基于席夫碱配体的多核稀土配合物的研究进展
Research Progresses of Polynuclear Lanthanide Complexes Based on Schiff Ligands
DOI: 10.12677/JAPC.2023.124032, PDF, HTML, XML, 下载: 195  浏览: 439  国家自然科学基金支持
作者: 孙程远:南通大学化学化工学院,江苏 南通;王 金*:南通大学化学化工学院,江苏 南通;南通智能与新能源材料重点实验室,江苏 南通
关键词: 席夫碱配体稀土配位化合物磁弛豫磁致冷Schiff Ligand Lanthanide Coordination Compounds Magnetic Relaxation Magnetic Cooling
摘要: 稀土配位化合物在单分子磁体、磁致冷领域具有巨大的应用前景。席夫碱配体具有优良的配位能力,是构筑稀土配合物的理想配体。席夫碱配体构筑的多核稀土配合物因其优异的磁学性质引起了功能配位化学等领域众多研究者的关注。本文介绍了近年来由席夫碱配体构筑的多核稀土配位化合物在磁性方面取得的最新进展。
Abstract: Lanthanide coordination compounds have enormous application prospects in the fields of single molecule magnets and magnetic cooling. Schiff base ligands have excellent coordination ability and are ideal ligands for constructing lanthanide complexes. The construction of polynuclear lanthanide complexes with Schiff base ligands has attracted the attention of many researchers in functional coordination chemistry and other fields due to their excellent magnetic properties. This article introduces the latest progresses in magnetic properties of polynuclear lanthanide coordination compounds constructed from Schiff base ligands in recent years.
文章引用:孙程远, 王金. 基于席夫碱配体的多核稀土配合物的研究进展[J]. 物理化学进展, 2023, 12(4): 317-331. https://doi.org/10.12677/JAPC.2023.124032

1. 引言

席夫碱配体是指由伯胺与醛/酮羰基缩合而成的一类配体,它们以优异的稳定性、颜色可调性、氧化还原活性而闻名 [1] 。席夫碱配体在和金属进行配位时由于其螯合性质、配位能力优良和电子供体能力优异 [2] 等优点,被认为是配位化学领域中一类重要的有机分子,合成了众多功能多样的金属配合物 [3] - [9] 。席夫碱配体优良的配位能力来自其偶氮甲酸(-N=CH-)键合的N原子上存在孤对的电子 [10] ,同时其结构中存在的S和O原子也具有良好的给电子能力。此外研究者们还可以通过添加亚甲基氮或者其他基团的方法与金属离子进行配位。根据分子中给体原子的数量,它们可以作为单齿、双齿、三齿、四齿配体等 [11] [12] [13] 。这些多齿的配体可以为金属离子提供不同的“口袋”,最终形成双核 [14] [15] [16] 、三核、四核 [17] [18] 甚至更多的多核 [19] [20] [21] 结构。不同的螯合环境下对配合金属的电子分布有重要影响,从而影响配合物的性质 [22] 。合成席夫碱及其与金属形成配合物的一般过程如图1所示。

近年来,席夫碱配体与稀土金属由于形成稳定的配合物而引起了人们的广泛关注。稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的元素——钇(Y)和钪(Sc),共17种元素称为稀土元素。稀土离子具有独特的4f电子层结构和4f-4f和4f-5d的特定跃迁 [23] ,使其在单分子磁体领域具有优异的性能 [24] ,表现出有趣的磁性行为。单分子磁体 [25] 是分子基磁性材料中最受瞩目的一类,分子磁性材料具有密度小、易裁剪、易复合等特点,其具有类似于传统块状磁体的性质。研究证明其在阻塞温度下可以表现出缓慢的磁弛豫现象,引起了化学、物理学、材料学等多个领域的关注,这主要是由于单分子磁体在分子自旋电子器件、磁致冷、高密度信息存储子器件 [26] [27] [28] 和肿瘤治疗 [29] [30] 等方面具有潜在的应用前景。

单分子磁体能否实现在实际中应用很大程度上取决于能垒(Ueff)及其阻塞温度(TB)的大小。在没有外加磁场时,单分子磁体具有两个简并的双稳态+S和−S,这二者具有的能量相同,占有率相同,自旋方向相反,磁化强度和矢量和为零(图2);当对双稳态系统外加一个磁场时会打破这种平衡,与磁场平行的能态能量会变低,其占有率会变得更高,而此时的磁化强度的矢量和不再为零;当撤去外加磁场后+S和−S就会回到能量相同,占有率相同的状态,分子磁化强度矢量重新取向的过程中必须跨越一个能量壁垒,这个壁垒就是有效能垒,其计算公式为 U eff = | D | S 2 ,当温度降低甚至低于翻转能垒时,翻转速度减慢,从而表现为磁化强度的慢磁弛豫行为。有效能垒被认为是研究稀土配合物的关键性质,起初研究者们认为提高配合物的核数可以提高Ueff,但随着研究的深入,在提高核数的同时虽然增加了分子的基态自选值(S),但会降低分子体系的磁各向异性(D)。

虽然有大量的多核过渡金属配合物被报道,但一直没有得到高的有效能垒和阻塞温度 [31] [32] [33] 。与3d过渡金属相比,4f稀土离子具有特殊的电子结构。4f电子由于其未淬灭的大的轨道角动量从而拥有比过渡金属更大的磁矩和磁各向异性,正好在某种程度上满足了配合物磁性的基本需求,使稀土元素成为了构建稀土单分子优良的候选者。Tb、Dy、Er等稀土元素构筑的单分子磁体研究广泛,单核、多核等不同拓扑结构的单分子磁体已经被相继报道 [34] 。此外,稀土配合物也在磁致冷领域成果突出。磁致冷的基本原理是利用磁致冷材料的磁热效应,磁热效应是指磁致冷材料在等温磁化时向外界放热,在绝热去磁时从外界吸取热量,从而达到制冷的目的。具体地,稀土元素中只有 S = 7 / 2 且各向同性的Gd(III)有实用价值。而且稀土元素由于其4f电子是内层电子,收到5d电子的屏蔽,Gd-Gd之间的交换非常弱,配合物的摩尔磁熵往往接近极限值Rln(8)。因此在利用Gd(III)离子构筑磁制冷材料的过程中主要考虑的因素是如何减少抗磁组分的比例。目前,选用席夫碱配体已经被证明是非常有效的策略 [35] [36] [37] [38] [39] 。

根据研究者以往的研究,席夫碱配体在构筑稀土配合物时能形成多个配位点,合成得到目标多核配合物。从而研究多个稀土离子之间的磁相互作用以及各向异性的可能取向。通过调节配体的局部取代基、晶体场和配位几何构型能够得到性能良好的多核稀土配合物,从而研究它们的磁构关系。这种通过微调稀土离子的环境来提高稀土配合物磁学性能的有效策略对新型分子磁性材料的设计合成具有重要的指导意义。

Figure 1. The general process of synthesizing Schiff bases and forming complexes with metals

图1. 合成席夫碱及其与金属形成配合物的一般过程

Figure 2. Bistable model of single molecular magnets

图2. 单分子磁体的双稳态模型

2. 多核稀土金属配合物的慢磁弛豫性质

自首例稀土配合物报道 [40] 以来,已引起越来越多国内外科研人员的重视,尤其在多核稀土金属的体系里 [41] - [46] ,由于多种稀土金属中心之间相互作用,得到的多稀土金属配合物具有独特的结构和物理化学性质。迄今为止,国内外科研人员已经成功开展了一系列深入的研究工作并取得了丰硕的科研成果(表1)。

Table 1. Magnetic data of multi-core rare earth single molecule magnets

表1. 近年来报道的席夫碱构筑的多核单分子磁体

2.1. 双核稀土金属配合物的慢磁弛豫性质

双核的单分子磁体是这一领域十分重要的部分,它可以用来研究稀土配合物的弛豫现象是来自单个离子还是整个分子的弛豫,因此大量由席夫碱配体合成的双核稀土配合物被报道。

2016年,Wang Wen-Min [47] 等利用2-(((4-甲氧基苯基)亚氨基)甲基)-8-羟基喹啉(HL1)和2-(((4-乙氧基苯基)亚氨基)甲基)-8-羟基喹啉(HL2)两种配体与镧系元素Eu、Tb、Dy、Ho、Er分别合成了九个双核LnIII配合物并在结构和磁性上表征。结果显示这九个配合物都是苯氧桥接的双核配合物,其中[Dy2(dbm)4(L1)2] (1)由两个苯氧基桥接而成(图3(a))。配体L1作为三齿配体,通过一个苯酚的氧原子、一个吡啶环氮原子和一个亚胺氮原子与Dy原子螯合。配合物[Dy2(dbm)2(L2)2] (2)与配合物1的结构非常相似,1和2的中心DyIII离子均为八配位模型,其配位构型可表示为三角十二面体。结构上的细微差别是两个配体末端的烷氧取代(-OCH3和-OC2H5)不同。配合物1是奥巴赫机制占主导的弛豫行为(图3(c)),利用阿伦尼乌斯公式拟合得到其有效能垒(Ueff) 23.96 cm−1τ0 = 1.54 × 10−7 s,而配合物2为其有效能垒(Ueff) 46.94 cm−1,远高于配合物1。这种交流磁化率上的明显差异与两种8-羟基喹啉席夫碱配体的不同烷氧取代的细微扰动有关。进一步的的研究也表明,尽管两种配合物和结构非常相似,由于两种烷氧基诱导下的给电子效应不同,从而可能影响到与DyIII离子的化学键的强度,最终导致了两种不同的磁弛豫行为。

Figure 3. (a), (b) Molecular structure diagram of complexes 1 and 2; (c), (d) Temperature dependent ac Magnetic susceptibility test out-of-phase of complexes 1 and 2 in zero dc field

图3. (a)、(b)配合物1和2的分子结构图;(c)、(d)在零直流场中配合物1和2的温度依赖的交流磁化率测试虚部图

同年,Xue Yun-Shan [48] 等利用席夫碱配体2-[[(4-碘苯基)亚胺]甲基]-8-羟基喹啉(HL3),合成了四例多核稀土配合物[Ln(hfac)2L3]2(Ln(III) = Eu (3), Tb (4));[Ln(tfac)2L3]2·(C7H16)x(Ln(III) = Tb (5), Yb (6))。晶体结构测试得到配合物3和配合物4是同构的(图4),结构单元包含两个八配位的LnIII阳离子,两个配体(HL5)和四个hfac。磁性测量显示,在0直流磁场下,在4和6中都观察到缓慢的磁弛豫行为,当优化的直流磁场为2000 Oe时,得到配合物4的有效能垒为Ueff = 4.67 cm−1τ0 = 2.3×10−6 s,而对于另一个TbIII离子构筑的配合物5,其在施加2000 Oe直流电场时,没有明显的虚部(χ”)交流信号。这在很大程度上是因为,配合物4的TbIII离子在八坐标配位环境下的配位几何更适合描述为D2d,配合物4和5利用Shape 2.0程序的计算得到的CShM值分别为0.799和0.837,配位环境上的差异导致了单分子磁体行为的差异。

Figure 4. (a) Molecular structure diagram of complex 4; (b) The temperature dependent ac Magnetic susceptibility imaginary part diagram of complex 7 under 2 KOe dc field

图4. (a) 配合物4的分子结构图;(b) 在2 KOe直流场下,配合物4的温度依赖的交流磁化率虚部图

2018年,Gao Feng [49] 等以2,6-乙二醛-4-甲基苯酚和1,3-丙二胺为原料,在不同的镧系乙酰丙酮盐存在下,通过一锅法缩合反应合成了5个新的双核镧系配合物(图5)。通式为[(acac)4Ln2(L4)],其中Ln = Dy (7)、Tb (8)、Ho (9)、Er (10)和Gd (11),八配位LnIII中心采用具有D4d对称性的稍扭曲的方形反棱镜几何构型。理论分析和磁性测量表明,相应的Dy配合物(7)表现出缓慢的磁弛豫行为,具有分子内铁磁性Dy3+相互作用的典型单分子磁体特征。该工作还证明多核单分子磁体的整体电子结构和磁性各向异性与其配位环境密切相关,局部几何对称性、配体场效应以及顺磁性镧系离子间磁耦合的强度和性质之间的相互作用将决定稀土单分子磁体的性质。

Figure 5. (a) Molecular structure diagram of complex 6; (b) The temperature dependent ac Magnetic susceptibility imaginary part diagram of complex 6 under 1 kOe dc field

图5. (a) 配合物6的分子结构图;(b) 在1 kOe直流场下,配合物6的温度依赖的交流磁化率虚部图

2020年,Khan Amin [50] 等描述了7种具有通式[Ln2(L5)2(NO3)4]·2CH3OH的同构双核镧系金属配合物,其中Ln = Tb (12)、Dy (13)、Ho (14)、Er (15)、Tm (16)、Yb (17)、Lu (18)。席夫碱配体(L5)与金属硝酸盐在甲醇中三乙胺存在下反应得到配合物12~18,接着利用直流和交流磁化率测量对这些配合物的磁性进行了考察,结果显示所有配合物均表现出相邻顺磁中心之间的反铁磁行为。但交流磁化率显示只有配合物13显示出典型的交流磁化率信号,这是由于各项异性的DyIII存在(图6)。

Figure 6. (a) Molecular structure diagram of complex 13; (b) Temperature dependence of the out-of-phase (χ”) components of the ac magnetic susceptibility at indicated frequencies for 13 under zero dc field

图6. (a) 配合物13的分子结构图;(b) 在零直流场下配合物13的温度依赖的交流磁化率虚部图

2021年,Yin Jiao [51] 等以席夫碱配体H2L6合成了7例双核镧系配合物:[Eu2(acac)4(HL6)2]·3C2H5OH (19),[Ln2(acac)2(HL6)4]·6C2H5OH,其中Ln = Tb (20)、Dy (21)、Er (22)、Yb (23),[Dy2(bfa)4(HL6)2]·2H2O (24),[Dy2(tmhd)2(HL6)4] (25)。其中配合物21、24、25表现缓慢的磁弛豫行为,即典型的SMM行为,其中配合物21和24在800 Oe直流电场下有效势垒分别为33.63 cm−1和38.07 cm−1 (图7),配合物25在3000 Oe直流电场下,有效势垒为42.08 cm−1。这项工作还表明,多核稀土配合物的磁学性质可以通过调节末端取代基对配体的电子效应来调节。

Figure 7. (a), (b), (c) Molecular structure diagram of complex 21, 24 and 25; (d), (e) The temperature dependent ac Magnetic susceptibility imaginary part diagram of complex 21 and 24 under 800 dc field; (f) The temperature dependent ac Magnetic susceptibility imaginary part diagram of complex 25 under 3000 dc field

图7. (a)、(b)、(c) 配合物21、24、25的分子结构图;(d)、(e) 配合物21、24在800 Oe直流场下的温度依赖的交流磁化率虚部图;(f) 配合物25在3000 Oe直流场下的温度依赖的交流磁化率虚部图

2.2. 四核稀土金属配合物的慢磁弛豫性质

2017年,Lacelle T [52] 等采用3,6-二(香草酰肼基)-1,2,4,5-四嗪(H2L3)和稀土金属Dy、Gd合成了两例类似的四核镧系配合物[Ln4(L7)4(MeOH)8](NO3)4·aMeOH·bH2O (Ln = Dy (26), Gd (27))。配合物26和27晶体结构的解析表明:稀土元素离子是由四嗪环桥连的(图8(a)),四嗪环是稀土配合物中罕见的桥连部分。进一步的磁性研究表明,配合物26和27均表现出Ln离子间的弱铁磁交换作用,其中配合物26表现出单分子磁体(SMM)行为(图8(b))。具有大的磁化反转势垒:109.7 cm−1,弛豫时间τ0 = 1.06 × 10−7 s。且单晶磁滞回线测量显示配合物26在0.5 K以下,扫描速率为0.14 Ts−1时,MH扫描图表现出迟滞行为,并且在4 K的温度下可以观察到一个小的开口(图8(c))。

2023年,Zhao Jin-Yu等 [34] 采用多齿希夫碱配体(H4L8)和β-二酮酸配体合成了新的Er四簇[Er4(NO3)2 (acac)4(L8)2(CH3OH)2]·2CH3CN (28) (H4L8 = (E)-2-(羟甲基)-2-((2-羟基萘-1-基)亚甲基)氨基)丙烷-1,3-二醇),并对其结构进行了表征。交流磁化率测量表明,配合物28表现出缓慢的弛豫行为。配合物28在13 K以下表现出明显的频率相关的虚部(χ”)信号,然而,没有观察到虚部图像出现频率依赖的峰,这意味着在配合物28中存在快速量子隧穿磁化(QTM) (图9)。

Figure 8. (a) Molecular structure diagram of complex 26; (b) imaginary part diagram of temperature dependent ac Magnetic susceptibility test of complex 26; (c) Hysteresis loop diagram measured at different temperatures at 0.14 Ts−1

图8. (a) 配合物26的分子结构图;(b) 配合物26的温度依赖的交流磁化率测试虚部图;(c) 0.14 Ts1下不同温度下测量的磁滞回线图

Figure 9. (a) Molecular structure diagram of complex 28; (b) The temperature dependent out-of-phase (χ”) signals for complex 26 at indicated frequencies under zero dc field

图9. (a) 配合物28的分子结构图;(b) 配合物28在零直流场下的温度依赖的交流磁化率虚部图

2.3. 六核稀土金属配合物的慢磁弛豫性质

2019年,YuShui [53] 等人利用席夫碱配体H3L9和H3L10两种席夫碱配体分别合成了两种Dy单分子磁体(29)和(30)两者在席夫碱配体的连接下展现出了不同的拓扑排列(图10(a),图10(b)),其中配合物29表现出6核的拓扑结构。磁性测试显示两种配合物均为零直流电场下的SMM,具有不同的磁学性能。配合物29的τ0Ueff值在零直流电场下分别为9.5 × 10−6 s和23.6 cm−1。而配合物30的τ0值为1.68 × 10−6 s,Ueff值为27.8 cm−1。这两个复合体的弛豫过程涉及多个过程。它们的磁性差异可能是由29和30中Dy(III)离子的不同拓扑排列导致的不同金属间磁相互作用的贡献引起的。

2023年,Li wen-qiang等人 [21] 利用席夫碱配体HL11合成了三种稀土配合物,[Dy(HL11)2](NO3)·2H2O (31)、[Dy5(L11)4(CH3CO2)6](CH3CO2)·6MeOH·H2O (32)和[Dy6(L)2(L11)2(u3-OH)4(CF3SO3)6(EtOH)4]·2EtOH (33),其中配合物33是一种六核的Dy单分子磁体,其中心有两个对称的三角形平面构成(图11(a))。磁学性质研究配合物31以及33,均表现出典型的单分子磁体行为,形成鲜明区别的配合物33在2.0 K~2.6 K范围内表现出两个独立的非相χ”峰信号,表明可能存在两步热激发弛豫过程。在高于3.2 K的温度下,在高频区域只观察到一组频率相关的χ”峰值信号,这表明随着温度的升高,在所测频率范围内的弛豫过程由快弛豫变为慢弛豫。进一步的磁学研究计算得到配合物31和33在零场下的有效能垒为26.7 cm−1和23.3 cm−1τ0分别为6.35 × 10−6 s和6.35 × 10−7 s。这种磁性差异可能归因于Dy(III)离子的拓扑排列以及不同Dy(III)离子之间的磁性相互作用。

Figure 10. (a) Molecular structure diagram of complex 29; (b) Molecular structure diagram of complex 30; (c) The temperature dependent ac Magnetic susceptibility imaginary part diagram of complex 29 under zero dc field; (d) The temperature dependent ac Magnetic susceptibility imaginary part diagram of complex 30 under zero dc field

图10. (a) 配合物29的分子结构图;(b) 配合物30的分子结构图;(c) 零直流场下配合物29的温度依赖的交流磁化率虚部图;(d) 零直流场下配合物30的温度依赖的交流磁化率虚部图

Figure 11. (a) Molecular structure diagram of complex 30; (b) Arrhenius fitting diagram of complex 30, represented by the red line and formula τ = τ 0 exp ( U eff / k B T ) fitting, blue line represents the fitting of all data considering other possible processes

图11. (a) 配合物30的分子结构图;(b) 配合物30的阿伦迪乌斯拟合图,红线表示与公式 τ = τ 0 exp ( U eff / k B T ) 的拟合,蓝线表示考虑到其他可能的过程的所有数据的拟合

3. 多核稀土金属配合物的磁致冷性质

稀土离子中,钆离子常常作为用于合成具有磁热效应的材料,它不仅局限于单核体系,而且有助于我们了解磁相互作用的内在性质,并为改进镧系配合物的性质提供一些建议。近年来,研究者发现配位能力强,配位方式多样的席夫碱配体十分适合构筑钆的配合物,以用作高性能的磁热材料的合成。

LiYi-Ming在2016年利用H2L12 = 2-[(2-羟乙基氨基)甲基]6-甲氧基苯酚 [54] ,合成了一例[Ln12Na3(μ3-OH)2 (L12)6(piv)12(CO3)6(MeOH)6]OH·5MeOH配合物(33),磁性研究表明(图12(b)),{Gd12}配合物是磁制冷材料的良好选择,在4 K,H为7 T时,配合物具有显著的熵变−ΔSm = 30.99 Jkg−1K−17 T。值得注意的是配合物33是报道的磁致冷材料中罕见的多核金属的例子。

Figure 12. (a) Molecular structure diagram of complex 33; (b) Variation of ΔSm calculated by using the magnetization data of Gd12at different fields and temperatures

图12. (a) 配合物33的分子结构图;(b) 配合物33在不同场强和温度下的磁化数据计算ΔSm的变化图

Figure 13. (a) (b) Molecular structure diagram of complex 32, 33; (c) (d) Variation of ΔSm calculated by using the magnetization data of complex 32 and 33 at different fields and temperatures

图13. (a) (b) 配合物32、33的分子结构图;(c) (d) 配合物32、33在不同场强和温度下的磁化数据计算ΔSm的变化图

2017年Wang Wen-Min等 [55] 采用两种不同的8-羟基喹啉席夫碱配体成功合成了两种新的配合物[Gd2(hfac)4(L13)2] (34)和[Gd2(hfac)4(L14)2] (35) (hfac = 六氟乙酰丙酮,HL13 = 2-[4-甲基苯胺–亚胺]甲基]-8-羟基喹啉,HL14 = 2-[(3,4-二甲基苯胺)-亚氨基]甲基]-8-羟基喹啉),并对其进行了晶体学表征(图13(a),图13(b))。结构分析表明,34和35均为苯氧桥连的双核配合物。磁性研究表明(图13(c),图13(d)),配合物34在3 K和7 T时表现出最大的熵变−ΔSm = 17.66 Jkg−1K−1,配合物35在3 K和7 T时表现出最大的磁熵变−ΔSm = 14.81 J kg−1K−1。这种差异主要是因为配合物35相对较大的磁密度比。

4. 结论

随着社会和经济的快速发展,开发新材料对于信息技术的发展越来越重要。多核稀土配合物由于其有趣的拓扑结构引起了研究者们广泛的关注,尤其是在单分子磁体领域。单分子磁体是一个充满可能性的领域,其潜在的巨大应用价值推动了一系列新的配合物提出。本文综述了近年来基于席夫碱配体构筑的多核稀土金属配合物,指出了其在单分子磁体、磁致冷方面取得的优异的成果。席夫碱配体在多核稀土配合物的构筑方面有着独特的优势,体现出有趣的磁性性质。这有助于研究者们了解配体场效应、磁各向异性、配位几何和分子间/分子内磁交换对稀土配合物磁性能的影响。目前,单分子磁体领域一直面临的核心问题仍然是如何提高有效能垒和阻塞温度,随着研究的深入,研究者们发现单分子磁体的磁学性质可以通过调节席夫碱配体末端取代基的方式来调节。稀土单分子磁体用作磁致冷材料需要在以下关键技术取得突破:1) 充分了解稀土配合物的磁热效应,结合新技术、新工艺设计合成性能优秀的磁致冷材料。2) 设计出在室温附近温度区间具有大磁热效应的稀土配合物,提高其实用化的可能性。今后的工作将集中在进一步研究席夫碱配体结构与稀土配合物性能的内在联系,有目的地设计、合成这类金属有机配合物。相信会有更多结构新颖的席夫碱配体构筑的多核稀土金属配合物被人们合成和应用。

基金项目

江苏省高校自然科学研究基金(NO. 19KJB430030)和南通市科技项目(NO. JC2020130, JC2020133, JC2020134)资助。

NOTES

*通讯作者。

参考文献

[1] Han, A., Su, H., Xu, G., Khan, M.A. and Li, H. (2020) Synthesis, Crystal Structures, and Luminescent Properties of Zn(II), Cd(II), Eu(III) Complexes and Detection of Fe(III) Ions Based on a Diacylhydrazone Schiff Base. RSC Advances, 10, 23372-23378.
https://doi.org/10.1039/D0RA03642K
[2] Hu, Z.Q., Yang, S.S., Jiang, Z.Y. and Guo, D.C. (2020) Novel Schiff-Base Derivatives and Corresponding Eu(III) Complexes: Multiple-Color, pH-Responsive Mechanism and Fluorescence Property. Journal of Molecular Liquids, 308, 113071-113089.
https://doi.org/10.1016/j.molliq.2020.113071
[3] Andiappan, K., Sanmugam, A., Deivanayagam, E., Karuppasamy, K., Kim, H.S. and Vikraman, D. (2019) Schiff Base Rare Earth Metal Complexes: Studies on Functional, Optical and Thermal Properties and Assessment of Antibacterial Activity. International Journal of Biological Macromolecules, 124, 403-410.
https://doi.org/10.1016/j.ijbiomac.2018.11.251
[4] Dermitzaki, D., Panagiotopoulou, A., Pissas, M., Sanakis, Y., Psycharis, V. and Raptopoulou, C.P. (2022) Synthesis, Crystal Structures and Magnetic Properties of Trinuclear {Ni2Ln} (LnIII = Dy, Ho) and {Ni2Y} Complexes with Schiff Base Ligands. Crystals, 12, 95-105.
https://doi.org/10.3390/cryst12010095
[5] Pramanik, S. and Chattopadhyay, S. (2023) An Overview of Copper Complexes with Diamine-Based N4 Donor Bis-Pyridine Schiff Base Ligands: Synthesis, Structures, Magnetic Properties and Applications. Inorganica Chimica Acta, 552, 121486-121507.
https://doi.org/10.1016/j.ica.2023.121486
[6] Mandal, S.K. and Seth, P. (2023) An Overview of the Effect of Anionic Coligand on Structure and Magnetic Properties of Some Homometallic NiII and Heterometallic NiII-MnII Complexes of Schiff Base Ligands. Polyhedron, 240, 116454-116473.
https://doi.org/10.1016/j.poly.2023.116454
[7] Liu, C.-M., Sun, R., Wang, B.-W., Hao, X. and Li, X.-L. (2022) Effects of Counterions, Coordination Anions, and Coordination Solvent Molecules on Single-Molecule Magnetic Behaviors and Nonlinear Optical Properties of Chiral Zn2Dy Schiff Base Complexes. Inorganic Chemistry, 61, 18510-18523.
https://doi.org/10.1021/acs.inorgchem.2c02743
[8] Pichon, C., Suaud, N., Duhayon, C., Guihéry, N. and Sutter, J.-P. (2018) Cyano-Bridged Fe(II)-Cr(III) Single-Chain Magnet Based on Pentagonal Bipyramid Units: On the Added Value of Aligned Axial Anisotropy. Journal of the American Chemical Society, 140, 7698-7704.
https://doi.org/10.1021/jacs.8b03891
[9] Biswas, S., Das, S., Acharya, J., Kumar, V., van Leusen, J., Kögerler, P., Herrera, J.M., Colacio, E. and Chandrasekhar, V. (2017) Homometallic DyIII Complexes of Varying Nuclearity from 2 to 21: Synthesis, Structure, and Magnetism. Chemistry—A European Journal, 23, 5154-5170.
https://doi.org/10.1002/chem.201700471
[10] Sengar, M. and Narula, A.K. (2019) Luminescence Sensitization of Eu(III) Complexes with Aromatic Schiff Base and N,N’-Donor Heterocyclic Ligands: Synthesis, Luminescent Properties and Energy Transfer. Journal of Fluorescence, 29, 111-120.
https://doi.org/10.1007/s10895-018-2315-3
[11] Nematirad, M., Gee, W.J., Langley, S.K., Chilton, N.F., Moubaraki, B., Murray, K.S. and Batten, S.R. (2012) Single Molecule Magnetism in a Mu-Phenolato Dinuclear Lanthanide Motif Ligated by Heptadentate Schiff Base Ligands. Dalton Transactions, 41, 13711-13715.
https://doi.org/10.1039/c2dt31929b
[12] El Rez, B., Liu, J., Béreau, V., Duhayon, C., Horino, Y., Suzuki, T., Coolen, L. and Sutter, J.-P. (2020) Concomitant Emergence of Circularly Polarized Luminescence and Single-Molecule Magnet Behavior in Chiral-at-Metal Dy Complex. Inorganic Chemistry Frontiers, 7, 4527-4534.
https://doi.org/10.1039/D0QI00919A
[13] Mondal, K.C., Sundt, A., Lan, Y., Kostakis, G.E., Waldmann, O., Ungur, L., Chibotaru, L.F., Anson, C.E. and Powell, A.K. (2012) Coexistence of Distinct Single-Ion and Exchange-Based Mechanisms for Blocking of Magnetization in a CoII2DyIII2 Single-Molecule Magnet. Angewandte Chemie International Edition, 51, 7550-7554.
https://doi.org/10.1002/anie.201201478
[14] Pospieszna-Markiewicz, I., Fik-Jaskolka, M.A., Hnatejko, Z., Patroniak, V. and Kubicki, M. (2022) Synthesis and Characterization of Lanthanide Metal Ion Complexes of New Polydentate Hydrazone Schiff Base Ligand. Molecules, 27, 307-321.
https://doi.org/10.3390/molecules27238390
[15] Duan, Y.-Y., Wu, D.-F., Chen, H.-H., Wang, Y.-J., Li, L., Gao, H.-L. and Cui, J.-Z. (2022) New Dinuclear Lanthanide Complexes Derived from Schiff Base Ligand and β-Diketonate Co-Ligand: Synthesis, Crystal Structures, Luminescent and Magnetic Properties. Polyhedron, 225, 116070-116078.
https://doi.org/10.1016/j.poly.2022.116070
[16] Jiang, Y., Dey, S., Ke, H., Yang, Y., Sun, L., Xie, G., Chen, S. and Rajaraman, G. (2023) Steric Hindrance Effect of Schiff-Base Ligands on Magnetic Relaxation Dynamics and Emissive Behavior of Two Dinuclear Dysprosium Complexes. Journal of Rare Earths, 41, 1049-1057.
https://doi.org/10.1016/j.jre.2022.04.019
[17] Yu, S., Hu, H., Chen, Y., Chen, Z., Zhang, Z., Ding, M.-M., Zhang, Y.-Q., Liu, D., Liang, Y. and Liang, F. (2021) Acid and Alkali-Resistant Dy4 Coordination Clusters: Synthesis, Structure and Slow Magnetic Relaxation Behaviors. Journal of Materials Chemistry C, 9, 3854-3862.
https://doi.org/10.1039/D0TC03250F
[18] Yu, S., Chen, C., Zhang, Y., Liang, Y., Hu, H.-C., Zou, H.-H., Liu, D., Liang, F. and Chen, Z. (2022) Assembly Studies of Two Planar Dy4 Single-Molecule Magnets. Crystal Growth & Design, 22, 7461-7468.
https://doi.org/10.1021/acs.cgd.2c01040
[19] Wang, W.M., Wu, Z.L. and Cui, J.Z. (2021) Molecular Assemblies from Linear-Shaped Ln(4) Clusters to Ln(8) Clusters Using Different Beta-Diketonates: Disparate Magnetocaloric Effects and Single-Molecule Magnet Behaviours. Dalton Transactions, 50, 12931-12943.
https://doi.org/10.1039/D1DT01344K
[20] Wang, W., Qiao, N., Xin, X., Yang, C., Chen, Y., Dong, S. and Zhang, C. (2022) New Wheel-Shaped Ln6 Clusters for Conversion of CO2 and Magnetic Properties. Journal of Rare Earths, 41, 1574-1582.
https://doi.org/10.1016/j.jre.2022.09.012
[21] Li, W.-Q., Pan, Q.-Y., Ni, Q.-L., Li, S.-M., Gui, L.-C. and Wang, X.-J. (2023) Synthesis, Structure, and Magnetic Properties of Homometallic Mono-, Penta-, and Hexanuclear Dysprosium Complexes. Crystal Growth & Design, 23, 4313-4321.
https://doi.org/10.1021/acs.cgd.3c00115
[22] Mohapatra, R.K., Das, P.K., Pradhan, M.K., Maihub, A.A. and El-ajaily, M.M. (2018) Biological Aspects of Schiff Base-Metal Complexes Derived from Benzaldehydes: An Overview. Journal of the Iranian Chemical Society, 15, 2193-2227.
https://doi.org/10.1007/s13738-018-1411-2
[23] Yang, S., Wang, X., Hu, Z. and Guo, D. (2021) AIE and ESIPT Schiff Base Ligands and Corresponding Eu(III) Complexes: Multiple-Color and Fluorescence Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, Article ID: 126293.
https://doi.org/10.1016/j.colsurfa.2021.126293
[24] Reis-Dennis, S. (2020) Synthesis, Fluorescence Properties and F− Detection Performance of Eu(III) Complexes Based on the Novel Coumarin Schiff Base Derivatives. Monash Bioethics Review, 38, 83-86.
[25] Alexandropoulos, D.I., Cunha-Silva, L., Escuer, A. and Stamatatos, T.C. (2014) New Classes of Ferromagnetic Materials with Exclusively End-On Azido Bridges: From Single-Molecule Magnets to 2D Molecule-Based Magnets. Chemistry, 20, 13860-13864.
https://doi.org/10.1002/chem.201403815
[26] Wernsdorfer, W. and Sessoli, R. (1999) Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters. Science, 284, 133-135.
https://doi.org/10.1126/science.284.5411.133
[27] Bogani, L. and Wernsdorfer, W. (2008) Molecular Spintronics Using Single-Molecule Magnets. Nature Materials, 7, 179-186.
https://doi.org/10.1038/nmat2133
[28] Mannini, M., Pineider, F., Sainctavit, P., Danieli, C., Otero, E., Sciancalepore, C., Talarico, A.M., Arrio, M.A., Cornia, A., Gatteschi, D. and Sessoli, R. (2009) Magnetic Memory of a Single-Molecule Quantum Magnet Wired to a Gold Surface. Nature Materials, 8, 194-197.
https://doi.org/10.1038/nmat2374
[29] Al-Musawi, S., Ibraheem, S., Abdul Mahdi, S., Albukhaty, S., Haider, A.J., Kadhim, A.A., Kadhim, K.A., Kadhim, H.A. and Al-Karagoly, H. (2021) Smart Nanoformulation Based on Polymeric Magnetic Nanoparticles and Vincristine Drug: A Novel Therapy for Apoptotic Gene Expression in Tumors. Life (Basel), 11, Article No. 71.
https://doi.org/10.3390/life11010071
[30] Liu, L., Wang, Y., Guo, X., Zhao, J. and Zhou, S. (2020) A Biomimetic Polymer Magnetic Nanocarrier Polarizing Tumor-Associated Macrophages for Potentiating Immunotherapy. Small, 16, 2003543-2003554.
https://doi.org/10.1002/smll.202003543
[31] Murugesu, M., Habrych, M., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2004) Single-Molecule Magnets: A Mn25 Complex with a Record S = 51/2 Spin for a Molecular Species. Journal of the American Chemical Society, 126, 4766-4767.
https://doi.org/10.1021/ja0316824
[32] Ako, A.M., Hewitt, I.J., Mereacre, V., Clérac, R., Wernsdorfer, W., Anson, C.E. and Powell, A.K. (2006) A Ferromagnetically Coupled Mn19 Aggregate with a Record S = 83/2 Ground Spin State. Angewandte Chemie, 118, 5048-5051.
https://doi.org/10.1002/ange.200601467
[33] Milios, C.J., Vinslava, A., Wernsdorfer, W., Moggach, S., Parsons, S., Perlepes, S.P., Christou, G. and Brechin, E.K. (2007) A Record Anisotropy Barrier for a Single-Molecule Magnet. Journal of the American Chemical Society, 129, 2754-2755.
https://doi.org/10.1021/ja068961m
[34] Zhao, J.-Y., Yang, C., Bian, X.-Y., Qiu, J., Ren, S.-Y. and Fang, M. (2023) A Tetranuclear Er(III)-Based Cluster with Bifunctional Properties: Efficient Conversion of CO2 and Slow Magnetic Relaxation Behavior. Inorganica Chimica Acta, 556, 121560-121567.
https://doi.org/10.1016/j.ica.2023.121560
[35] Chen, Y.C., Guo, F.S., Liu, J.L., Leng, J.D., Vrabel, P., Orendac, M., Prokleska, J., Sechovsky, V. and Tong, M.L. (2014) Switching of the Magnetocaloric Effect of Mn(II) Glycolate by Water Molecules. Chemistry, 20, 3029-3035.
https://doi.org/10.1002/chem.201304423
[36] Chen, Y.-C., Prokleška, J., Xu, W.-J., Liu, J.-L., Liu, J., Zhang, W.-X., Jia, J.-H., Sechovský, V. and Tong, M.-L. (2015) A Brilliant Cryogenic Magnetic Coolant: Magnetic and Magnetocaloric Study of Ferromagnetically Coupled GdF3. Journal of Materials Chemistry C, 3, 12206-12211.
https://doi.org/10.1039/C5TC02352A
[37] Wang, W.-M., Yue, R.-X., Gao, Y., Wang, M.-J., Hao, S.-S., Shi, Y., Kang, X.-M. and Wu, Z.-L. (2019) Large Magnetocaloric Effect and Remarkable Single-Molecule-Magnet Behavior in Triangle-Assembled Clusters. New Journal of Chemistry, 43, 16639-16646.
https://doi.org/10.1039/C9NJ03921J
[38] Chen, Y.C., Guo, F.S., Zheng, Y.Z., Liu, J.L., Leng, J.D., Tarasenko, R., Orendac, M., Prokleska, J., Sechovsky, V. and Tong, M.L. (2013) Gadolinium(III)-Hydroxy Ladders Trapped in Succinate Frameworks with Optimized Magnetocaloric Effect. Chemistry, 19, 13504-13510.
https://doi.org/10.1002/chem.201301221
[39] Wang, W.-M., Qiao, N., Xin, X.-Y., Wu, Z.-L. and Cui, J.-Z. (2022) Octanuclear Ln(III)-Based Clusters Assembled by a Polydentate Schiff Base Ligand and a β-Diketone Co-Ligand: Efficient Conversion of CO2 to Cyclic Carbonates and Large Magnetocaloric Effect. Crystal Growth & Design, 23, 87-95.
https://doi.org/10.1021/acs.cgd.2c00746
[40] Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S.Y. and Kaizu, Y. (2003) Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. Journal of the American Chemical Society, 125, 8694-8695.
https://doi.org/10.1021/ja029629n
[41] Blagg, R.J., Tuna, F., McInnes, E.J. and Winpenny, R.E. (2011) Pentametallic Lanthanide-Alkoxide Square-Based Pyramids: High Energy Barrier for Thermal Relaxation in A Holmium Single Molecule Magnet. Chemical Communications (Camb), 47, 10587-10589.
https://doi.org/10.1039/c1cc14186d
[42] Abbas, G., Kostakis, G.E., Lan, Y. and Powell, A.K. (2012) Synthesis and Characterization of Isostructural Tetranuclear Lanthanide Complexes [Ln4(μ3-OH)2(ampdH4)2(piv)10]∙4CH3CN (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er). Polyhedron, 41, 1-6.
https://doi.org/10.1016/j.poly.2012.03.022
[43] Zou, X., Yan, P., Dong, Y., Luan, F. and Li, G. (2015) Magnetic Dynamics of Two Salen Type Dy2 Complexes Modulated by Coordination Geometry. RSC Advances, 5, 96573-96579.
https://doi.org/10.1039/C5RA18244A
[44] Wu, J., Li, X.-L., La Droitte, L., Cador, O., Le Guennic, B. and Tang, J. (2021) Coordination Anion Effects on the Geometry and Magnetic Interaction of Binuclear Dy2 Single-Molecule Magnets. Dalton Transactions, 50, 15027-15035.
https://doi.org/10.1039/D1DT02071D
[45] Wu, H., Li, M., Xia, Z., Montigaud, V., Cador, O., Le Guennic, B., Ke, H., Wang, W., Xie, G., Chen, S. and Gao, S. (2021) High Temperature Quantum Tunnelling of Magnetization and Thousand Kelvin Anisotropy Barrier in a Dy2 Single-Molecule Magnet. Chemical Communications, 57, 371-374.
https://doi.org/10.1039/D0CC06993K
[46] Wang, W.-M., Zhao, X.-Y., Qiao, H., Bai, L., Han, H.-F., Fang, M., Wu, Z.-L. and Zou, J.-Y. (2017) Modulating the Single-Molecule Magnet Behaviour in Phenoxo-O Bridged Dy2 Systems via Subtle Structural Variations. Journal of Solid State Chemistry, 253, 154-160.
https://doi.org/10.1016/j.jssc.2017.05.038
[47] Wang, W.M., Qiao, W.Z., Zhang, H.X., Wang, S.Y., Nie, Y.Y., Chen, H.M., Liu, Z., Gao, H.L., Cui, J.Z. and Zhao, B. (2016) Structures and Magnetic Properties of Several Phenoxo-O Bridged Dinuclear Lanthanide Complexes: Dy Derivatives Displaying Substituent Dependent Magnetic Relaxation Behavior. Dalton Transactions, 45, 8182-8191.
https://doi.org/10.1039/C6DT00220J
[48] Xue, Y.-S., He, Y.-K., Liu, Y.-J., Zhang, H.-X., He, Y.-L. and Wang, W.-M. (2018) Structures, Luminescence and Magnetic Properties of Four Phenoxo-O Bridged Ln2 Compounds: Distinct Single-Molecule Magnets Behaviors Were Observed in Two Tb2 Compounds. Inorganic Chemistry Communications, 90, 22-25.
https://doi.org/10.1016/j.inoche.2018.01.024
[49] Gao, F., Zhang, Y.-Q., Sun, W., Liu, H. and Chen, X. (2018) Syntheses, Structures and Magnetic Properties of Macrocyclic Schiff Base-Supported Homodinuclear Lanthanide Complexes. Dalton Transactions, 47, 11696-11704.
https://doi.org/10.1039/C8DT02243G
[50] Khan, A., Fuhr, O., Akhtar, M.N., Lan, Y., Thomas, M. and Powell, A.K. (2020) Synthesis, Characterization and Magnetic Studies of Dinuclear Lanthanide Complexes Constructed with a Schiff Base Ligand. Journal of Coordination Chemistry, 73, 1045-1054.
https://doi.org/10.1080/00958972.2020.1759044
[51] Yin, J., Zhang, X.-M., Zhang, X.-M., Gao, H.-L. and Cui, J.-Z. (2021) Near-Infrared Luminescence and Magnetism of Dinuclear Lanthanide Complexes Constructed from a Schiff-Base and Different β-Diketonate Coligands. Inorganica Chimica Acta, 525, 120497-1204507.
https://doi.org/10.1016/j.ica.2021.120497
[52] Lacelle, T., Brunet, G., Pialat, A., Holmberg, R.J., Lan, Y., Gabidullin, B., Korobkov, I., Wernsdorfer, W. and Murugesu, M. (2017) Single-Molecule Magnet Behaviour in a Tetranuclear DyIII Complex Formed from a Novel Tetrazine-Centered Hydrazone Schiff Base Ligand. Dalton Transactions, 46, 2471-2478.
https://doi.org/10.1039/C6DT04413A
[53] Yu, S., Hu, Z., Chen, Z., Li, B., Zhang, Y.Q., Liang, Y., Liu, D., Yao, D. and Liang, F. (2019) Two Dy(III) Single-Molecule Magnets with Their Performance Tuned by Schiff Base Ligands. Inorganic Chemistry, 58, 1191-1200.
https://doi.org/10.1021/acs.inorgchem.8b02637
[54] Li, Y.M., Kuang, W.W., Zhu, L.L., Xu, Y. and Yang, P.P. (2016) Two Discrete Ln(12) Shelf-Shaped Clusters: Magnetic Studies Reveal a Significant Cryogenic Magnetocaloric Effect and Slow Magnetic Relaxation. European Journal of Inorganic Chemistry, 2016, 4996-5003.
https://doi.org/10.1002/ejic.201600556
[55] Wang, W.-M., Guan, X.-F., Liu, X.-D., Fang, M., Zhang, C.-F., Fang, M. and Wu, Z.-L. (2017) Two Gd2 Compounds Constructed by 8-Hydroxyquinoline Schiff Base Ligands: Synthesis, Structure, and Magnetic Refrigeration. Inorganic Chemistry Communications, 79, 8-11.
https://doi.org/10.1016/j.inoche.2017.03.014