|
[1]
|
World Health Organization (WHO). 2022-2023 Mpox (Monkeypox) Outbreak: Global Trends.
https://worldhealthorg.shinyapps.io/mpx_global/
|
|
[2]
|
Kugelman, J. R., Johnston, S. C., Mulembakani, P. M., Kisalu, N., Lee, M. S., Koroleva, G., et al. (2014) Genomic Variability of Monkeypox Virus among Humans, Democrat-ic Republic of the Congo. Emerging Infectious Diseases, 20, 232-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
World Health Organization. (WHO) (2022) Monkeypox.
https://www.who.int/news-room/fact-sheets/detail/monkeypox
|
|
[4]
|
Jezek, Z., Szczeniowski, M., Paluku, K. M. and Mutombo, M. (1987) Human Monkeypox: Clinical Features of 282 Patients. The Journal of Infectious Diseases, 156, 293-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ulaeto, D., Agafonov, A., Burchfield, J., Carter, L., Happi, C., Jakob, R., Krpelanova, E., Kuppalli, K., Lefkowitz, E.J., Mauldin, M.R., et al. (2023) New Nomenclature for Mpox (Monkeypox) and Monkeypox Virus Clades. The Lancet Infectious Diseases, 23,273-275. [Google Scholar] [CrossRef]
|
|
[6]
|
Magnus, P.V., Andersen, E., Petersen, K., Birch-Ansersen, A., et al. (1959) A Pox-Like Disease in Cynomolgus Monkeys. Acta Pathologica Microbiologica Scandinavica, 46, 156-176. [Google Scholar] [CrossRef]
|
|
[7]
|
Ladnyj, I.D., Ziegler, P. and Kima, E. (1972) A Human Infection Caused by Monkeypox Virus in Basankusu Territory, Democratic Republic of the Congo. Bulletin of the World Health Organization, 46, 593-597.
|
|
[8]
|
Reed, K.D., Melski, J.W., Graham, M.B., Regnery, R.L., Sotir, M.J., Wegner, M.V., et al. (2004) The Detection of Monkeypox in Humans in the Western Hemisphere. The New England Journal of Medicine, 350, 342-350. [Google Scholar] [CrossRef]
|
|
[9]
|
Centers for Disease Control and Prevention (CDC). (2022) Mpox Outbreak Global Map.
https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html
|
|
[10]
|
Khodakevich, L., Jezek, Z. and Kin-zanzka,K.(1986) Isolation of Monkeypox Virus from Wilds Quirrel Infected in Nature. Lancet, 1, 98-99. [Google Scholar] [CrossRef]
|
|
[11]
|
Parker, S. and Buller, R.M. (2013) A Review of Experi-mental and Natural Infections of Animals with Monkeypox Virus between 1958 and 2012. Future Virology, 8, 129-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
World Organisation for Animal Health (WOAH). (2022) Casesofmpox (Monkeypox) Events in Animals Reported to WOAH since December 2022. https://www.woah.org/en/disease/monkeypox/#ui-id-3
|
|
[13]
|
Seang, S., Burrel, S., Todesco, E., et al. (2022) Evi-dence of Human-to-Dog Transmission of Monkeypox Virus. Lancet, 400, 658-659. [Google Scholar] [CrossRef]
|
|
[14]
|
Kisalu, N.K. and Mokili, J.L. (2017) Toward Understanding the Outcomes of Monkeypox Infection in Human Pregnancy. The Journal of Infectious Diseases, 216, 795-797. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
WHO. (2023) Multi-Country Outbreak of Mpox, External Situation Re-port.
https://www.who.int/publications/m/item/
|
|
[16]
|
Brown, K. and Leggat, P.A. (2016) Human Monkeypox: Current State of Knowledge and Implications for the Future. Travel Medicine and Infectious Disease, 1, Article 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gessain, A., Nakoune, E. and Yazdanpanah, Y. (2022) Monkey-pox. The New England Journal of Medicine, 387, 1783-1793. [Google Scholar] [CrossRef]
|
|
[18]
|
Harapan, H., Ophinni, Y., Megawati, D., Frediansyah, A., Mamada, S.S., Salampe, M., Bin Emran, T., Winardi, W., Fathima, R., Sirinam, S., et al. (2022). Monkeypox: A Comprehensive Review. Viruses, 14, Article 2155.[CrossRef] [PubMed]
|
|
[19]
|
Patel, A., Bilinska, J., Tam, J.C.H., Da Silva Fontoura, D., Mason, C.Y., Daunt, A., Snell, L.B., Murphy, J., Potter, J., Tuudah, C., et al. (2022). Clinical Features and Novel Presentations of Human Monkeypox in a Central London Centre during the 2022 Outbreak: Descriptive Case Series. BMJ, 378, e072410.[CrossRef] [PubMed]
|
|
[20]
|
Benites-Zapata, V.A., Ulloque-Badaracco, J.R., Alarcon-Braga, E.A., Hernandez Bustamante, E.A., Mosquera-Rojas, M.D., Bonilla-Aldana, D.K., and Rodriguez Morales, A.J. (2022) Clinical Features, Hospitalisation and Deaths Associated with Monkeypox: A Systematic Review and Meta-Analysis. Annals of Clinical Microbiology and Antimicrobials, 21, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
WHO. (2022) Laboratory Testing for the Monkeypox Virus.
https://www.who.int/publications/i/item/WHO-MPX-laboratory-2022.1
|
|
[22]
|
CDC. (2022) Test Procedure: Mon-keypox Virus Generic Real-Time PCR Test. https://stacks.cdc.gov/view/cdc/119661
|
|
[23]
|
Ribeiro da Silva, S.J., Paiva, M.H.S., Guedes, D.R.D., Krokovsky, L., Melo, F.L.d., Lopes da Silva, M.A., Silva, A.D., Ayres, C.F.J. and Pena, L.J. (2019) Development and Validation of Reverse Transcription Loopmediated Isothermal Amplification (RTLAMP) for Rapid Detection of ZIKV in Mosquito Samples from Brazil. Scientific Reports, 9, Article No. 4494. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhao, Z., Fan, B., Wu, G., Yan, X., Li, Y., Zhou, X., Yue, H., Dai, X., Zhu, H., Tian, B., et al. (2014). Development of Loop-Mediated Isothermal Amplification Assay for Specific and Rapid Detection of Differential Goat Pox Virus and Sheep Pox Virus. BMC Microbiology, 14, Article No. 10.[CrossRef] [PubMed]
|
|
[25]
|
Sood, A., Sui, Y., McDonough, E., Santamaria-Pang, A., Al-Kofahi, Y., Pang, Z., Jahrling, P.B., Kuhn, J.H., and Ginty, F. (2020) Comparison of multiplexed Immunofluorescence Imaging to Chromogenic Immunohistochemistry of Skin Biomarkers in Response to Monkeypox Virus Infection. Viruses, 12, Article 787. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Karem, K.L., Reynolds, M., Braden, Z., Lou, G., Bernard, N., Patton, J. and Damon, I.K. (2005) Characterization of Acute-Phase Humoral Immunity to Monkeypox: Use of Immunoglobulin M Enzyme-Linked Immunosorbent Assay for Detection of Monkeypox Infection during the 2003 North American Outbreak. Clinical and Vaccine Immunology, 12, 867-872. [Google Scholar] [CrossRef]
|
|
[27]
|
Townsend, M.B., MacNeil, A., Reynolds, M.G., Hughes, C.M., Olson, V.A., Damon, I.K. and Karem, K.L. (2013) Evaluation of the Tetracore Orthopox BioThreat Antigen Detection Assay Using Laboratory Grown Orthopoxviruses and Rash Illness Clinical Specimens. Journal of Virological Methods, 187, 37-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Parker, S., Nuara, A., Buller, R.M.L., et al. (2007) Human Monkeypox: An Emerging Zoonotic Disease. Future Microbiology, 2, 17-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Grosenbach, D.W., Jordan, R. and Hruby, D.E. (2011) Development of the Small-Molecule Antiviral ST-246 as a Smallpox Therapeutic. Future Virology, 6, 653-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
EMA. (2022) Human Medicine European Public Assessment Report (EPAR): Tecovirimat SIGA.
https://www.ema.europa.eu/en/medicines/human/EPAR/tecovirimat-siga
|
|
[31]
|
Pauli, G., Blümel, J., Burger, R., Drosten, C., Gröner, A., Gürtler, L., et al. (2010) Orthopox Viruses: Infections in Humans. Transfusion Medicine and Hemotherapy, 37, 351-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hudu, S.A., Alshrari, A.S., Al Qtaitat, A. and Imran, M. (2023) VP37 Protein Inhibitors for Mpox Treatment: Highlights on Recent Advances, Patent Literature, and Future Directions. Biomedicines, 11, Article 1106. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Adler, H., Gould, S., Hine, P., Snell, L.B., Wong, W., Houli-han, C.F., et al. (2022) Clinical Features and Management of Human Monkeypox: A retrospective Observational Study in the UK. The Lancet Infectious Diseases, 22, 1153-1162. [Google Scholar] [CrossRef]
|
|
[34]
|
Rao, A.K., Schulte, J., Chen, T.-H., Hughes, C.M., Da-vidson, W., Neff, J.M., et al. (2022) Monkeypox in a Traveler Returning from Nigeria—Dallas, Texas, July 2021. Mor-bidity and Mortality Weekly Report, 71, 509-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Matias, W.R., Koshy, J.M., Nagami, E.H., Kovac, V., Moeng, L.R., Shenoy, E.S., et al. (2022) Tecovirimat for the Treatment of Human Monkeypox: An Initial Series from Massa-chusetts, United States. Open Forum Infectious Disease, 9, ofac377. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Desai, A.N., Thompson, G.R., Neumeister, S.M., Arutyunova, A.M., Trigg, K. and Cohen, S.H. (2022) Compassionate Use of Tecovirimat for the Treatment of Monkeypox Infection. JAMA, 328, 1348-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mailhe, M., Beaumont, A.-L., Thy, M., le Pluart, D., Perrineau, S., Houhou-Fidouh, N., et al. (2022) Clinical Characteristics of Ambulatory and Hospitalised Patients with Monkeypox Vi-rus Infection: An Observational Cohort Study. Clinical Microbiology and Infection, 29, 233-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Moschese, D., Giacomelli, A., Beltrami, M., Pozza, G., Mileto, D., Reato, S., et al. (2022) Hospitalisation for Monkeypox in Milan, Italy. Travel Medicine and Infectious Disease, 49, Arti-cle ID: 102417. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ambati, J., Wynne, K.B., Angerame, M.C. and Robinson, M.R. (1999) Anterior Uveitis Associated with Intravenous Cidofovir Use in Patients with Cytomegalovirus Retinitis. British Journal of Ophthalmology, 83, 1153-1158. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Weinstein, R.A., Nalca, A., Rimoin, A.W., Bavari, S. and Whitehouse, C.A. (2005) Reemergence of Monkeypox: Prevalence, Diagnostics, and Countermeasures. Clinical Infectious Diseases, 41, 1765-1771. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Carmine, A.A., Brogden, R.N., Heel, R.C., Speight, T.M. and Avery, G.S. (1982) Trifluridine: A Review of Its Antiviral Activity and Therapeutic Use in the Topical Treatment of Viral Eye Infec-tions. Drugs, 23, 329-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Titova, K.A., Sergeev, A.A., Zamedyanskaya, A.S., Galahova, D.O., Kabanov, A.S.,Morozova, A.A., et al. (2015) Using ICR and SCID Mice as Animal Models for Smallpoxto Assess Antiviral Drug Efficacy. Journal of General Virology, 96, 2832-2843. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Prichard, M.N. and Kern, E. R. (2012) Orthopoxvirus Targets for the Development of New Antiviral Agents. Antiviral Research, 94, 111-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Dash, S.R. and Kundu, C.N. (2023) Advances in Nanomedi-cine for the Treatment of Infectious Diseases Caused by Viruses. Biomaterials Science, 11, 3431-3449.
|
|
[45]
|
Abubakar, I.B., Kankara, S.S., Malami, I., Danjuma, J.B., Muhammad, Y.Z., Yahaya, H., et al. (2022) Traditional Medicinal Plants Used for Treating Emerging and Re-Emerging Viral Diseases in Northern Nigeria. European Journal of Integrative Medicine, 49, Article ID: 102094. [Google Scholar] [CrossRef] [PubMed]
|