定量磁敏感成像在中枢神经系统中的研究进展及临床应用
Research Progress and Clinical Application of Quantitative Magnetic Sensitivity Imaging in the Central Nervous System
DOI: 10.12677/ACM.2023.13112387, PDF, HTML, XML, 下载: 158  浏览: 218 
作者: 方胜哲, 丁 爽:新疆医科大学第一附属医院影像中心,新疆 乌鲁木齐
关键词: 定量磁敏感成像中枢神经系统铁沉积Quantitative Susceptibility Mapping Central Nervous System Iron Deposition
摘要: 定量磁敏感成像(QSM)是一种基于组织磁化率特性的新的非侵入性磁共振技术,可以量化局部组织的磁化率差异。QSM在监测血氧饱和度、区分微出血及钙化、显示含铁血黄素沉积等方面具有很大的优势。目前QSM在铁代谢相关性疾病、神经退行性疾病、脑血管性疾病中已展开了大量应用及研究,其在大脑以外的应用因易受呼吸和心跳引起的运动伪影的干扰而具有挑战性,本文就QSM在中枢神经系统的最新的研究进展与临床应用进行综述。
Abstract: Quantitative susceptibility mapping (QSM) is a new non-invasive magnetic resonance imaging tech-nique based on tissue magnetization characteristics. It allows for the quantification of local tissue susceptibility differences. QSM has significant advantages in monitoring blood oxygen saturation, distinguishing microbleeds and calcifications and displaying iron deposition. Currently, there has been a considerable amount of application and research on QSM in iron metabolism-related diseas-es, neurodegenerative diseases, and cerebrovascular diseases. However, its application outside of the brain is challenging due to motion artifacts caused by respiration and heartbeat interference. This article provides a comprehensive review of the latest applications and research progress of QSM in the central nervous system.
文章引用:方胜哲, 丁爽. 定量磁敏感成像在中枢神经系统中的研究进展及临床应用[J]. 临床医学进展, 2023, 13(11): 17043-17049. https://doi.org/10.12677/ACM.2023.13112387

1. 引言

磁化率是描述组织响应外加磁场的磁化强度变化的物理量,生物组织可以是抗磁性的(例如磷酸钙)、顺磁性的(例如脱氧血红蛋白、铁蛋白、含铁血黄素及铜或锰) [1] 。组织的磁化率取决于其成分,每种成分带来的磁化率改变取决于其电子结构和浓度,与其他序列(如T2*加权成像)相比,QSM是定量反映了局部和非局部组织特性,对局部磁敏感性效应更敏感 [2] ,并且由于其广泛适用于现有的MRI系统并且采集时间短以及半自动化的后处理工作流程,可以很好地运用到繁忙的临床工作中 [3] ,因此,QSM是量化这些分子的病理改变并帮助探索各种脑部疾病的病理生理原因的宝贵工具。本文主要对定量磁敏感成像技术在中枢神经系统中的国内外研究新进展做一综述。

2. QSM的原理

定量磁敏感成像(QSM)是一种以梯度回波(gradient echo sequence, GRE)序列作为基础对MRI组织与静态磁场之间的静磁相互作用进行分析评估的磁共振成像方法 [4] 。为了最大限度地减少磁场取向依赖性,并消除非局部效应,定量磁化率成像需要几个后处理步骤进行重建,包括相位展开、背景场去除和偶极子反演 [5] 。原始相位值具有相位不连续性或相位跳跃。因此,需要一种技术来处理这些不连续性或错误,同时保持平滑的相位值,称之为相位展开。不属于ROI或感兴趣体素的磁化率图像区域被视为背景场。空气组织等背景伪影会影响局部磁化率值,因此背景场去除非常重要。传统多采用的基于深度学习的背景场去除方法。局部磁化率由K空间中利用偶极子核的磁场的反卷积来确定,称之为偶极子反演,可以充分抑制伪影,进一步改善图像质量,获得最佳磁化率值 [6] 。

3. QSM在中枢神经系统中的应用

3.1. 退行性疾病

3.1.1. 帕金森病(Parkinson’s disease, PD)

帕金森病(PD)的临床特征是静止性震颤、运动迟缓、强直和姿势不稳 [7] 。PD的主要病理变化是由于铁沉积引起的黑质纹状体系统中的多巴胺能神经元退行性死亡。定量易感性图谱(QSM)已被证明在帮助早期诊断和监测PD疾病进展方面很有价值 [8] [9] 。Zhang等 [10] 研究发现,PD运动亚型在基底神经节区域具有不同的铁沉积模式。黑质和壳核的磁敏感值与姿势不稳或步态障碍型患者具有相关性,齿状核的磁敏感值则与震颤优势型患者密切相关。此外,右侧姿势不稳或步态障碍型作为主要症状的患者在左侧尾状核中的铁沉积比震颤优势型的患者更多。焦虑是帕金森病(PD)最常见的精神症状之一,Chen等 [11] 研究发现部分大脑区域的QSM值与汉密尔顿焦虑评定量表(HAMA)评分呈正相关,PD焦虑与脑恐惧回路中的铁负荷有关,为解释PD焦虑的潜在神经机制提供了一种可能的新方法。Marxreite等 [12] 研究发现可以利用QSM对帕金森患者与多系统萎缩患者进行鉴别,多系统萎缩患者的壳核和黑质磁敏感值较帕金森患者更高,高场强MRI可以进一步提高鉴别诊断分类的灵敏度。定量磁敏感成像在帕金森病及帕金森综合征中的应用越来广泛,不仅仅局限于早期的诊断。

3.1.2. 阿尔茨海默病(Alzheimer’s disease, AD)

阿尔茨海默病(AD)病理特征是细胞外斑块,由β-淀粉样蛋白和神经元内的神经原纤维缠结组成。过量的铁是β-淀粉样蛋白沉积和神经原纤维缠结的原因,这可能导致AD [13] 。有学者探讨了定量磁敏感成像与阿尔茨海默病临床和影像学标志物的关联 [14] ,结果表明尤其是苍白细胞和壳核)的易感性可能是认知能力下降、淀粉样蛋白沉积和tau配体脱靶结合的标志。Kuchcinski等 [15] 将早发性阿尔茨海默病(EOAD)分为海马边缘性萎缩(LP)和海马非萎缩(HpSp)两个亚型,对健康对照组相比,EOAD患者的深灰色细胞核和边缘结构的QSM值显着更高,在EOAD亚型中,HpSp型患者在深灰质核团中QSM值最高,而在LP型患者中观察到边缘结构中的QSM值最高,铁分布的显着变化反映了脑萎缩的模式。该研究 [15] 表明深灰质核团中的铁超负荷有助于识别阿尔茨海默病非典型表现的患者,同时为早发性阿尔茨海默病生理病理学提供了新的MRI见解。

3.1.3. 亨廷顿病(Huntington’s disease, HD)

亨廷顿舞蹈症(HD)是一种遗传性神经退行性综合征,以舞蹈病、运动障碍和认知能力下降为特征,有证据表明 [16] ,异常的亨廷顿蛋白会损害大脑中的铁稳态,这可能导致铁积累增加。Chen [17] 等利用QSM对亨廷顿病患者脑铁沉积的评估发现,纹状体中铁含量在接近发病阶段更高,而在远离发病阶段铁含量的改变则不那么明显,在接近发病和早期HD患者中,尾状和苍白球中的铁沉积率也高于健康对照组。纹状体和苍白球的结构体积与铁水平呈负相关,铁沉积和体积大小都与疾病进展有关。

3.1.4. 威尔逊氏病(Wilson’s disease, WD)

威尔逊氏病(WD)是一种常染色体隐性遗传疾病,其特征是铜和铁在组织内过度沉积。最常受影响的器官是大脑和肝脏。Jing等 [18] 的研究结果表明WD患者多个深灰质核团的平均体积磁磁化率和总磁化率均高于健康对照组。与肝WD患者相比,神经性WD患者的平均体积磁化率更高,但尾状核头、苍白球和壳核的总磁化率相似,这一发现表明,脑萎缩可能影响WD患者深部灰质核平均体积磁化率的评估,总磁化率应作为评估的附加指标。深灰质核团的平均体积磁化率和总磁化率可能有助于WD的早期诊断。QSM或将成为探索WD复杂的临床前病理生理变化的有利工具。

3.2. 脱髓鞘疾病

3.2.1. 多发性硬化(multiple sclerosis, MS)

多发性硬化症(MS)是一种中枢神经系统的慢性炎症和退行性疾病,主要病变特征是白质和灰质中的髓鞘损伤。QSM可以量化整个病变或局部区域(例如环形环状结构)的磁化率变化;最近的研究 [19] 表明MS病变中磁敏感性变化的存在与患者的扩展残疾状态量表(EDSS)相关。环形病变(RL)的磁化率分布和病变体积随着时间的推移保持有效恒定,表明RL的病理生理变化是一个渐进的过程。于非环形病变的患者,平均易感性与EDSS显著相关。视神经脊髓炎谱系疾病(NMOSD)是一种脱髓鞘疾病,可能表现出与多发性硬化症早期阶段相似的影像学表现。Jang等 [20] 将QSM与流体衰减反转恢复(FLAIR)序列结合使用,发现病变周围的顺磁边缘可以成为区分MS和NMOSD的有用成像标志物,对MS的鉴别诊断具有良好的诊断性能,特别是在特异性方面。这些发现可能会加强QSM在MS患者中的运用。

3.2.2. 肌萎缩侧索硬化症(Amyotrophic lateral sclerosis, ALS)

肌萎缩侧索硬化症(ALS)的特征是运动神经元及其在大脑和脊髓中的轴突连接的进行性变性。ALS 的病理学研究显示,患者的运动皮层的铁含量异常升高,这可能会引发氧化应激,导致神经退化。QSM可用于检测运动皮层异常铁沉积,并已被证明对ALS的诊断具有较高的准确性。Kathryn E等 [21] 研究发现与无运动神经元症状的患者以及患有类似ALS的疾病的患者相比,ALS患者的运动皮层定量易感性值显着更高。Bhattarai等 [22] 研究结果表明,腰椎起病ALS患者比颈椎起病的ALS患者更容易出现运动皮层铁失调;ASL患者要超过6个月的时间才能检测运动皮层的显着定量变化。Li等 [23] 发现在ALS患者中,铁沉积增加与丘脑灰质体积呈负相关。此外,运动皮层中的铁沉积与相应肢体的上运动神经元评分呈正相关,而丘脑中的铁沉积与ALS功能评定量表评分呈负相关。这些研究体现了QSM作为定量放射学指标在ALS及其亚型早期疾病诊断中的潜在用途。

3.3. 肿瘤性疾病

既往研究表明,磁敏感加权成像(SWI)序列可以显示肿瘤内常规MRI序列无法判断或不能显示的微出血及肿瘤内的微小血管 [24] ,对肿瘤的诊断具有一定的价值。QSM作为SWI的延伸使得进一步区分肿瘤内的微出血和钙化成为可能 [25] 。胶质瘤是最常见的一种颅内原发性肿瘤,具有极高的发病率和死亡率。Reith等 [26] 研究发现III、IV级胶质瘤患者基底神经节平均易感性高于I、II级肿瘤患者,基底神经节铁含量随胶质瘤严重程度的增加而增加。因此,基底神经节铁水平可能是胶质瘤预后和治疗的有用生物标志物。最新研究 [27] 将QSM用于胶质瘤的评估,在形态学上,高级别胶质瘤与低级别胶质瘤相比具有更高的肿瘤磁化率异质性,但在增强前后QSM之间没有变化。从定量上看,肿瘤实质的磁化率对识别胶质瘤的 IDH突变状态的价值有限,而肿瘤实质相对较低的磁化率有助于识别IDH突变胶质瘤中的少突胶质细胞瘤。QSM在神经胶质瘤的综合评估及术前分级中具有一定的应用前景。

3.4. 脑血管性疾病

3.4.1. 发育性静脉畸形(developmental venous anomaly, DVA)

发育性静脉畸形(DVA)是一种常见的血管畸形,由多个细脉流入一个位置和大小不寻常的集合脉。虽然DVA被认为是临床良性的,但已有DVA的神经系统症状和并发症的报道 [28] [29] 。Yangsean等 [30] 发现DVA中静脉充血的存在与氧代谢之间存在显着关联。因为存在单个集合静脉。通过评估集合静脉的定量敏感性值,我们可以很容易地估计通过DVA供血的脑实质的氧代谢,这表明QSM可用于从代谢角度表征DVA。

3.4.2. 脑海绵状畸形(cerebral cavernous malformations, CCM)

脑海绵状血管畸形(CCM)是低流量血管畸形,容易出现慢性出血性渗漏;内皮血液渗漏和出血导致铁在CCM内和周围大脑中沉积 [31] 。CCM可以为散发性或家族性,其中家族性CCM占CCM病例的20%,家族性CCM患者通常有多处病变,随着时间的推移,皮损的数量和大小往往会增加,出血风险也各不相同 [32] 。Irene等 [33] 进行一项纵向多中心研究对CCM患者的QSM图像进行半自动分割,并在基线时计算每个分段CCM的最大磁化率,将CCM在基线时分为出血性和非出血性。该研究发现基线时CCM中的QSMmax在预测1年随访时是否存在出血体征方面表现出很高的准确性。这表明QSM在CCM的随访评估和治疗试验中的具有潜在的应用价值。

3.5. 酒精使用紊乱(alcohol use disorder, AUD)

酒精使用障碍(AUD)是世界上最重要的成瘾问题之一,对全球公共卫生产生重大影响。它的特点是反复强迫性饮酒,强迫性消费的潜在神经生物学机制目前仍未完全了解。趋同的证据表明,纹状体背侧在其中起到了至关重要的作用 [34] ,Tan等 [35] 探讨了饮酒模式与易感性之间的关系,AUD个体背纹状体(壳核和尾状核)的磁敏感性高于健康对照者,并且与强迫性饮酒量表(OCDS)评分和过去三个月的饮酒量呈正相关,表明AUD与脑铁积累导致的神经炎症有关。这项研究揭示了QSM检查的脑铁浓度可以作为AUD诊断的潜在生物标志物,提供与近期酒精暴露和强迫性饮酒相关的客观测量,提供了临床评估和治疗的新视角。

4. 局限性与展望

QSM在中枢神经系统中的价值已经在临床应用中得到证明,但重建的相位图像可能导致QSM中定量磁敏感图的额外伪影,仍然是一个具有挑战性的问题。QSM重建算法的逐步优化,将为QSM在中枢神经系统、体部及心血管系统成像的应用开辟更广阔的空间。随着影像组学及机器学习的研究增加,将其与QSM相结合或许能带来不一样的发现。

参考文献

[1] Nikparast, F., Ganji, Z., Danesh Doust, M., Faraji, R. and Zare, H. (2022) Brain Pathological Changes during Neuro-degenerative Diseases and Their Identification Methods: How Does QSM Perform in Detecting This Process? Insights Imaging, 13, Article No. 74.
https://doi.org/10.1186/s13244-022-01207-6
[2] Harada, T., Kudo, K., Fujima, N., et al. (2022) Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. Radiographics, 42, 1161-1176.
https://doi.org/10.1148/rg.210054
[3] Fushimi, Y., Nakajima, S., Sakata, A., et al. (2023) Value of Quantitative Susceptibility Mapping in Clinical Neuroradiology. Journal of Magnetic Resonance Imaging.
https://doi.org/10.1002/jmri.29010
[4] Wei, H., Guan, X., Cao, P. and Zhang, Y.Y. (2023) Editorial: Quantitative Susceptibility Mapping: Technical Advances and Clinical Applications. Frontiers in Neuroscience, 17, Article 1228061.
https://doi.org/10.3389/fnins.2023.1228061
[5] Vinayagamani, S., Sheelakumari, R., Sabarish, S., et al. (2021) Quantitative Susceptibility Mapping: Technical Considerations and Clinical Applications in Neuroimaging. Journal of Magnetic Resonance Imaging, 53, 23-37.
https://doi.org/10.1002/jmri.27058
[6] Kames, C., Doucette, J. and Rauscher, A. (2023) Multi-Echo Dipole Inver-sion for Magnetic Susceptibility Mapping. Magnetic Resonance in Medicine, 89, 2391-2401.
https://doi.org/10.1002/mrm.29588
[7] Minibajeva, O., Zeltiņa, E., Karelis, G., et al. (2023) Clinical Symptoms Influencing Parkinson’s Patients’ Quality of Life in Latvia: A Single-Center Cohort Study. Medicina, 59, Article 935.
https://doi.org/10.3390/medicina59050935
[8] Li, K.R., Avecillas-Chasin, J., Nguyen, T.D., et al. (2022) Quanti-tative Evaluation of Brain Iron Accumulation in Different Stages of Parkinson’s Disease. Journal of Neuroimaging, 32, 363-371.
https://doi.org/10.1111/jon.12957
[9] Mitchell, T., Lehéricy, S., Chiu, S.Y., et al. (2021) Emerging Neuroimaging Biomarkers across Disease Stage in Parkinson Disease: A Review. JAMA Neurology, 78, 1262-1272.
https://doi.org/10.1001/jamaneurol.2021.1312
[10] Zhang, X., Li, L., Qi, L., et al. (2023) Distribution Pattern of Iron Deposition in the Basal Ganglia of Different Motor Subtypes of Parkinson’s Disease. Neuroscience Letters, 807, Article ID: 137249.
https://doi.org/10.1016/j.neulet.2023.137249
[11] Chen, K., Zhang, L., Mao, H., et al. (2023) The Impact of Iron Deposition on the Fear Circuit of the Brain in Patients with Parkinson’s Disease and Anxiety. Frontiers in Aging Neuro-science, 15, Article 1116516.
https://doi.org/10.3389/fnagi.2023.1223421
[12] Marxreiter, F., Lambrecht, V., Mennecke, A., et al. (2023) Par-kinson’s Disease or Multiple System Atrophy: Potential Separation by Quantitative Susceptibility Mapping. Therapeutic Advances in Neurological Disorders, 16.
https://doi.org/10.1177/17562864221143834
[13] Zhang, L., Fang, J. Tang, Z. and Luo, Y.Y. (2022) A Bioinfor-matics Perspective on the Dysregulation of Ferroptosis and Ferroptosis-Related Immune Cell Infiltration in Alzheimer’s Disease. International Journal of Medical Sciences, 19, 1888-1902.
https://doi.org/10.7150/ijms.76660
[14] Cogswell, P.M., Wiste, H.J., Senjem, M.L., et al. (2021) Associations of Quantitative Susceptibility Mapping with Alzheimer’s Disease Clinical and Imaging Markers. Neuroimage, 224, Article ID: 117433.
https://doi.org/10.1016/j.neuroimage.2020.117433
[15] Kuchcinski, G., Patin, L., Lopes, R., et al. (2023) Quantita-tive Susceptibility Mapping Demonstrates Different Patterns of Iron Overload in Subtypes of Early-Onset Alzheimer’s Disease. European Radiology, 33, 184-195.
https://doi.org/10.1007/s00330-022-09014-9
[16] van de Zande, N.A., Bulk, M., Najac, C., van der Weerd, L., et al. (2023) Study protOcol of IMAGINE-HD: Imaging Iron Accumulation and Neuroinflammation with 7T-MRI + CSF in Huntington’s Disease. NeuroImage: Clinical, 39, Article ID: 103450.
https://doi.org/10.1016/j.nicl.2023.103450
[17] Chen, L., Hua, J., Ross, C.A., et al. (2019) Altered Brain Iron Content and Deposition Rate in Huntington’s Disease as Indicated by Quantitative Susceptibility MRI. Journal of Neu-roscience Research, 97, 467-479.
https://doi.org/10.1002/jnr.24358
[18] Jing, X.Z., Yuan, X.Z., Li, G.Y., et al. (2022) Increased Magnetic Suscepti-bility in the Deep Gray Matter Nuclei of Wilson’s Disease: Have We Been Ignoring Atrophy? Frontiers in Neuroscience, 16, Article 794375.
https://doi.org/10.3389/fnins.2022.794375
[19] Coffman, C.H., White, R., Subramanian, K., et al. (2022) Quantita-tive Susceptibility Mapping of Both Ring and Non-Ring White Matter Lesions in Relapsing Remitting Multiple Sclerosis. Magnetic Resonance Imaging, 91, 45-51.
https://doi.org/10.1016/j.mri.2022.05.009
[20] Jang, J., Nam, Y., Choi, Y., et al. (2020) Paramagnetic Rims in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Quantitative Susceptibility Mapping Study with 3-T MRI. Journal of Clinical Neurology, 16, 562-572.
https://doi.org/10.3988/jcn.2020.16.4.562
[21] Dean, K.E., Shen, B., Askin, G., Schweitzer, A.D., et al. (2021) A Specific Biomarker for Amyotrophic Lateral Sclerosis: Quantitative Susceptibility Mapping. Clinical Imaging, 75, 125-130.
https://doi.org/10.1016/j.clinimag.2020.12.018
[22] Bhattarai, A., Chen, Z., Ward, P.G.D., et al. (2020) Serial As-sessment of Iron in the Motor Cortex in Limb-Onset Amyotrophic Lateral Sclerosis Using Quantitative Susceptibility Mapping. Quantitative Imaging in Medicine and Surgery, 10, 1465-1476.
https://doi.org/10.21037/qims-20-187
[23] Li, Q., Zhu, W., Wen, X., et al. (2022) Beyond the Motor Cortex: Tha-lamic Iron Deposition Accounts for Disease Severity in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 13, Arti-cle 791300.
https://doi.org/10.3389/fneur.2022.791300
[24] Haller, S., Haacke, E.M., Thurnher, M.M. and Barkhof, F. (2021) Susceptibility-Weighted Imaging: Technical Essentials and Clinical Neurologic Applications. Radiology, 299, 3-26.
https://doi.org/10.1148/radiol.2021203071
[25] Lee, K., Ellison, B., Selim, M., et al. (2023) Quantitative Suscepti-bility Mapping Improves Cerebral Microbleed Detection Relative to Susceptibility-Weighted Images. Journal of Neu-roimaging, 33, 138-146.
https://doi.org/10.1111/jon.13054
[26] Reith, T.P., Prah, M.A., Choi, E.J., et al. (2022) Basal Ganglia Iron Content Increases with Glioma Severity Using Quantitative Susceptibility Mapping: A Potential Biomarker of Tumor Severity. Tomography, 8, 789-797.
https://doi.org/10.3390/tomography8020065
[27] Zeng, S., Ma, H., Xie, D., et al. (2023) Quantitative Susceptibil-ity Mapping Evaluation of Glioma. European Radiology, 33, 6636-6647.
https://doi.org/10.1007/s00330-023-09647-4
[28] Taoka, T., Fukusumi, A., Miyasaka, T., et al. (2017) Structure of the Medullary Veins of the Cerebral Hemisphere and Related Disorders. RadioGraphics, 37, 281-297.
https://doi.org/10.1148/rg.2017160061
[29] Rudilosso, S., Chui, E., Stringer, M.S., et al. (2022) Prevalence and Significance of the Vessel-Cluster Sign on Susceptibility-Weighted Imaging in Patients with Severe Small Vessel Disease. Neurology, 99, e440-e452.
https://doi.org/10.1212/WNL.0000000000200614
[30] Hoi, Y., Jang, J., Nam, Y., Shin, N.Y., et al. (2019) Rela-tionship between Abnormal Hyperintensity on T2-Weighted Images around Developmental Venous Anomalies and Magnetic Susceptibility of Their Collecting Veins: In-Vivo Quantitative Susceptibility Mapping Study. Korean Journal of Radiology, 20, 662-670.
https://doi.org/10.3348/kjr.2018.0685
[31] Min, W. and Zhou, J.H. (2023) Endothelial Cell-Pericyte Interactions in the Pathogenesis of Cerebral Cavernous Malformations (CCMs). Cold Spring Harbor Perspectives in Medicine, 13, a041188.
https://doi.org/10.1101/cshperspect.a041188
[32] Gillespie, C.S., Alnaham, K.E., Richardson, G.E., et al. (2023) Predictors of Future Haemorrhage from Cerebral Cavernous Malformations: A Retrospective Cohort Study. Neurosur-gical Review, 46, Article No. 52.
https://doi.org/10.1007/s10143-023-01949-x
[33] Incerti, I., Fusco, M., Contarino, V.E., et al. (2023) Magnetic Susceptibility as a 1-Year Predictor of Outcome in Familial Cerebral Cavernous Malformations: A Pilot Study. European Radiology, 33, 4158-4166.
https://doi.org/10.1007/s00330-022-09366-2
[34] Zillich, L., Poisel, E., Frank, J., et al. (2022) Multi-Omics Sig-natures of Alcohol Use Disorder in the Dorsal and Ventral Striatum. Translational Psychiatry, 12, Article No. 190.
https://doi.org/10.1038/s41398-022-01959-1
[35] Tan, H., Hubertus, S., Thomas, S., et al. (2023) Association between Iron Accumulation in the Dorsal Striatum and Compulsive Drinking in Alcohol Use Disorder. Psychopharma-cology, 240, 249-257.
https://doi.org/10.1007/s00213-022-06301-7