风力机叶片后缘厚度改型研究
Study on Modification of the Trailing Edge Thickness of Wind Turbine Blade
DOI: 10.12677/JAST.2023.114014, PDF, HTML, XML, 下载: 163  浏览: 624  国家科技经费支持
作者: 袁德宣, 张石强, 蒋传鸿, 戴远钘:吉林重通成飞新材料股份公司,重庆
关键词: 风力机叶片翼型后缘改型RfoilWind Turbine Blade Airfoil Trailing Edge Modification Rfoil
摘要: 为满足风力机叶片性能、结构及工艺的需求,叶片后缘厚度要进行改型。本文采用Rfoil软件计算后缘改型前后的DU93-W-210翼型气动性能,研究分析了后缘改型从吸力面向压力面偏移以及改型位置从前缘向后缘偏移对翼型气动特性的影响。不同的后缘厚度改型方法对翼型气动性能的影响不同。研究结果表明,对于期望得到较好的升力系数的改型方法,以偏向压力面和改型位置靠近最大厚度为佳;而对于增强叶尖的工艺性且气动性能的改变尽量小的改型方法,则以对称增厚为宜;此外,后缘厚度改型后的升力系数和升力系数线性段斜率呈负相关关系。
Abstract: Due to the requirements of performance, structure and technology, the thickness of the trailing edge of wind turbine blade airfoil should be modified. In this paper, the aerodynamic performance of the DU93-W-210 airfoil before and after the trailing edge modification was calculated using Rfoil software. The effects of the trailing edge modification shifting from suction to pressure surface and the modification position shifting from the leading edge to the trailing edge on the aerodynamic characteristics of the airfoil were studied and analyzed. Different trailing edge thickness modification methods have different effects on the aerodynamic performance of the airfoil. The results show that, for the modification method that expects to get a better lift coefficient, it is better to lean towards the pressure surface and near the maximum thickness; for the modification method that enhances the blade tip technology and the change of aerodynamic performance as little as possible, symmetrical thickening is appropriate. In addition, there is a negative correlation between the lift coefficient and the slope of the linear section of the lift coefficient curve after the trailing edge thickness modification.
文章引用:袁德宣, 张石强, 蒋传鸿, 戴远钘. 风力机叶片后缘厚度改型研究[J]. 国际航空航天科学, 2023, 11(4): 111-116. https://doi.org/10.12677/JAST.2023.114014

1. 引言

随着风电行业的快速发展,风轮直径和功率等级不断提升,风力机叶片的长度也随之增长。超长柔性叶片已成为风电行业中的热门技术,翼型作为构成风力机叶片的基本元素,翼型的气动性能决定了叶片的气动效率,进而影响风电机组的输出功率和机组的稳定性 ‎[1] ‎[2] 。然而,开发新的翼型耗时长、投资大,在现有翼型基础上,通过调整和优化翼型结构来提高翼型的气动性能和叶片结构稳定性被广泛应用 ‎[3] 。一般而言,风力机叶片翼型的相对厚度在18%至40%之间。为提高叶片刚度、降低叶片质量和结构设计的难度 ‎[4] ‎[5] ,钝尾缘外形被广泛应用。在叶尖区域,由于风力机叶片特性的需求,弦长和相对厚度均比较小,制造工艺可能无法适应标准翼型后缘厚度 ‎[6] ‎[7] ,所以在制造过程中会对叶尖区域的后缘做增厚处理。无论是叶身区域的钝尾缘设计,还是叶尖区域的工艺调整,均需要对翼型后缘厚度进行修改。尽管行业内广泛采用对翼型后缘改型的方式来增加叶片的结构和工艺性能,但并未同时修正翼型的气动特性来进行气动设计。

为探究翼型不同后缘改型方式对气动性能的影响,本文用荷兰Delft大学开发的DU93-W-210翼型进行研究。采用Rfoil软件对DU93-W-210翼型尾缘改型前后的气动特性进行计算,通过对比改型前后的性能差异,找出尾缘改型对翼型气动特性影响的趋势,进而得到不同应用场景对应的翼型尾缘改型方向。

2. 翼型与软件介绍

2.1. 翼型介绍

DU93-W-210翼型是荷兰Delft大学开发的DU系列翼型之一,该翼型的特性为高升阻比、较大的升力系数以及缓和的失速性能,且粗糙度不敏感和较低的噪声性能 ‎[3] - ‎[8] 。此翼型已在Dleft大学低速风洞进行了性能测试,测试结果见文献 ‎[8] 。目前被广泛地应用在风力机叶片上。其翼型几何特征数据见表1

Table 1. Geometric characteristics of DU93-W-210 airfoil

表1. DU93-W-210翼型几何特征

2.2. 软件介绍

Rfoil翼型设计分析程序是以Xfoil v5.4翼型设计分析程序为基础,由荷兰能源研究基金会、国家航天实验室和Delft大学联合开发的。该程序在IAG Stutgart低速风洞中进行实验,系统研究了格尼副翼、后缘楔、涡流发生器、绊线等对翼型气动特性的影响。相较于Xfoil,Rfoil的主要优势在于改进了失速区域翼型气动性能的计算稳定性和准确性,并能求解风轮旋转过程中的翼型空气动力学性能 ‎[8] ‎[9] 。

3. 尾缘改型

尾缘改型的目的是为了得到设计所需的翼型尾缘厚度和气动性能,受到曲线改型起始位置(Lc)、改型厚度在吸力面(或压力面)的占比以及曲线形状的影响。在文献 ‎[10] ‎[11] ‎[12] 中阐述了曲线形状对尾缘厚度改型的影响。本文主要研究改型起始位置(Lc)和改型厚度在吸力面(或压力面)的占比对尾缘厚度改型的影响。

Figure 1. Schematic diagram of trailing edge modification

图1. 尾缘改型示意图

图1所示,改型后尾缘厚度满足公式:

G a p = G p s + G s s (1)

G s s = k m × G a p (2)

G p s = ( 1 k m ) × G a p (3)

式中, k m 表示翼型后缘开口在吸力面(或压力面)的占比系数,当 k m = 1 时,则表示翼型压力面曲线保持不变,只改变吸力面曲线来满足尾缘厚度的需求 ‎[10] ‎[11] ‎[12] ;当 k m = 0 时,则表示翼型吸力面曲线保持不变,只改变压力面曲线来满足尾缘厚度的需求 ‎[3] - ‎[11] ;当 k m = 0.5 时,则表示改变对称加厚 ‎[13] ‎[14] ‎[15] 来满足尾缘厚度的需求。

假设改型前吸力面曲线上的点坐标为 ( x i , y i ) ,改型后吸力面曲线上的点坐标为 ( x i , y i ) ,则 y i 满足如下公式:

y i = { y i , x i L c y i + ( x i L c 1 L c ) n × G S S , x i > L c (4)

假设改型前压力面曲线上的点坐标为 ( x 0 i , y 0 i ) ,改型后压力面曲线上的点坐标为 ( x 0 i , y 0 i ) ,则 y 0 i 满足如下公式:

y 0 i = { y 0 i , x 0 i L c y 0 i x i L c 1 L c n × G p s , x 0 i > L c (5)

由于n的取值不是本文的研究目标,而n值越接近1,改型幅度越小 ‎[10] ,改型后外形曲率光顺性差,文献 ‎[3] 认为,式(4)和式(5)中n取1.8~2.5较为合适,因此本文中取1.8进行计算分析。

4. 计算与分析

采用Rfoil软件计算DU93-W-210翼型在Re = 3E6、Ma = 0.2,自由转捩时的气动特性,如图2所示。0˚攻角升力系数Cl(0) = 0.5383,5˚攻角升力系数Cl(5) = 1.1586,失速攻角为10.5度,最大升阻比Cl/Cdmax = 156.15 (对应5˚攻角),以及升力系数曲线的线性段斜率k = 0.1243。虽然Rfoil软件计算结果与文献 ‎[8] 中提供的翼型气动特性仅在大攻角下存在差异,在本文对比区间差异很小,因此不影响改型前后在本文的气动特性对比。

Figure 2. DU93-W-210 calculation of lift coefficient and lift-drag ratio

图2. DU93-W-210计算升力系数、升阻比

假设尾缘改型目标厚度为6%,采用Rfoil软件计算不同翼型后缘开口比例系数( 0 k m 1 )和曲线改型起始位置( 0 L c 0.8 )的气动特性数据。设得到升力系数曲线的线性段斜率k1,以及5˚攻角下的升力系数(Cl1(5))和最大升阻比(Cl1/Cd1max),通过对比改型前后升力系数曲线的线性段斜率、5˚攻角下的升力系数和最大升阻比,探寻尾缘改型对翼型气动性能的影响。

Figure 3. Ratio of slope fitting of lift coefficient curve in linear segment (k1/k)

图3. 升力系数曲线的线性段斜率比值(k1/k)

图3表示改型前后升力曲线的线性段斜率比值(k1/k)。结果显示,随着后缘开口比例系数( k m )的增加(即后缘开口厚度在吸力面的占比越多),升力系数曲线的线性段斜率成上升趋势。以对称加厚( k m = 0.5 )为分界,在后缘开口偏压力面( 0 k m < 0.5 )一侧,随着曲线改型位置Lc的值增大(即越靠近后缘),升力系数曲线的线性段斜率减小;在后缘开口偏吸力面( 0.5 < k m 1 )一侧,随着曲线改型位置Lc的值增大,升力系数曲线的线性段斜率上升。其改型前后升力系数曲线的线性段斜率比值最大出现在 k m = 1 L c = 0.8 (即只改变吸力面曲线和改型靠近后缘),值为1.0571;改型前后升力系数曲线的线性段斜率比值最小出现在 k m = 0 L c = 0.8 (即只改变压力面曲线和改型靠近后缘),值为0.9386。

Figure 4. Lift coefficient at 5˚ angle of attack (Cl1(5)/Cl(5))

图4. 5˚攻角下的升力系数(Cl1(5)/Cl(5))

图4表示5˚攻角下改型前后升力系数比值(Cl1(5)/Cl(5))。结果显示,随着后缘开口比例系数( k m )的增加,5˚攻角的升力系数急剧减小。在对称加厚( k m = 0.5 )处升力系数变化最小,这与文献 ‎[10] 中得出的结论一致。在后缘开口偏压力面( 0 k m < 0.5 )一侧,随着曲线改型位置Lc的值增大(即越靠近后缘),5˚攻角下的升力系数越大;在后缘开口偏吸力面( 0.5 < k m 1 )一侧,随着曲线改型位置Lc的值增加,5˚攻角下的升力系数降低。其改型前后5˚攻角下的升力系数比值最大出现在 k m = 0 L c = 0.8 (即只改变压力面曲线和改型靠近后缘),值为1.5993;改型前后5˚攻角下的升力系数比值最小出现在 k m = 1 L c = 0.8 (即只改变吸力面曲线和改型靠近后缘),值为0.4815。

图5表示改型后最大升阻比的值(Cl1/Cd1max)。结果表明,随着后缘开口比例系数( k m )的增加,改型后的翼型升阻比下降。随着曲线改型位置Lc的值增大,改型后的翼型升阻比下降。所以,改型后的最大升阻比的最大值出现在 k m = 0 L c = 0 处,最小值出现在 k m = 1 L c = 0.8 处。

以上结果显示出,不同的后缘厚度改型方法对翼型的气动性能的影响不同。不同的应用场景对改型存在不一样的期望结果,对于钝尾缘改型,期望得到较好的升力系数的改型方法,以偏向压力面和改型位置靠近最大厚度为佳;而对于叶尖的工艺性增厚且气动性能改变尽量小的改型方法,则以对称增厚最好。

Figure 5. Maximum lift-drag ratio after modification (Cl1/Cd1max)

图5. 改型后的最大升阻比(Cl1/Cd1max)

5. 结论

本文通过Rfoil软件对DU93-W-210翼型按不同的后缘开口比例系数和曲线改型位置组合方案改型进行计算,并研究分析改型前后的翼型气动特性数据,得到如下结论:

1) 随着翼型后缘厚度的增加,阻力系数上升,翼型的升阻比下降;

2) 随着翼型后缘厚度靠近压力面一侧的增加,升力系数增加,升力系数线性段斜率降低;而随着翼型后缘厚度靠近吸力面一侧的增加,升力系数降低,升力系数线性段斜率增加;

3) 改型位置从前缘向后缘偏移对翼型升力系数和升力系数线性段斜率的影响会因改型靠近吸力面一侧或改型靠近压力面一侧的不同而产生不同的结果;

4) 翼型后缘厚度改型后的升力系数和升力系数线性段斜率呈负相关关系。

基金项目

本文受到国家重点研发计划项目(2020YFB1506700)资助。

参考文献

[1] Chow, R. and van Dam, C.R. (2013) Computational Investigations of Blunt Trailing-Edge and Twist Modifications to the Inboard Region of the NREL 5 MW Rotor. Wind Energy, 16, 445-458.
https://doi.org/10.1002/we.1505
[2] 何科杉, 陈严, 漆良文, 等. 风力机尾缘襟翼气动特性及减振性能研究[J]. 振动与冲击, 2021, 40(15): 198-206.
https://doi.org/10.13465/j.cnki.jvs.2021.15.025
[3] 马铁强, 陈明, 孙传宗. 风力机叶片翼型钝尾缘改型新方法及气动性能分析研究[J]. 可再生能源, 2020, 38(12): 1610-1614.
[4] Chao, D.D. and van Dam, C.P. (2007) Computational Aerodynamic Analysis of a Blunt Trailing-Edge Airfoil Modification to the NREL Phase VI Rotor. Wind Energy, 10, 529-550.
https://doi.org/10.1002/we.239
[5] 刘爱瑜. 大型风力机钝尾缘叶片结构与气动性能研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2019.
[6] 牛牧华, 陈程, 李倩. 风力机叶片尾缘几何与结构构型对尾缘胶接剪切疲劳性能的影响研究[J]. 可再生能源, 2022, 40(5): 645-650.
[7] 郑玉巧, 马辉东, 魏剑峰, 等. 复合材料风力机叶片尾缘结构优化设计[J]. 现代制造工程, 2019(8): 56-61.
https://doi.org/10.16731/j.cnki.1671-3133.2019.08.009
[8] Timmer, W.A. and van Rooij, R.P.J.O.M. (2003) Summary of the Delft University Wind Turbine Dedicated Airfoils. Journal of Solar Energy Engineering, 125, 488-496.
https://doi.org/10.1115/1.1626129
[9] 林邓添. 新型风力机专用翼型的试验研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2010.
[10] 张磊, 杨科, 赵晓路, 等. 不同尾缘改型方式对风力机钝尾缘翼型气动性能的影响[J]. 工程热物理学报, 2009, 30(5): 773-776.
[11] 李磊, 王旭玲. 风电机组叶片钝尾缘翼型改型方式的研究[J]. 风能, 2015(6): 86-88.
[12] 邓磊, 乔志德, 杨旭东, 等. 基于RANS方程大型风力机翼型钝尾缘修型气动性能计算[J]. 太阳能学报, 2012, 33(4): 545-551.
[13] Baker, J.P., Mayda, E.A. and van Dam, C.P. (2006) Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils. Journal of Solar Energy Engineering, 128, 422-431.
https://doi.org/10.1115/1.2346701
[14] Stock, H.W. and Haase, W. (2000) Navier-Stokes Airfoil Computations with eN Transition Prediction Including Transitional Flow Regions. AIAA Journal, 38, 2059-2066.
https://doi.org/10.2514/2.893
[15] Standish, K.J. and van Dam, C.P. (2003) Aerodynamic Anal-ysis of Blunt Trailing Edge Airfoils. Journal of Solar Energy Engineering, 125, 479-487.
https://doi.org/10.1115/1.1629103