丙泊酚及七氟醚对乳腺癌影响的研究进展
Advances in the Study of the Effects of Propofol and Sevoflurane on Breast Cancer
DOI: 10.12677/ACM.2023.13112399, PDF, HTML, XML, 下载: 144  浏览: 195 
作者: 王 超, 艾吾再力·阿吉艾科拜尔, 孙金辉:新疆医科大学第三临床医学院(附属肿瘤医院),新疆 乌鲁木齐;张 冰*:新疆医科大学附属肿瘤医院麻醉科,新疆 乌鲁木齐
关键词: 乳腺癌丙泊酚七氟醚麻醉药物Breast Cancer Propofol Sevoflurane Anaesthetic
摘要: 近年来,乳腺癌发病率逐渐升高,手术依旧是乳腺癌患者的重要治疗方法。手术的实施离不开麻醉的参与,麻醉药物对乳腺癌影响的相关研究也逐渐深入。丙泊酚和七氟醚分别是目前临床当中最常使用的静脉麻醉药和吸入麻醉药,研究发现二者可对乳腺癌患者围术期的治疗、生活质量产生重要影响。本文对乳腺癌发展相关机制及通路和麻醉药对乳腺癌发生发展的影响进行综述。
Abstract: The incidence of breast cancer has gradually increased in recent years, surgery remains an im-portant treatment for breast cancer patients. Surgery cannot be performed without the involve-ment of anaesthesia, and studies related to the effects of anaesthetic drugs on breast cancer are gradually gaining ground. Propofol and sevoflurane are the most commonly used intravenous an-aesthetics and inhalation anaesthetics, respectively, and have been found to have a significant im-pact on the perioperative treatment and quality of life of breast cancer patients. This paper pro-vides a review of the mechanisms and pathways associated with breast cancer development and the effects of anaesthetics on the development of breast cancer.
文章引用:王超, 艾吾再力·阿吉艾科拜尔, 孙金辉, 张冰. 丙泊酚及七氟醚对乳腺癌影响的研究进展[J]. 临床医学进展, 2023, 13(11): 17116-17122. https://doi.org/10.12677/ACM.2023.13112399

1. 引言

乳腺癌是女性高发的恶性肿瘤之一,仅次于肺癌的致死率,成为第二大致死原因 [1] 。GLOBOCAN2020统计2020年新发癌症病例约为2千万例,在女性群体中乳腺癌首次超过肺癌成为最常见的癌症,新发乳腺癌226万例,占总体癌症发病的11.7%。目前尽管放射治疗、化学治疗甚至靶向和免疫疗法得到了发展,但手术仍然是实体肿瘤患者的一线治疗手段 [2] 。手术过程中残留的微小病变通过血液系统及淋巴系统发生局部增殖、转移或复发,也是导致患者死亡的原因之一 [3] 。

手术的实施离不开麻醉的参与。麻醉及麻醉药物在接受手术治疗或非手术镇静等特定条件下(如入住重症监护病房的肿瘤患者)的作用尚未引起足够重视。能够影响乳腺癌复发及转移的因素较多,而肿瘤复发转移的概率在一定程度上取决于患者抗瘤能力与肿瘤致瘤能力的相对强弱 [2] 。围术期的患者抗瘤作用相对较弱,外科手术的不良影响包括引发局部及全身炎症、导致患者免疫抑制、儿茶酚胺水平升高等,围术期抗肿瘤相关因子如IL-2、TNF-α等的合成释放环节减弱,促瘤因子如IL-4、IL-5等释放增加也提高了肿瘤复发转移的可能性 [2] 。回顾肿瘤学和麻醉学的研究发现,麻醉药物对肿瘤细胞生物学行为影响的相关研究是其中一个重点。丙泊酚不仅在乳腺癌手术中使用,而且在肿瘤患者重症监护病房、术后恢复病房广泛应用,与临床关系密切,同七氟醚一样是应用在肿瘤患者中麻醉药物的主要代表之一。有研究发现丙泊酚,七氟醚等麻醉药物和患者的应激可直接对肿瘤细胞产生影响,同时保护围手术期免疫系统功能间接影响患者预后 [4] 。

2. 乳腺癌转移相关机制及通路

目前大量研究证明乳腺癌的发生发展与体内信号通路的异常调控及肿瘤发生转移相关酶类及蛋白有很大关系。

2.1. MAPK通路

丝裂原活化蛋白激酶(MAPK)在信号从细胞表面传递至细胞核内部发挥重要作用,能被不同的细胞外刺激如细胞因子、神经递质、激素、细胞应激及细胞黏附等激活。MAPK通路为依次激活的三级激酶模式,即MAPK激酶激酶(MAP kinasekinasekinase, MKKK)、MAPK激酶(MAP kinasekinase, MKK)以及MAPK,三者共同对细胞的生长及分化、环境的应激、炎症反应等多种细胞病理及生理过程发挥调节作用。MAPK可分为四个亚型:ERK1/2、p38、JNK和ERK5,研究发现,ERK1/2通路的激活会与胰岛素样生长因子-1 (IGF-1)相互作用,影响乳腺癌细胞亚型的分型,对乳腺癌的发生发展过程发挥促进作用 [5] 。研究发现乳腺癌细胞中活性氧(ROS)会激活JNK信号通路进而上调血管内皮生长因子(VEGF)表达,促进细胞增殖,抑制细胞凋亡,从而促进乳腺癌细胞的生长 [6] 。

2.2. mTOR通路

雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)是一种非典型丝氨酸/苏氨酸激酶,是磷酸肌醇–激酶(phosphatidy-linositol kinase-related kinase, PIKK)相关蛋白家族成员。可与多种蛋白及细胞因子组成信号级联,如:磷酸肌醇3激酶(PI3K)/蛋白激酶B (AKT)、丝裂原活化蛋白激酶(MAPK)、血管内皮生长因子(VEGF)、核因子-κB (NF-κB)及抑癌基因p53等。在细胞中,它以两种不同的多蛋白复合物形式存在:mTORC1和mTORC2。mTOR参与转录,翻译以及核糖体合成等生物过程,在细胞生长、凋亡、自噬、葡萄胎代谢以及DNA修复等一系列过程中发挥重要作用。mTOR信号的过度激活可促进细胞增殖,其调控异常与肿瘤的发生和发展密切相关 [7] 。有动物实验发现,AKT作为mTOR通路的上游信号,其过表达会不断激活mTOR通路,从而增强炎症诱导的小鼠骨髓源性破骨细胞形成及其功能,增强乳腺癌细胞增殖、迁移和侵袭的能力 [8] 。有研究发现mTOR抑制剂在体内外均对HER2阳性乳腺癌有很强的抗肿瘤作用 [9] 。

2.3. JAK/STAT3通路

JAK-STAT通路是由细胞因子刺激的一条信号转导通路,参与细胞生长、分化、凋亡以及免疫调节等多个重要生物学过程。此通路主要由以下三个类别组成:酪氨酸激酶相关受体、酪氨酸激酶JAK和产生效应的转录因子STAT。该通路的失调与多种癌症和自身免疫性疾病有关,许多细胞因子及生长因子可通过JAK-STAT信号通路转导信号,包括白细胞介素2-7 (IL2-7)、粒细胞–巨噬细胞集落刺激因子(GM-CSF)、表皮生长因子(EFG)、干扰素(IFN)等。这些细胞因子和生长因子在细胞膜上有相应受体,不具有激酶活性但是胞内段具有酪氨酸激酶的结合位点,通过与之结合的JAK来磷酸化各种靶蛋白的酪氨酸残基从胞外向胞内传递信号。JAK由JAK1-3和TYK2组成,STAT由STAT1-6组成。在乳腺癌中,IL-6-JAK-STAT3通路经常被激活,在促进乳腺癌转移的同时抑制抗肿瘤免疫反应 [10] 。研究发现IL-6与可溶性受体(sIL6R)结合激活下游的JAK/STAT3信号通路,进而增强乳腺癌的侵袭性 [11] 。也有研究证实在乳腺癌组织及细胞系中,p-STAT3表达上调,且p-STAT3显著增强了乳腺癌细胞的增值和侵袭能力 [12] 。

2.4. EGFR通路

上皮生长因子受体(Epidermal Growth Factor Receptor, EGFR)主要分布在哺乳动物上皮、成纤维、胶质及角质细胞等细胞表面,是一种属于酪氨酸激酶型受体的糖蛋白。许多实体瘤中均存在EGFR的高表达或异常表达,使得肿瘤进一步发生发展。同样地,EGFR在乳腺癌组织及细胞中较正常组织细胞表达上调,并且显著增强了乳腺癌细胞的增殖和侵袭,在体内沉默表达的EGFR可显著抑制乳腺癌细胞的生长 [12] 。乳腺癌细胞中上皮生长因子受体蛋白表达的调控机制,包括上皮生长因子受体突变、扩增、细胞功能障碍、循环加速和降解紊乱等。有研究证明多肽-N-乙酰氨基半乳糖转移酶8 (GALNT8)可作为肿瘤抑制因子,通过调控EGFR通路抑制乳腺癌转移并且抑制上皮细胞–间充质转化(EMT)过程。EMT目前已成为癌症进展和转移的一个重要发展过程,因为它诱导原发肿瘤转移到其他器官,允许癌细胞迁移、侵入周围组织并逃逸到血液中 [13] [14] 。

3. 麻醉药对乳腺癌的影响

尽管手术是大多是实体肿瘤如乳腺癌的首选治疗方法,但手术可能导致有转移潜力的肿瘤细胞释放并入血,同时导致围术期患者免疫抑制。手术带来的组织创伤以及围术期应激反应与可能会促进残留肿瘤细胞的生长,增加癌症复发的风险,且麻醉药物引起肿瘤微环境的改变也是一个值得关注的领域。自从shapior [15] 等人首次证明麻醉药在癌症进展和转移的作用以来,越来越多的证据表明麻醉药可能在肿瘤的生长、转移及复发中发挥相关作用。围术期使用具有免疫反应保护作用的麻醉药或许可以减少肿瘤的进展。丙泊酚和七氟醚分别是目前临床当中最常使用的静脉麻醉药和吸入麻醉药,两种麻醉药对肿瘤细胞和免疫功能均有不同的作用。目前已发表的大多数研究数据的缺陷是研究是在体外进行的,其条件与体内不同,需要进行大量随机临床试验以研究麻醉药在减少乳腺癌复发转移和提高肿瘤患者生存率方面是否有效。

3.1. 丙泊酚对乳腺癌转移复发的影响

丙泊酚(2,6-二异丙基苯酚)是一种主要的静脉催眠药,广泛应用于临床手术过程中麻醉诱导、维持和ICU危重症患者的镇静。越来越多的证据表明异丙酚在不同癌症类型中的功能作用。丙泊酚能影响免疫系统并调节部分促瘤因子的合成等参与到乳腺癌转移及复发的过程 [13] 。丙泊酚对于免疫的调控表现在对NK细胞数量以及活性的影响、对细胞程序性死亡–配体1 (PDL-1)表达的上调和对μ-阿片受体(MOR)表达减弱等方面,共同降低乳腺癌转移及复发的可能 [16] [17] [18] 。除此之外,丙泊酚对乳腺癌细胞的影响还包括对基质金属蛋白酶(matrix metalloproteinase, MMPs)、H19 (lncRNA)、MicroRNAs (miRNAs)等的调节抑制乳腺癌的侵袭和迁移 [19] [20] [21] [22] 。

3.2. 七氟醚对乳腺癌转移复发的影响

丙泊酚作为传统静脉麻醉药的代表通常与吸入麻醉药作比较。七氟醚相比于其他吸入麻醉药,麻醉效果较好,副作用较少,理化性质较稳定,因此也是吸入麻醉药中在临床上应用较广泛的一种。近年来七氟醚对乳腺癌转移影响的相关研究结果不全相同:有研究表明七氟醚能通过Circ001589/miR-588抑制乳腺癌细胞活力,促进细胞凋亡 [23] ;七氟醚可通过调控miR-203表达抑制乳腺癌细胞增殖和侵袭 [24] ;也有研究结果显示七氟醚可在一定浓度下增加乳腺癌细胞系MCF-7 (ER+)及MDA-MB-231 (ER-)增殖、迁移及侵袭 [25] 。一些研究的结果与之不同,七氟醚以剂量、时间和细胞类型依赖的方式增加了体外乳腺癌细胞的存活率,但对细胞增殖、迁移或TRPV1表达没有影响 [26] ,另外一项研究表明异丙酚和七氟醚均可抑制人乳腺癌细胞的转移能力,且二者抑制作用无差异,其机制可能与下调MMP-9表达有关 [27] 。

3.3. 丙泊酚相比七氟醚对乳腺癌患者预后的影响

也有临床研究比较了采用丙泊酚经静脉麻醉与吸入麻醉药物对乳腺癌患者术后预后的影响,结果显示,接受丙泊酚麻醉方案的患者相比接受七氟醚麻醉的患者,术后一年及五年生存率较高,但消除混杂因素(七氟醚麻醉组心脏病患者比例较丙泊酚麻醉组高)之后,丙泊酚麻醉在提高乳腺癌患者术后生存率方面无显著优势 [28] 。也有研究结果表明,丙泊酚组乳腺癌患者相比七氟醚组术后肿瘤复发率较低,但从3年及5年生存率上看来,两组的差异并无统计学意义 [29] [30] 。一项来自瑞典的回顾性研究的结果提示:丙泊酚组和七氟醚组的五年生存率分别为91.0%和81.8% (P = 0.126)。五年后的存活率最高高9.2个百分点(危险比1.46,95%可信区间1.10~1.95),即与七氟醚相比,丙泊酚在乳腺癌患者中可能具有生存优势 [20] 。

3.4. 丙泊酚相比七氟醚对乳腺癌患者生物标志物的影响

一些有关生物标志物的研究表明:1) 与七氟醚相比,丙泊酚对乳腺癌手术患者血管内皮生长因子C和转化生长因子β有更好的抑制作用 [31] ;2) 与接受七氟醚或阿片类药物麻醉的乳腺癌手术女性患者相比,接受丙泊酚麻醉(接受椎旁阻滞而不是静脉注射阿片类药物)的女性血液中自然杀伤细胞的活性更高 [16] ,另外有研究结果显示乳腺癌术中丙泊酚组及七氟醚组在辅助性T细胞 [32] 、自然杀伤细胞 [32] [33] 、细胞毒性T细胞 [32] [33] 及乳腺癌细胞凋亡率 [33] 表达上无差异,或许表明麻醉药丙泊酚及七氟醚对乳腺癌围术期免疫活动的影响可能微乎其微;3) 与接受七氟醚或阿片类药物麻醉的乳腺癌手术患者相比,丙泊酚组或椎旁组的癌细胞凋亡率更高 [34] 。此外,转录因子缺氧诱导因子,其能提高癌细胞对缺氧、酸中毒和能量供应不足时的适应能力,在暴露于挥发性麻醉药物时上调,而当暴露于丙泊酚时则相反 [35] [36] [37] 。生物标志物相关的研究表明,吸入挥发性麻醉药可能会增加局部复发或转移的风险,而丙泊酚全身麻醉可能是中性的,甚至是保护性的。从此看来,各项研究麻醉药对乳腺癌影响的结果各不相同,因此深入探索麻醉药对乳腺癌发生发展的影响是很有必要的。

4. 小结与展望

到目前为止,不同的麻醉药物及麻醉技术对癌症患者术后预后的影响还并未明确。实验室和动物研究表明,七氟醚可以增强乳腺癌的发生和转移,而丙泊酚丙泊酚可通过减弱对免疫系统的抑制、促进肿瘤细胞凋亡以及其他直接抗肿瘤作用来降低癌细胞的活性。然而临床研究结果发现丙泊酚及七氟醚对乳腺癌患者长期生存率、转移的影响并无差异。应进一步研究麻醉药对乳腺癌细胞及免疫微环境的作用机制的同时进行大样本、多中心的前瞻性临床研究,并涉及到不同亚型、不同肿瘤分期的乳腺癌症。只有清楚地认识麻醉药与癌症的关系才可能更好得改善患者的预后。

参考文献到目前为止,不同的麻醉药物及麻醉技术对癌症患者术后预后的影响还并未明确。实验室和动物研究表明,七氟醚可以增强乳腺癌的发生和转移,而丙泊酚可通过减弱对免疫系统的抑制、促进肿瘤细胞凋亡以及其他直接抗肿瘤作用来降低癌细胞的活性。然而临床研究结果发现丙泊酚及七氟醚对乳腺癌患者长期生存率、转移的影响并无差异。应进一步研究麻醉药对乳腺癌细胞及免疫微环境的作用机制的同时进行大样本、多中心的前瞻性临床研究,并涉及到不同亚型、不同肿瘤分期的乳腺癌症。只有清楚地认识麻醉药与癌症的关系才可能更好地改善患者的预后。

[1] Holly, E., Elizabeth, D., Farah, M., et al. (2017) Breast Cancer Surgical Treatment Choices in Newfoundland and Labrador, Canada: Patient and Surgeon Perspectives. Journal of Public Health Research, 6, 867. https://doi.org/10.4081/jphr.2017.867

[2] Hiller, J.G., Perry, N.J., Poulogiannis, G., et al. (2018) Perioperative Events Influence Cancer Recurrence Risk after Surgery. Nature Reviews Clinical Oncology, 15, 205-218. https://doi.org/10.1038/nrclinonc.2017.194

[3] Rafferty, E.A., Park, J.M., Philpotts, L.E., et al. (2013) Assessing Radiologist Performance Using Combined Digital Mammography and Breast Tomosynthesis Compared with Digital Mammography Alone: Results of a Multicenter, Multireader Trial. Radiology, 266, 104-113. https://doi.org/10.1148/radiol.12120674

[4] Tkachev, V., Goodell, S., Opipari, A.W., et al. (2015) Programmed Death-1 Controls T Cell Survival by Regulating Oxidative Metabolism. The Journal of Immunology, 194, 5789-5800. https://doi.org/10.4049/jimmunol.1402180

[5] Sarfstein, R., Nagaraj, K., Leroith, D., et al. (2019) Differential Effects of Insulin and IGF1 Receptors on ERK and AKT Subcellular Distribution in Breast Cancer Cells. Cells, 8, Article No. 1499. https://doi.org/10.3390/cells8121499

[6] Huang, Y.C., Pan, W., Li, H., et al. (2020) c-Jun NH2-Terminal Kinase Suppression Significantly Inhibits the Growth of Transplanted Breast Tumors in Mice. Journal of International Medical Research, 48. https://doi.org/10.1177/0300060520929858

[7] Tian, T., Li, X. and Zhang, J. (2019) mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. International Journal of Molecular Sciences, 20, 755. https://doi.org/10.3390/ijms20030755

[8] Jiang, W., Rixiati, Y., Huang, H., et al. (2020) Asperolide A Prevents Bone Metastatic Breast Cancer via the PI3K/AKT/mTOR/c-Fos/NFATc1 Signaling Pathway. Cancer Medicine, 9, 8173-8185. https://doi.org/10.1002/cam4.3432

[9] Casadevall, D., Hernández-Prat, A., García-Alonso, S., et al. (2022) mTOR Inhibition and T-DM1 in HER2-Positive Breast Cancer. Molecular Cancer Research, 20, 1108-1121. https://doi.org/10.1158/1541-7786.MCR-21-0545

[10] Manore, S.G., Doheny, D.L., Wong, G.L., et al. (2022) IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Frontiers in Oncology, 12, Article ID: 866014. https://doi.org/10.3389/fonc.2022.866014

[11] Khatib, A., Solaimuthu, B., Ben Yosef, M., et al. (2020) The Glutathione Peroxidase 8 (GPX8)/IL-6/STAT3 Axis Is Essential in Maintaining an Aggressive Breast Cancer Phenotype. Proceedings of the National Academy of Sciences of the United States of America, 117, 21420-21431. https://doi.org/10.1073/pnas.2010275117

[12] Song, X., Liu, Z. and Yu, Z. (2020) EGFR Promotes the Development of Triple Negative Breast Cancer through JAK/STAT3 Signaling. Cancer Management and Research, 12, 703-717. https://doi.org/10.2147/CMAR.S225376

[13] Cassinello, F., Prieto, I., Del Olmo, M., et al. (2015) Cancer Surgery: How May Anesthesia Influence Outcome? Journal of Clinical Anesthesia, 27, 262-272. https://doi.org/10.1016/j.jclinane.2015.02.007

[14] Zhang, N., Ng, A.S., Cai, S., et al. (2021) Novel Therapeutic Strategies: Targeting Epithelial-Mesenchymal Transition in Colorectal Cancer. The Lancet Oncology, 22, e358-e368. https://doi.org/10.1016/S1470-2045(21)00343-0

[15] Shapiro, J., Jersky, J., Katzav, S., et al. (1981) Anesthetic Drugs Accelerate the Progression of Postoperative Metastases of Mouse Tumors. Journal of Clinical Investigation, 68, 678-685. https://doi.org/10.1172/JCI110303

[16] Buckley, A., Mcquaid, S., Johnson, P., et al. (2014) Effect of Anaesthetic Technique on the Natural Killer Cell Anti-Tumour Activity of Serum from Women Undergoing Breast Cancer Surgery: A Pilot Study. British Journal of Anaesthesia, 113, i56-i62. https://doi.org/10.1093/bja/aeu200

[17] Zhang, X., Li, F., Zheng, Y., et al. (2019) Propofol Reduced Mammosphere Formation of Breast Cancer Stem Cells via PD-L1/Nanog in Vitro. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 9078209. https://doi.org/10.1155/2019/9078209

[18] Wang, X. and Liu, Y. (2020) PD-L1 Expression in Tumor Infiltrated Lymphocytes Predicts Survival in Triple-Negative Breast Cancer. Pathology—Research and Practice, 216, Article ID: 152802. https://doi.org/10.1016/j.prp.2019.152802

[19] Meng, C., Song, L., Wang, J., et al. (2017) Propofol Induces Proliferation Partially via Downregulation of p53 Protein and Promotes Migration via Activation of the Nrf2 Pathway in Human Breast Cancer Cell Line MDA-MB-231. Oncology Reports, 37, 841-848. https://doi.org/10.3892/or.2016.5332

[20] Enlund, M., Berglund, A., Ahlstrand, R., et al. (2020) Survival after Primary Breast Cancer Surgery Following Propofol or Sevoflurane General Anesthesia—A Retrospective, Multicenter, Database Analysis of 6305 Swedish Patients. Acta Anaesthesiologica Scandinavica, 64, 1048-1054. https://doi.org/10.1111/aas.13644

[21] 康忠奎, 黄伟, 谢先丰, 等. 丙泊酚通过下调miR-135b表达抑制乳腺癌MDA-MB-231细胞增殖、侵袭和迁移的研究[J]. 中国临床药理学杂志, 2020, 36(15): 2261-2264.

[22] Du, Q., Zhang, X., Zhang, X., et al. (2019) Propofol Inhibits Proliferation and Epithelial-Mesenchymal Transition of MCF-7 Cells by Suppressing miR-21 Expression. Artificial Cells, Nanomedicine, and Biotechnology, 47, 1265-1271. https://doi.org/10.1080/21691401.2019.1594000

[23] 吕春宇, 巩立国, 陈强, 等. 七氟醚通过Circ_001589/miR-588调控乳腺癌细胞活力与凋亡[J]. 中华内分泌外科杂志, 2021, 15(6): 651-656.

[24] Liu, J., Yang, L., Guo, X., et al. (2018) Sevoflurane Suppresses Proliferation by Upregulating microRNA-203 in Breast Cancer Cells. Molecular Medicine Reports, 18, 455-460. https://doi.org/10.3892/mmr.2018.8949

[25] Ecimovic, P., Mchugh, B., Murray, D., et al. (2013) Effects of Sevoflurane on Breast Cancer Cell Function in Vitro. Anticancer Research, 33, 4255-4260.

[26] Deng, X., Vipani, M., Liang, G., et al. (2020) Sevoflurane Modulates Breast Cancer Cell Survival via Modulation of Intracellular Calcium Homeostasis. BMC Anesthesiology, 20, Article No. 253. https://doi.org/10.1186/s12871-020-01139-y

[27] 徐红萌, 张艳红, 邱东洁, 等. 异丙酚和七氟醚对人乳腺癌细胞转移能力的影响[J]. 中华麻醉学杂志, 2015, 35(10): 1248-1250.

[28] Enlund, M., Berglund, A., Andreasson, K., et al. (2014) The Choice of Anaesthetic—Sevoflurane or Propofol—and Outcome from Cancer Surgery: A Retrospective Analysis. Upsala Journal of Medical Sciences, 119, 251-261. https://doi.org/10.3109/03009734.2014.922649

[29] Lee, J.H., Kang, S.H., Kim, Y., et al. (2016) Effects of Propofol-Based Total Intravenous Anesthesia on Recurrence and Overall Survival in Patients after Modified Radical Mastectomy: A Retrospective Study. Korean Journal of Anesthesiology, 69, 126-132. https://doi.org/10.4097/kjae.2016.69.2.126

[30] Enlund, M., Berglund, A., Enlund, A., et al. (2022) Volatile versus Propofol General Anesthesia and Long-Term Survival after Breast Cancer Surgery: A National Registry Retrospective Cohort Study. Anesthesiology, 137, 315-326. https://doi.org/10.1097/ALN.0000000000004309

[31] Looney, M., Doran, P. and Buggy, D.J. (2010) Effect of Anesthetic Technique on Serum Vascular Endothelial Growth Factor C and Transforming Growth Factor β in Women Undergoing Anesthesia and Surgery for Breast Cancer. Anesthesiology, 113, 1118-1125. https://doi.org/10.1097/ALN.0b013e3181f79a69

[32] Oh, C.S., Lee, J., Yoon, T.G., et al. (2018) Effect of Equipotent Doses of Propofol versus Sevoflurane Anesthesia on Regulatory T Cells after Breast Cancer Surgery. Anesthesiology, 129, 921-931. https://doi.org/10.1097/ALN.0000000000002382

[33] Lim, J.A., Oh, C.S., Yoon, T.G., et al. (2018) The Effect of Propofol and Sevoflurane on Cancer Cell, Natural Killer Cell, and Cytotoxic T Lymphocyte Function in Patients Undergoing Breast Cancer Surgery: An in Vitro Analysis. BMC Cancer, 18, Article No. 159. https://doi.org/10.1186/s12885-018-4064-8

[34] Jaura, A.I., Flood, G., Gallagher, H.C., et al. (2014) Differential Effects of Serum from Patients Administered Distinct Anaesthetic Techniques on Apoptosis in Breast Cancer Cells in Vitro: A Pilot Study. British Journal of Anaesthesia, 113, i63-i67. https://doi.org/10.1093/bja/aet581

[35] Tavare, A.N., Perry, N.J., Benzonana, L.L., et al. (2012) Cancer Recurrence after Surgery: Direct and Indirect Effects of Anesthetic Agents. International Journal of Cancer, 130, 1237-1250. https://doi.org/10.1002/ijc.26448

[36] Tanaka, T., Takabuchi, S., Nishi, K., et al. (2010) The Intravenous Anesthetic Propofol Inhibits Lipopolysaccharide-Induced Hypoxia-Inducible Factor 1 Activation and Suppresses the Glucose Metabolism in Macrophages. Journal of Anesthesia, 24, 54-60. https://doi.org/10.1007/s00540-009-0829-1

[37] Benzonana, L.L., Perry, N.J., Watts, H.R., et al. (2013) Isoflurane, a Commonly Used Volatile Anesthetic, Enhances Renal Cancer Growth and Malignant Potential via the Hypoxia-Inducible Factor Cellular Signaling Pathway in Vitro. Anesthesiology, 119, 593-605. https://doi.org/10.1097/ALN.0b013e31829e47fd

NOTES

*通讯作者。

参考文献

[1] Holly, E., Elizabeth, D., Farah, M., et al. (2017) Breast Cancer Surgical Treatment Choices in Newfoundland and Labra-dor, Canada: Patient and Surgeon Perspectives. Journal of Public Health Research, 6, 867.
https://doi.org/10.4081/jphr.2017.867
[2] Hiller, J.G., Perry, N.J., Poulogiannis, G., et al. (2018) Perioperative Events Influence Cancer Recurrence Risk after Surgery. Nature Reviews Clinical Oncology, 15, 205-218.
https://doi.org/10.1038/nrclinonc.2017.194
[3] Rafferty, E.A., Park, J.M., Philpotts, L.E., et al. (2013) Assessing Radiologist Performance Using Combined Digital Mammography and Breast Tomosynthesis Compared with Digital Mammography Alone: Results of a Multicenter, Multireader Trial. Radiology, 266, 104-113.
https://doi.org/10.1148/radiol.12120674
[4] Tkachev, V., Goodell, S., Opipari, A.W., et al. (2015) Programmed Death-1 Controls T Cell Survival by Regulating Oxidative Metabolism. The Journal of Immunology, 194, 5789-5800.
https://doi.org/10.4049/jimmunol.1402180
[5] Sarfstein, R., Nagaraj, K., Leroith, D., et al. (2019) Differential Ef-fects of Insulin and IGF1 Receptors on ERK and AKT Subcellular Distribution in Breast Cancer Cells. Cells, 8, Article No. 1499.
https://doi.org/10.3390/cells8121499
[6] Huang, Y.C., Pan, W., Li, H., et al. (2020) c-Jun NH2-Terminal Kinase Suppression Significantly Inhibits the Growth of Transplanted Breast Tumors in Mice. Journal of International Medical Research, 48.
https://doi.org/10.1177/0300060520929858
[7] Tian, T., Li, X. and Zhang, J. (2019) mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. International Journal of Molecular Sciences, 20, 755.
https://doi.org/10.3390/ijms20030755
[8] Jiang, W., Rixiati, Y., Huang, H., et al. (2020) Asperolide A Prevents Bone Metastatic Breast Cancer via the PI3K/AKT/mTOR/c-Fos/NFATc1 Signaling Pathway. Cancer Medicine, 9, 8173-8185.
https://doi.org/10.1002/cam4.3432
[9] Casadevall, D., Hernández-Prat, A., García-Alonso, S., et al. (2022) mTOR Inhibition and T-DM1 in HER2-Positive Breast Cancer. Molecular Cancer Research, 20, 1108-1121.
https://doi.org/10.1158/1541-7786.MCR-21-0545
[10] Manore, S.G., Doheny, D.L., Wong, G.L., et al. (2022) IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Frontiers in Oncology, 12, Article ID: 866014.
https://doi.org/10.3389/fonc.2022.866014
[11] Khatib, A., Solaimuthu, B., Ben Yosef, M., et al. (2020) The Glutathione Peroxidase 8 (GPX8)/IL-6/STAT3 Axis Is Essential in Maintaining an Aggressive Breast Cancer Phe-notype. Proceedings of the National Academy of Sciences of the United States of America, 117, 21420-21431.
https://doi.org/10.1073/pnas.2010275117
[12] Song, X., Liu, Z. and Yu, Z. (2020) EGFR Promotes the Develop-ment of Triple Negative Breast Cancer through JAK/STAT3 Signaling. Cancer Management and Research, 12, 703-717.
https://doi.org/10.2147/CMAR.S225376
[13] Cassinello, F., Prieto, I., Del Olmo, M., et al. (2015) Cancer Surgery: How May Anesthesia Influence Outcome? Journal of Clinical Anesthesia, 27, 262-272.
https://doi.org/10.1016/j.jclinane.2015.02.007
[14] Zhang, N., Ng, A.S., Cai, S., et al. (2021) Novel Therapeutic Strategies: Targeting Epithelial-Mesenchymal Transition in Colorectal Cancer. The Lancet Oncology, 22, e358-e368.
https://doi.org/10.1016/S1470-2045(21)00343-0
[15] Shapiro, J., Jersky, J., Katzav, S., et al. (1981) Anesthetic Drugs Accelerate the Progression of Postoperative Metastases of Mouse Tumors. Journal of Clinical Investigation, 68, 678-685.
https://doi.org/10.1172/JCI110303
[16] Buckley, A., Mcquaid, S., Johnson, P., et al. (2014) Effect of Anaesthetic Technique on the Natural Killer Cell Anti-Tumour Activity of Serum from Women Undergoing Breast Can-cer Surgery: A Pilot Study. British Journal of Anaesthesia, 113, i56-i62.
https://doi.org/10.1093/bja/aeu200
[17] Zhang, X., Li, F., Zheng, Y., et al. (2019) Propofol Reduced Mam-mosphere Formation of Breast Cancer Stem Cells via PD-L1/Nanog in Vitro. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 9078209.
https://doi.org/10.1155/2019/9078209
[18] Wang, X. and Liu, Y. (2020) PD-L1 Expression in Tumor Infiltrated Lymphocytes Predicts Survival in Triple-Negative Breast Cancer. Pathology—Research and Practice, 216, Article ID: 152802.
https://doi.org/10.1016/j.prp.2019.152802
[19] Meng, C., Song, L., Wang, J., et al. (2017) Propofol Induces Pro-liferation Partially via Downregulation of p53 Protein and Promotes Migration via Activation of the Nrf2 Pathway in Human Breast Cancer Cell Line MDA-MB-231. Oncology Reports, 37, 841-848.
https://doi.org/10.3892/or.2016.5332
[20] Enlund, M., Berglund, A., Ahlstrand, R., et al. (2020) Survival after Primary Breast Cancer Surgery Following Propofol or Sevoflurane General Anesthesia—A Retrospective, Multicenter, Database Analysis of 6305 Swedish Patients. Acta Anaesthesiologica Scandinavica, 64, 1048-1054.
https://doi.org/10.1111/aas.13644
[21] 康忠奎, 黄伟, 谢先丰, 等. 丙泊酚通过下调miR-135b表达抑制乳腺癌MDA-MB-231细胞增殖、侵袭和迁移的研究[J]. 中国临床药理学杂志, 2020, 36(15): 2261-2264.
[22] Du, Q., Zhang, X., Zhang, X., et al. (2019) Propofol Inhibits Proliferation and Epithelial-Mesenchymal Transition of MCF-7 Cells by Suppressing miR-21 Expression. Artificial Cells, Nanomedicine, and Biotechnology, 47, 1265-1271.
https://doi.org/10.1080/21691401.2019.1594000
[23] 吕春宇, 巩立国, 陈强, 等. 七氟醚通过Circ_001589/miR-588调控乳腺癌细胞活力与凋亡[J]. 中华内分泌外科杂志, 2021, 15(6): 651-656.
[24] Liu, J., Yang, L., Guo, X., et al. (2018) Sevoflurane Suppresses Proliferation by Upregulating microRNA-203 in Breast Cancer Cells. Molecular Medicine Reports, 18, 455-460.
https://doi.org/10.3892/mmr.2018.8949
[25] Ecimovic, P., Mchugh, B., Murray, D., et al. (2013) Effects of Sevoflurane on Breast Cancer Cell Function in Vitro. Anticancer Re-search, 33, 4255-4260.
[26] Deng, X., Vipani, M., Liang, G., et al. (2020) Sevoflurane Modulates Breast Cancer Cell Survival via Modulation of Intracellular Calcium Homeostasis. BMC Anesthesiology, 20, Article No. 253.
https://doi.org/10.1186/s12871-020-01139-y
[27] 徐红萌, 张艳红, 邱东洁, 等. 异丙酚和七氟醚对人乳腺癌细胞转移能力的影响[J]. 中华麻醉学杂志, 2015, 35(10): 1248-1250.
[28] Enlund, M., Berglund, A., Andreasson, K., et al. (2014) The Choice of Anaesthetic—Sevoflurane or Propofol—and Outcome from Cancer Surgery: A Retrospective Analysis. Upsala Journal of Medical Sciences, 119, 251-261.
https://doi.org/10.3109/03009734.2014.922649
[29] Lee, J.H., Kang, S.H., Kim, Y., et al. (2016) Effects of Propofol-Based Total Intravenous Anesthesia on Recurrence and Overall Survival in Patients after Modified Radical Mastectomy: A Retrospective Study. Korean Journal of Anesthesiology, 69, 126-132.
https://doi.org/10.4097/kjae.2016.69.2.126
[30] Enlund, M., Berglund, A., Enlund, A., et al. (2022) Volatile versus Propofol General Anesthesia and Long-Term Survival after Breast Cancer Surgery: A National Registry Retrospective Cohort Study. Anesthesiology, 137, 315-326.
https://doi.org/10.1097/ALN.0000000000004309
[31] Looney, M., Doran, P. and Buggy, D.J. (2010) Effect of Anesthetic Technique on Serum Vascular Endothelial Growth Factor C and Transforming Growth Factor β in Women Undergoing Anesthesia and Surgery for Breast Cancer. Anesthesiology, 113, 1118-1125.
https://doi.org/10.1097/ALN.0b013e3181f79a69
[32] Oh, C.S., Lee, J., Yoon, T.G., et al. (2018) Effect of Equi-potent Doses of Propofol versus Sevoflurane Anesthesia on Regulatory T Cells after Breast Cancer Surgery. Anesthesi-ology, 129, 921-931.
https://doi.org/10.1097/ALN.0000000000002382
[33] Lim, J.A., Oh, C.S., Yoon, T.G., et al. (2018) The Effect of Propofol and Sevoflurane on Cancer Cell, Natural Killer Cell, and Cytotoxic T Lymphocyte Function in Patients Under-going Breast Cancer Surgery: An in Vitro Analysis. BMC Cancer, 18, Article No. 159.
https://doi.org/10.1186/s12885-018-4064-8
[34] Jaura, A.I., Flood, G., Gallagher, H.C., et al. (2014) Differential Effects of Serum from Patients Administered Distinct Anaesthetic Techniques on Apoptosis in Breast Cancer Cells in Vitro: A Pilot Study. British Journal of Anaesthesia, 113, i63-i67.
https://doi.org/10.1093/bja/aet581
[35] Tavare, A.N., Perry, N.J., Benzonana, L.L., et al. (2012) Cancer Recurrence after Surgery: Direct and Indirect Effects of Anes-thetic Agents. International Journal of Cancer, 130, 1237-1250.
https://doi.org/10.1002/ijc.26448
[36] Tanaka, T., Takabuchi, S., Nishi, K., et al. (2010) The Intravenous Anesthetic Propofol Inhibits Lipopolysaccharide-Induced Hypox-ia-Inducible Factor 1 Activation and Suppresses the Glucose Metabolism in Macrophages. Journal of Anesthesia, 24, 54-60.
https://doi.org/10.1007/s00540-009-0829-1
[37] Benzonana, L.L., Perry, N.J., Watts, H.R., et al. (2013) Isoflurane, a Commonly Used Volatile Anesthetic, Enhances Renal Cancer Growth and Malignant Potential via the Hy-poxia-Inducible Factor Cellular Signaling Pathway in Vitro. Anesthesiology, 119, 593-605.
https://doi.org/10.1097/ALN.0b013e31829e47fd