|
[1]
|
Nikparast, F., Ganji, Z., Danesh Doust, M., Faraji, R. and Zare, H. (2022) Brain Pathological Changes during Neuro-degenerative Diseases and Their Identification Methods: How Does QSM Perform in Detecting This Process? Insights Imaging, 13, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Harada, T., Kudo, K., Fujima, N., et al. (2022) Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. Radiographics, 42, 1161-1176. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Fushimi, Y., Nakajima, S., Sakata, A., et al. (2023) Value of Quantitative Susceptibility Mapping in Clinical Neuroradiology. Journal of Magnetic Resonance Imaging. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wei, H., Guan, X., Cao, P. and Zhang, Y.Y. (2023) Editorial: Quantitative Susceptibility Mapping: Technical Advances and Clinical Applications. Frontiers in Neuroscience, 17, Article 1228061. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vinayagamani, S., Sheelakumari, R., Sabarish, S., et al. (2021) Quantitative Susceptibility Mapping: Technical Considerations and Clinical Applications in Neuroimaging. Journal of Magnetic Resonance Imaging, 53, 23-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kames, C., Doucette, J. and Rauscher, A. (2023) Multi-Echo Dipole Inver-sion for Magnetic Susceptibility Mapping. Magnetic Resonance in Medicine, 89, 2391-2401. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Minibajeva, O., Zeltiņa, E., Karelis, G., et al. (2023) Clinical Symptoms Influencing Parkinson’s Patients’ Quality of Life in Latvia: A Single-Center Cohort Study. Medicina, 59, Article 935. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, K.R., Avecillas-Chasin, J., Nguyen, T.D., et al. (2022) Quanti-tative Evaluation of Brain Iron Accumulation in Different Stages of Parkinson’s Disease. Journal of Neuroimaging, 32, 363-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Mitchell, T., Lehéricy, S., Chiu, S.Y., et al. (2021) Emerging Neuroimaging Biomarkers across Disease Stage in Parkinson Disease: A Review. JAMA Neurology, 78, 1262-1272. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, X., Li, L., Qi, L., et al. (2023) Distribution Pattern of Iron Deposition in the Basal Ganglia of Different Motor Subtypes of Parkinson’s Disease. Neuroscience Letters, 807, Article ID: 137249. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, K., Zhang, L., Mao, H., et al. (2023) The Impact of Iron Deposition on the Fear Circuit of the Brain in Patients with Parkinson’s Disease and Anxiety. Frontiers in Aging Neuro-science, 15, Article 1116516. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Marxreiter, F., Lambrecht, V., Mennecke, A., et al. (2023) Par-kinson’s Disease or Multiple System Atrophy: Potential Separation by Quantitative Susceptibility Mapping. Therapeutic Advances in Neurological Disorders, 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, L., Fang, J. Tang, Z. and Luo, Y.Y. (2022) A Bioinfor-matics Perspective on the Dysregulation of Ferroptosis and Ferroptosis-Related Immune Cell Infiltration in Alzheimer’s Disease. International Journal of Medical Sciences, 19, 1888-1902. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cogswell, P.M., Wiste, H.J., Senjem, M.L., et al. (2021) Associations of Quantitative Susceptibility Mapping with Alzheimer’s Disease Clinical and Imaging Markers. Neuroimage, 224, Article ID: 117433. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kuchcinski, G., Patin, L., Lopes, R., et al. (2023) Quantita-tive Susceptibility Mapping Demonstrates Different Patterns of Iron Overload in Subtypes of Early-Onset Alzheimer’s Disease. European Radiology, 33, 184-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
van de Zande, N.A., Bulk, M., Najac, C., van der Weerd, L., et al. (2023) Study protOcol of IMAGINE-HD: Imaging Iron Accumulation and Neuroinflammation with 7T-MRI + CSF in Huntington’s Disease. NeuroImage: Clinical, 39, Article ID: 103450. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, L., Hua, J., Ross, C.A., et al. (2019) Altered Brain Iron Content and Deposition Rate in Huntington’s Disease as Indicated by Quantitative Susceptibility MRI. Journal of Neu-roscience Research, 97, 467-479. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jing, X.Z., Yuan, X.Z., Li, G.Y., et al. (2022) Increased Magnetic Suscepti-bility in the Deep Gray Matter Nuclei of Wilson’s Disease: Have We Been Ignoring Atrophy? Frontiers in Neuroscience, 16, Article 794375. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Coffman, C.H., White, R., Subramanian, K., et al. (2022) Quantita-tive Susceptibility Mapping of Both Ring and Non-Ring White Matter Lesions in Relapsing Remitting Multiple Sclerosis. Magnetic Resonance Imaging, 91, 45-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jang, J., Nam, Y., Choi, Y., et al. (2020) Paramagnetic Rims in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Quantitative Susceptibility Mapping Study with 3-T MRI. Journal of Clinical Neurology, 16, 562-572. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dean, K.E., Shen, B., Askin, G., Schweitzer, A.D., et al. (2021) A Specific Biomarker for Amyotrophic Lateral Sclerosis: Quantitative Susceptibility Mapping. Clinical Imaging, 75, 125-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bhattarai, A., Chen, Z., Ward, P.G.D., et al. (2020) Serial As-sessment of Iron in the Motor Cortex in Limb-Onset Amyotrophic Lateral Sclerosis Using Quantitative Susceptibility Mapping. Quantitative Imaging in Medicine and Surgery, 10, 1465-1476. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, Q., Zhu, W., Wen, X., et al. (2022) Beyond the Motor Cortex: Tha-lamic Iron Deposition Accounts for Disease Severity in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 13, Arti-cle 791300. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Haller, S., Haacke, E.M., Thurnher, M.M. and Barkhof, F. (2021) Susceptibility-Weighted Imaging: Technical Essentials and Clinical Neurologic Applications. Radiology, 299, 3-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lee, K., Ellison, B., Selim, M., et al. (2023) Quantitative Suscepti-bility Mapping Improves Cerebral Microbleed Detection Relative to Susceptibility-Weighted Images. Journal of Neu-roimaging, 33, 138-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Reith, T.P., Prah, M.A., Choi, E.J., et al. (2022) Basal Ganglia Iron Content Increases with Glioma Severity Using Quantitative Susceptibility Mapping: A Potential Biomarker of Tumor Severity. Tomography, 8, 789-797. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zeng, S., Ma, H., Xie, D., et al. (2023) Quantitative Susceptibil-ity Mapping Evaluation of Glioma. European Radiology, 33, 6636-6647. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Taoka, T., Fukusumi, A., Miyasaka, T., et al. (2017) Structure of the Medullary Veins of the Cerebral Hemisphere and Related Disorders. RadioGraphics, 37, 281-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Rudilosso, S., Chui, E., Stringer, M.S., et al. (2022) Prevalence and Significance of the Vessel-Cluster Sign on Susceptibility-Weighted Imaging in Patients with Severe Small Vessel Disease. Neurology, 99, e440-e452. [Google Scholar] [CrossRef]
|
|
[30]
|
Hoi, Y., Jang, J., Nam, Y., Shin, N.Y., et al. (2019) Rela-tionship between Abnormal Hyperintensity on T2-Weighted Images around Developmental Venous Anomalies and Magnetic Susceptibility of Their Collecting Veins: In-Vivo Quantitative Susceptibility Mapping Study. Korean Journal of Radiology, 20, 662-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Min, W. and Zhou, J.H. (2023) Endothelial Cell-Pericyte Interactions in the Pathogenesis of Cerebral Cavernous Malformations (CCMs). Cold Spring Harbor Perspectives in Medicine, 13, a041188. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gillespie, C.S., Alnaham, K.E., Richardson, G.E., et al. (2023) Predictors of Future Haemorrhage from Cerebral Cavernous Malformations: A Retrospective Cohort Study. Neurosur-gical Review, 46, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Incerti, I., Fusco, M., Contarino, V.E., et al. (2023) Magnetic Susceptibility as a 1-Year Predictor of Outcome in Familial Cerebral Cavernous Malformations: A Pilot Study. European Radiology, 33, 4158-4166. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zillich, L., Poisel, E., Frank, J., et al. (2022) Multi-Omics Sig-natures of Alcohol Use Disorder in the Dorsal and Ventral Striatum. Translational Psychiatry, 12, Article No. 190. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tan, H., Hubertus, S., Thomas, S., et al. (2023) Association between Iron Accumulation in the Dorsal Striatum and Compulsive Drinking in Alcohol Use Disorder. Psychopharma-cology, 240, 249-257. [Google Scholar] [CrossRef] [PubMed]
|