进展 [18] 。张振辉 [19] 等人的研究证实了维生素D缺乏会增加肾脏炎症。在纤维化小鼠模型中 [20] ,巨噬细胞通过细胞外囊泡进行交流,形成负反馈回路,促进肾脏炎症,维生素D缺乏的动物肾脏中炎性巨噬细胞的浸润增加了,这进一步证明维生素D是调节炎症的良好靶点 [18] 。一项囊括了多个研究的综合荟萃分析 [21] ,其中一个是给予不同剂量的维生素D方案,结果显示CRP、肿瘤坏死因子-α显著降低。Ana de Bragana [22] 等发表的论文研究了5/6肾切除的大鼠接受两种不同的维生素D饮食方案,与接受标准饮食(维生素D)的5/6肾切除大鼠相比,未接受维生素D饮食的5/6肾切除大鼠血压升高,肾功能下降更严重,并且具有更高程度的炎症表达。Mansouri [23] 等人发现对CKD患者进行为期12周的帕立骨化醇治疗可明显降低超敏C反应蛋白、肿瘤坏死因子-α及IL-6,说明维生素D可以降低炎症因子的表达,控制CKD的进展。

4.3. 抑制足细胞死亡

足细胞是肾小球滤过屏障的最外层,如果足细胞出现功能异常、脱落或死亡就会导致蛋白尿,加速CKD的进展。Oliveira [24] 等人发现对维生素水平较低的糖尿病肾病患者每周补充50,000 IU维生素D,持续8周,发现可以有效降低糖尿病肾病患者,特别是2型糖尿病患者的蛋白尿和肌酐,说明补充维生素D可以降低蛋白尿。最近,Shi [25] 等人发现活性维生素D3可以通过维持ATG16L1的表达和自噬活性来逆转糖尿病肾脏足细胞的自噬缺陷,自噬可以保护足细胞免受相关损伤。在一项阿霉素诱导的急性肾损伤大鼠模型研究中,发现补充维生素D可以通过抑制足细胞中肝素酶的表达来减轻肾小球足细胞的损失并减少蛋白尿 [26] 。以上所述,维生素D对足细胞具有保护作用,可以抑制足细胞的死亡。

4.4. 抑制系膜细胞增生

系膜细胞(mesangial cell, MC)是一种内源性肾小球细胞,它能维持肾小球的超滤功能。维生素 D 可以促进细胞周期停滞,减少细胞分裂及DNA的断裂,进而阻止MC增生。Wang [27] 等发现1,25(OH)2D3可以通过抑制DDIT4/TSC2/mTOR通路,进一步抑制高糖诱导的大鼠系膜细胞增生。在一项对肾次全切除术后肾单位代偿性生长的研究中,发现维生素D具有抗增生作用,这种作用有助于改善肾小球硬化和蛋白尿,其功能之一是抑制系膜细胞的增生,能够降低Ki67 mRNA的表达及其蛋白的产生,Ki67是一种增生标志物,既可作为细胞过度复制的指标,也可作为CKD进展的指标,这说明了维生素D具有抑制MC增生的作用 [28] 。

4.5. 抑制肾小管间质纤维化

肾小管间质纤维化(tubule interstitial fibrosis, TIF)是指特定肾损伤引发的持续炎症反应导致肾小球外的小管和间质纤维化 [17] ,可引起肾损害加重,肾功能恶化,最终发展为终末期肾脏病。肾小管上皮细胞被认为是TIF发展过程中肾脏损害的中心 [29] 。TGF-β是肾纤维化发生过程中重要的成纤维细胞因子,它能激活间质成纤维细胞,诱导小管肾上皮–间质转化(epithelial mesenchymal transitions, EMT)。Kang-Han [30] 等人采用人腹膜间皮细胞建立腹膜纤维化体外细胞模型,使用高葡萄糖和脂多糖(LPS)培养条件,分为添加和不添加1,25(OH)2D3两组,结果发现高糖加LPS培养基抑制间皮细胞增殖,诱导细胞凋亡,促进细胞EMT,1,25(OH)2D3通过下调组蛋白去乙酰化酶3 (HDAC3)和上调VDR来逆转EMT,说明维生素D对细胞纤维化具有抑制作用。LINA [31] 等研究也证实了维生素D通过抑制NF-κB、TGF-β和β-catenin信号通路来抑制炎症和EMT过程,从而减轻肾小管细胞损伤。

5. 维生素D与CKD并发症

5.1. 继发性甲状旁腺功能亢进

维生素D通过调节钙、磷与PTH之间产生相互作用。肾脏是维生素D二次羟基化的主要脏器,能够将25(OH)D3转化为有活性的1,25(OH)2D3,但是在CKD患者中,上述转换过程受损,活性维生素D减少,从而影响钙的吸收及利用,出现低钙、高磷,引起钙、磷代谢紊乱 [32] 。高磷血症进一步影响1α-羟化酶降低其活性,使活性维生素D对PTH的抑制作用降低,极易导致继发性甲状旁腺功能亢进(secondary hyperparathyroidism, SHPT)症的发生,故而SHPT是活性维生素D缺乏的主要并发症 [33] 。

5.2. 骨质疏松

维生素D和骨质疏松(Osteoporosis, OP)密切相关。长期维生素D缺乏或不足被认为是OP的危险因素 [34] ,它抑制了人体吸收钙和维持最佳骨骼健康的能力。Gasperini [35] 等研究证实了VDR降低与OP发病和骨折风险呈负相关作用,OP患者的平均VDR表达水平均较低。维生素D与骨密度有关联性,研究证实 [36] :30 ng/mL的25(OH)D3浓度是维生素D对骨密度有益作用的阈值,低于这个水平的患者补充维生素D后骨密度会增加,但高于这个水平的患者骨密度则没有明显的变化,因此在补充维生素D时应该个体化治疗。

5.3. 心血管病

CKD患者的心血管并发症具有较高的发病率及死亡率。已经有研究证实了补充维生素D可以降低心血管病的风险 [37] :补充维生素D可以减少氧化应激和内皮损伤,有利于某些风险群体,尤其是CKD患者。高血压是心血管病的重要危险因素,对维生素D受体(VDR)被敲除的小鼠研究显示 [38] ,肾素–血管紧张素–醛固酮系统(RAAS)活性增加,血压升高,表明维生素D可能是一种潜在的抗高血压药物。在维生素D缺乏的患者中补充维生素D,可以使总胆固醇、甘油三酯和低密度脂蛋白胆固醇降低,高密度脂蛋白胆固醇升高,还能改变内皮细胞中一氧化氮的产生从而影响血管张力 [39] 。补充维生素D可减少维生素D缺乏或不足患者的心肌梗死、卒中或总体的心血管疾病负担。

5.4. 感染

感染是CKD患者较为常见的并发症,维生素D可以控制炎症。研究发现,Toll样受体激活、白细胞聚集、局部炎症及先天免疫的抗菌反应与维生素D之间存在联系 [40] 。高水平的维生素D可以促进抗菌肽(LL-37)和ß-防御素-2的产生,调节炎症反应 [41] 。Daniel [42] 等人的研究发现VDR可以触发TH1细胞反应的收缩,通过CD4+ T细胞的动态变化,产生超级增强子并招募几种转录因子,与VDR一起形成对维生素D的转录反应,使促炎干扰素-γ (INF-γ) TH1细胞转变为抑制性的白细胞介素-10 (IL-10)细胞,最终起到抗炎作用。

5.5. 肾性贫血

肾性贫血发病原因主要是促红细胞生成素(erythropoietin, EPO)不足,活动性失血,造血原料(如铁、叶酸、维生素B12)缺乏,尿毒症毒素导致的红细胞寿命缩短等。维生素D缺乏是肾性贫血的一个新危险因素 [43] 。补充活性维生素D对CKD患者血红蛋白水平有显著影响 [44] 。活性维生素D可以通过增加促红细胞生成素受体的表达、刺激促红细胞生成素的产生、减少促炎介质的分泌和增加对促红细胞生成素的敏感性来改善贫血 [45] 。Jovana [46] 等发现血液透析患者中维生素D缺乏是长效EPO产生耐药性的重要因素,说明维生素D缺乏更容易导致贫血的发生。

6. 结语

既往多数研究均表明,维生素D可以通过多种机制发挥保护肾脏的作用,包括抑制RAS激活、抑制炎症、抑制肾脏细胞增生及抑制肾小管间质纤维化等,也对SHPT、心血管病、感染、贫血等有一定影响。维生素D缺乏导致CKD进展加快,增加了CKD并发症的发病风险,严重影响患者的预后和生活质量。因此,维生素D与CKD之间的关系具有重大的意义。

NOTES

*通讯作者。

参考文献

[1] Carney, E.F. (2020) The Impact of Chronic Kidney Disease on Global Health. Nature Reviews Nephrology, 16, 251.
https://doi.org/10.1038/s41581-020-0268-7
[2] Hu, J., Ke, R., Teixeira, W., et al. (2023) Global, Regional, and National Burden of CKD due to Glomerulonephritis from 1990 to 2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Clinical Journal of the American Society of Nephrology, 18, 60-71.
https://doi.org/10.2215/CJN.0000000000000017
[3] GBD Chronic Kidney Disease Collaboration (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 395, 709-733.
[4] Chinese Preventive Medicine Association for Kidney Disease (2023) Guidelines for the Early Evaluation and Management of Chronic Kidney Disease in China. Chinese Journal of In-ternal Medicine, 62, 902-930.
[5] Bertoldo, F., Cianferotti, L., Di Monaco, M., et al. (2022) Definition, Assessment, and Management of Vitamin D Inadequacy: Suggestions, Recommendations, and Warnings from the Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases (SIOMMMS). Nutrients, 14, Article 4148.
https://doi.org/10.3390/nu14194148
[6] Lee, S., Chung, H.J., Jung, S., et al. (2023) 24, 25-Dihydroxy Vitamin D and Vitamin D Metabolite Ratio as Biomarkers of Vitamin D in Chronic Kidney Disease. Nutrients, 15, Article 578.
https://doi.org/10.3390/nu15030578
[7] Wimalawansa, S.J. (2023) Infections and Autoimmunity—The Immune System and Vitamin D: A Systematic Review. Nutrients, 15, Article 3842.
https://doi.org/10.3390/nu15173842
[8] Romano, F., Serpico, D., Cantelli, M., et al. (2023) Osteoporosis and Dermatoporosis: A Review on the Role of Vitamin D. Frontiers in Endocrinology, 14, Article 1231580.
https://doi.org/10.3389/fendo.2023.1231580
[9] Ikizler, T.A., Burrowes, J.D., Byham-Gray, L.D., et al. (2020) KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. American Journal of Kidney Diseases, 76, S1-S107.
https://doi.org/10.1053/j.ajkd.2020.05.006
[10] Franca Gois, P.H., Wolley, M., Ranganathan, D. and Seguro, A.C. (2018) Vitamin D Deficiency in Chronic Kidney Disease: Recent Evidence and Controversies. Internation-al Journal of Environmental Research and Public Health, 15, Article 1773.
https://doi.org/10.3390/ijerph15081773
[11] Bhan, I., Burnett-Bowie, S.A., Ye, J., et al. (2010) Clinical Measures Identify Vitamin D Deficiency in Dialysis. Clinical Journal of the American Society of Nephrology, 5, 460-467.
https://doi.org/10.2215/CJN.06440909
[12] Alfieri, C., Ruzhytska, O., Vettoretti, S., et al. (2019) Native Hypo-vitaminosis D in CKD Patients: From Experimental Evidence to Clinical Practice. Nutrients, 11, Article 1918.
https://doi.org/10.3390/nu11081918
[13] Yang, S., Li, A., Wang, J., et al. (2018) Vitamin D Receptor: A Novel Therapeutic Target for Kidney Diseases. Current Medicinal Chemistry, 25, 3256-3271.
https://doi.org/10.2174/0929867325666180214122352
[14] Gembillo, G., Siligato, R., Amatruda, M., et al. (2021) Vitamin D and Glomerulonephritis. Medicina, 57, Article 186.
https://doi.org/10.3390/medicina57020186
[15] Xu, J., Yang, J., Chen, J., et al. (2017) Vitamin D Alleviates Lip-opolysaccharide-Induced Acute Lung Injury via Regulation of the Renin-Angiotensin System. Molecular Medicine Re-ports, 16, 7432-7438.
https://doi.org/10.3892/mmr.2017.7546
[16] Zaheer, S., Taquechel, K., Brown, J.M., et al. (2018) A Randomized Intervention Study to Evaluate the Effect of Calcitriol Therapy on the Renin-Angiotensin System in Diabetes. Journal of the Renin-Angiotensin-Aldosterone System, 19.
https://doi.org/10.1177/1470320317754178
[17] Grübler, M.R., Gaksch, M., Kienreich, K., et al. (2016) Effects of Vitamin D Supplementation on Plasma Aldosterone and Renin—A Randomized Placebo-Controlled Trial. The Journal of Clinical Hypertension, 18, 608-613.
https://doi.org/10.1111/jch.12825
[18] Goncalves, L.E.D., Andrade-Silva, M., Basso, P.J. and Câmara, N.O.S. (2023) Vitamin D and Chronic Kidney Disease: Insights on Lipid Metabolism of Tubular Epithelial Cell and Macro-phages in Tubulointerstitial Fibrosis. Frontiers in Physiology, 14, Article 1145233.
https://doi.org/10.3389/fphys.2023.1145233
[19] Zhang, Z.H., Luo, B., Xu, S., et al. (2021) Long-Term Vitamin D Deficiency Promotes Renal Fibrosis and Functional Impairment in Middle-Aged Male Mice. British Journal of Nutrition, 125, 841-850.
https://doi.org/10.1017/S0007114520003232
[20] Jiang, W.J., Xu, C.T., Du, C.L., et al. (2022) Tubular Epithelial Cell-to-Macrophage Communication Forms a Negative Feedback Loop via Extracellular Vesicle Transfer to Promote Re-nal Inflammation and Apoptosis in Diabetic Nephropathy. Theranostics, 12, 324-339.
https://doi.org/10.7150/thno.63735
[21] Moslemi, E., Musazadeh, V., Kavyani, Z., et al. (2022) Efficacy of Vita-min D Supplementation as an Adjunct Therapy for Improving Inflammatory and Oxidative Stress Biomarkers: An Um-brella Meta-Analysis. Pharmacological Research, 186, Article ID: 106484.
https://doi.org/10.1016/j.phrs.2022.106484
[22] De Braganca, A.C., Canale, D., Goncalves, J.G., et al. (2018) Vitamin D Deficiency Aggravates the Renal Features of Moderate Chronic Kidney Disease in 5/6 Nephrectomized Rats. Frontiers in Medicine, 5, Article 406289.
https://doi.org/10.3389/fmed.2018.00282
[23] Mansouri, L., Lundwall, K., Moshfegh, A., et al. (2017) Vitamin D Receptor Activation Reduces Inflammatory Cytokines and Plasma MicroRNAs in Moderate Chronic Kidney Disease—A Randomized Trial. BMC Nephrology, 18, Article No. 161.
https://doi.org/10.1186/s12882-017-0576-8
[24] de Oliveira E Silva Ullmann, T., Ramalho, B.J., Laurindo, L.F., et al. (2023) Effects of Vitamin D Supplementation in Dia-betic Kidney Disease: An Systematic Review. Journal of Renal Nutrition, 33, 618-628.
https://doi.org/10.1053/j.jrn.2023.05.006
[25] Shi, L., Xiao, C., Zhang, Y., et al. (2022) Vitamin D/Vitamin D Re-ceptor/Atg16L1 Axis Maintains Podocyte Autophagy and Survival in Diabetic Kidney Disease. Renal Failure, 44, 694-705.
https://doi.org/10.1080/0886022X.2022.2063744
[26] Garsen, M., Sonneveld, R., Rops, A.L., et al. (2015) Vita-min D Attenuates Proteinuria by Inhibition of Heparanase Expression in the Podocyte. The Journal of Pathology, 237, 472-481.
https://doi.org/10.1002/path.4593
[27] Wang, H., Wang, J., Qu, H., et al. (2016) In Vitro and in Vivo In-hibition of mTOR by 1,25-Dihydroxyvitamin D3 to Improve Early Diabetic Nephropathy via the DDIT4/TSC2/mTOR Pathway. Endocrine, 54, 348-359.
https://doi.org/10.1007/s12020-016-0999-1
[28] Zhao, D., Zhang, C.J., Yang, R., et al. (2017) Effect of 1,25(OH)2D3 on the Proliferation of Human Mesangial Cells and Their Expression of Ki67. Genetics and Molecular Re-search, 16, gmr16029191.
https://doi.org/10.4238/gmr16029191
[29] Fu, H., Gu, Y.H., Tan, J., Yang, Y.N. and Wang, G.H. (2022) CircACTR2 in Macrophages Promotes Renal Fibrosis by Activating Macrophage Inflammation and Epitheli-al-Mesenchymal Transition of Renal Tubular Epithelial Cells. Cellular and Molecular Life Sciences, 79, Article No. 253.
https://doi.org/10.1007/s00018-022-04247-9
[30] Liu, K.H., Fu, J., Zhou, N., et al. (2019) 1,25-Dihydroxyvitamin D3 Prevents Epithelial-Mesenchymal Transition of HMrSV5 Human Peritoneal Mesothelial Cells by Inhibiting Histone Deacetylase 3 (HDAC3) and Increasing Vitamin D Receptor (VDR) Expression through the Wnt/β-Catenin Signaling Pathway. Medical Science Monitor, 8, 5892-5902.
https://doi.org/10.12659/MSM.916313
[31] Yang, L., Wu, L., Zhang, X., et al. (2017) 1, 25(OH)2D3/VDR At-tenuates High Glucose-Induced Epithelial-Mesenchymal Transition in Human Peritoneal Mesothelial Cells via the TGFβ/Smad3 Pathway. Molecular Medicine Reports, 15, 2273-2279.
https://doi.org/10.3892/mmr.2017.6276
[32] Naveh-Many, T. and Volovelsky, O. (2020) Parathyroid Cell Prolif-eration in Secondary Hyperparathyroidism of Chronic Kidney Disease. International Journal of Molecular Sciences, 21, Article 4332.
https://doi.org/10.3390/ijms21124332
[33] Cipriani, C., Pepe, J., Colangelo, L., et al. (2018) Vitamin D and Sec-ondary Hyperparathyroid States. Frontiers of Hormone Research, 50, 138-148.
https://doi.org/10.1159/000486077
[34] Charoenngam, N., Shirvani, A. and Holick, M.F. (2019) Vitamin D for Skeletal and Nonskeletal Health: What We Should Know. Journal of Clinical Orthopaedics and Trauma, 10, 1082-1093.
https://doi.org/10.1016/j.jcot.2019.07.004
[35] Gasperini, B., Visconti, V.V., Ciccacci, C., et al. (2023) Role of the Vitamin D Receptor (VDR) in the Pathogenesis of Osteoporosis: A Genetic, Epigenetic and Molecular Pilot Study. Genes, 14, Article 542.
https://doi.org/10.3390/genes14030542
[36] Macdonald, H.M., Reid, I.R., Gamble, G.D., et al. (2018) 25-Hydroxyvitamin D Threshold for the Effects of Vitamin D Supplements on Bone Density: Secondary Analysis of a Randomized Controlled Trial. Journal of Bone and Mineral Research, 33, 1464-1469.
https://doi.org/10.1002/jbmr.3442
[37] Renke, G., Starling-Soares, B., Baesso, T., et al. (2023) Effects of Vitamin D on Cardiovascular Risk and Oxidative Stress. Nutrients, 15, Article 769.
https://doi.org/10.3390/nu15030769
[38] Jensen, N.S., Wehland, M., Wise, P.M. and Grimm, D. (2023) Latest Knowledge on the Role of Vitamin D in Hypertension. International Journal of Molecular Sciences, 24, Article 4679.
https://doi.org/10.3390/ijms24054679
[39] Wojtasinska, A., Frak, W., Lisinska, W., et al. (2023) Novel Insights into the Molecular Mechanisms of Atherosclerosis. International Journal of Molecular Sciences, 24, Article 13434.
https://doi.org/10.3390/ijms241713434
[40] Hamza, F.N., Daher, S., Fakhoury, H.M.A., et al. (2023) Immuno-modulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients, 15, Article 1696.
https://doi.org/10.3390/nu15071696
[41] Asdie, R.H., Mulya, D.P. and Nainggolan, M. (2023) Assessment of 28-Day Survival of Patients with Sepsis Based on Vitamin D Status: A Hospital-Based Prospective Cohort Study in In-donesia. The Pan African Medical Journal, 45, Article 76.
https://doi.org/10.11604/pamj.2023.45.76.36336
[42] Chauss, D., Freiwald, T., McGregor, R., et al. (2022) Auto-crine Vitamin D Signaling Switches off Pro-Inflammatory Programs of TH1 Cells. Nature Immunology, 23, 62-74.
https://doi.org/10.1038/s41590-021-01080-3
[43] Li, M., Xu, J., Wan, Q., et al. (2021) Relationship between Se-rum Vitamin D3 Concentration and Anaemia in Patients with Chronic Kidney Disease in China. Journal of International Medical Research, 49.
https://doi.org/10.1177/03000605211012231
[44] Ahmad, S., Ullah, H., Khan, M.I., et al. (2023) Effect of Vitamin D Supplementation on the Hemoglobin Level in Chronic Kidney Disease Patients on Hemodialysis: A Systematic Review and Meta-Analysis. Cureus, 15, e40843.
https://doi.org/10.7759/cureus.40843
[45] Pistis, K.D., Westerberg, P.A., Qureshi, A.R., et al. (2023) The Effect of High-Dose Vitamin D Supplementation on Hepcidin-25 and Erythropoiesis in Patients with Chronic Kidney Disease. BMC Nephrology, 24, Article No. 20.
https://doi.org/10.1186/s12882-022-03014-z
[46] Joksimovic Jovic, J., Antic, S., Nikolic, T., et al. (2022) Eryth-ropoietin Resistance Development in Hemodialysis Patients: The Role of Oxidative Stress. Oxidative Medicine and Cel-lular Longevity, 2022, Article ID: 9598211.
https://doi.org/10.1155/2022/9598211