自噬在转铁蛋白受体调节妇科肿瘤中的研究进展
Research Progress of Autophagy in Transferrin Receptor Regulation of Gynecologic Tumors
DOI: 10.12677/ACM.2023.13122667, PDF, HTML, XML, 下载: 92  浏览: 139 
作者: 刘一萌:青岛大学医学部,山东 青岛;张 萍:青岛市市立医院妇科,山东 青岛
关键词: 自噬转铁蛋白受体妇科肿瘤Autophagy Transferrin Receptor Gynecological Tumors
摘要: 自噬是一种进化上保守的自我降解过程,在维持细胞代谢和稳态上发挥至关重要的作用。在不同条件下,自噬在肿瘤进展中发挥着抑制或促进作用。铁是细胞生长的必需营养物质,通过转铁蛋白受体(TFRC)摄取铁是细胞吸收铁的最重要方式。自噬可以调节细胞铁稳态,自噬及铁代谢失衡均可以导致疾病和肿瘤的发生。在这篇综述中,我们讨论了自噬联合转铁蛋白在妇科肿瘤中的研究进展。
Abstract: Autophagy is an evolutionarily conserved self-degradation that plays a crucial role in maintaining cellular metabolism and homeostasis. Autophagy plays an inhibitory or promotional role in tumor progression under different conditions. Iron uptake by transferrin receptor is the most important way for cells to absorb iron. Autophagy regulates intracellular iron homeostasis, and the deregula-tion of autophagy and iron metabolism can lead to disease and tumors. In this review, we discuss the progress of autophagy combined with transferrin receptor in gynecologic tumors.
文章引用:刘一萌, 张萍. 自噬在转铁蛋白受体调节妇科肿瘤中的研究进展[J]. 临床医学进展, 2023, 13(12): 18962-18968. https://doi.org/10.12677/ACM.2023.13122667

1. 引言

自噬(autophagy)是一种促进生存的途径,它捕获、降解和回收溶酶体中细胞内受损的蛋白质和细胞器,来维持细胞的代谢和稳态 [1] 。自噬可以保护细胞器的功能,防止有毒物质积累,并在饥饿条件下提供代谢底物 [2] 。自噬功能障碍可以导致许多疾病的发生,包括感染、癌症、神经退行性疾病、自身免疫系统疾病、衰老和心脏疾病 [3] 。已在许多肿瘤类型中观察到自噬相关蛋白表达升高,表明自噬的增强可以促进肿瘤发生 [4] 。

铁是一种必需的营养物质,是许多细胞功能的关键组成部分,参与了细胞的生长增值、氧气运输及DNA的合成等过程 [5] 。转铁蛋白受体(TFRC)是调节细胞铁稳态的关键因子,TFRC通过与转铁蛋白复合物结合以促进铁离子进入细胞 [6] 。铁代谢失衡可以促使肿瘤的发生,促进肿瘤的增长 [5] 。其原因可能是肿瘤细胞在增殖过程中对代谢和生物合成的需求增加。在许多情况下,癌症细胞通过增加铁的吸收和储存,减少铁的输出改变细胞内铁代谢 [2] [7] 。自噬通过铁蛋白的吞噬回收铁蛋白复合物来调节铁的生物利用率 [8] 。本综述主要从自噬的功能、在疾病和肿瘤中的作用、自噬调节铁代谢等方面探讨自噬在TFRC调节的妇科肿瘤中的研究进展。

2. 自噬概述

2.1. 自噬简介及功能

自噬是一种保守的分解代谢途径,对生存、分化、发育和稳态至关重要 [3] 。必需自噬基因ATG5的缺失导致酵母菌株在氮缺乏条件下存活率极低,在自噬缺陷的人类神经元细胞表现为细胞死亡增加 [9] 。同样,ATG5的诱导性敲除加剧了小鼠神经变性,并导致中枢神经系统稳态丧失 [10] 。通过自噬,可以清除有害物质和老化或受损的细胞器,同时释放出分解产物作为细胞生长和能量代谢的物质来源。根据细胞物质运到溶酶体内的途径不同,自噬分为以下几种类型:宏观自噬、微观自噬和伴侣介导的自噬,所有这些都促进溶酶体胞质成分的蛋白水解降解。宏观自噬通过双膜结合囊泡(称为自噬体)的中介将细胞质货物输送到溶酶体,该囊泡与溶酶体融合形成自溶体 [11] 。这一过程使得使生物能量成分得以循环。

自噬在几乎所有细胞中都以低基础水平发生,以执行稳态功能,如控制蛋白质和细胞器的质量和数量 [12] 。自噬作为一种适应性分解代谢过程,在应对各种代谢压力时被激活。其最重要的生理作用是调动细胞内能量资源,来满足细胞和生物体对代谢底物的需求,并消除有缺陷或受损的蛋白质和细胞器,防止异常蛋白质聚集物积聚,以及清除细胞内病原体 [3] 。自噬主要发挥适应性作用,保护生物体免受各种疾病的侵害。

2.2. 自噬相关蛋白

在自噬的发生过程中,有多种自噬相关蛋白(autophagy-related protein, ATG)可调节和控制自噬形成的不同阶段。在哺乳动物细胞中,自噬体的形成是由大约20种核心自噬相关蛋白介导的,这些蛋白在自噬过程中协同介导复杂的膜动力学 [13] 。在下文中,我们将简单介绍几种自噬相关蛋白的功能。ULK1是一种丝氨酸/苏氨酸蛋白激酶,是酵母ATG1的哺乳动物直系同源物。ULK1被认为参与常规的自噬信号传导。而由ULK1,FIP200,ATG13和ATG101组成的ULK1复合物调节自噬体形成的开始,启动自噬 [14] [15] 。LC3 (微管相关蛋白1轻链3),是酵母ATG8的哺乳动物同源蛋白,参与自噬体的形成,是自噬的标志物 [16] 。LC3位于成熟的双膜自噬小泡的胞质和管腔表面,调节自噬小囊的生长和货物募集,其募集的蛋白质包括P62,Nbr1和NIX等在内货物衔接蛋白质 [17] 。P62,在人类中也称为螯合体1 (SQSTM1),是一种自噬受体,也选择性自噬的最佳特征底物之一 [18] 。P62在选择性自噬中与多泛素化蛋白相结合,作为自噬的成核位点 [19] 。Beclin-1,是酵母ATG6的哺乳动物直系同源物,可以与多种蛋白质相互作用调控自噬 [20] 。并且Beclin-1可以干预从自噬体形成到自噬体成熟的每一个主要步骤 [21] 。Bcl-2与Beclin-1相互作用,调控下游信号VPS34复合物,促进自噬开始,形成自噬体结构。而UVRAG、Ambra1 (Beclin-1调节自噬中的激活分子)和Rubicon相互作用则调控自噬体成熟过程。UVRAG与beclin-1的CCD结构域结合介导自噬体成熟,Rubicon与Beclin-UVRAG复合物的结合抑制自噬体成熟 [22] [23] 。

2.3. 自噬在疾病发展中的作用

自噬除了在正常生理过程中发挥作用外,还在癌症等病理过程中发挥作用 [24] 。Fimia GM等人的研究表明,Ambra1 (Beclin-1依赖性自噬程序的阳性调节因子)调节自噬,并在胚胎发生中发挥关键作用。小鼠胚胎中的Ambra1功能缺陷会导致严重的神经管缺陷 [25] 。近期研究表明,组蛋白去乙酰化酶6 (histone deacetylase, HDAC6),通过乙酰化和去乙酰转录因子EB (transcription factor EB, TFEB)和叉头盒转录因子O1 (Forkhead box transcription factor O1 FOXO1)调节自噬–溶酶体途径的活性和脱乙酰化P65上调NOD样受体热蛋白结构域相关蛋白(NOD-like receptor thermal protein domain associated protein 3, NLRP33)炎症小体,进而影响宿主防御和炎症 [26] 。Yang Z等人提出,在免疫系统中,自噬调节抗原摄取和呈递、病原体清除、短期和长期免疫细胞的存活以及细胞因子依赖性炎症等过程来参与宿主保护 [27] 。因此,自噬缺陷可能会引起炎症,并引发或加剧自身免疫性疾病。Bravo-San Pedro JM等人提出,在心血管疾病动物模型中,自噬或线粒体自噬基因缺陷的小鼠更易发展特定心血管疾病,自噬的药理学或遗传学抑制会加速疾病进展,并使多种疾病的结果恶化 [28] 。

2.4. 自噬在肿瘤发展中的作用

在肿瘤发展过程中,自噬既可以抑制肿瘤发生,又能促进肿瘤生长。在肿瘤发生的早期,自噬作为一种生存途径和质量控制机制,可以阻止肿瘤的发生和抑制肿瘤的发展 [4] 。ATG6/Beclin-1作为一种自噬和单倍体不足的肿瘤抑制蛋白,在大多数的乳腺癌和卵巢癌中单等位基因缺失。多种研究方法表明Beclin-1和其他自噬蛋白的缺失促进乳腺和卵巢上皮肿瘤细胞生长 [2] [29] [30] 。但是否与肿瘤中基因突变或受其他机制影响仍有待确定。在大多数情况下,自噬促进肿瘤发生。自噬作为一种动态的降解和循环系统,一旦肿瘤发展到晚期,并在环境胁迫下建立,就有助于肿瘤的生存和生长,并通过促进肿瘤的转移促进肿瘤的侵袭性 [4] 。Yang等人研究结果证实,在胰腺导管腺癌细胞系和原发肿瘤中,自噬被高度激活,在体外使用自噬抑制剂后,减少了胰腺肿瘤细胞生长 [31] 。表明了胰腺导管腺癌细胞系依赖于自噬来持续生长和肿瘤发生。在KRAS激活的非小细胞肺癌及PTEN缺乏所致的前列腺癌中,ATG7缺乏抑制肿瘤生长 [12] 。此外,恶性黑色素瘤细胞中也显示出高水平的自噬 [32] 。对于这些不同影响的一种解释是,自噬的稳态功能通过清除细胞的致癌成分来阻止肿瘤的发生,而应激诱导的自噬在面对癌症相关应激时促进肿瘤进展 [33] 。

3. 自噬在TFRC调节妇科肿瘤中的相关研究

3.1. 自噬与TFRC

细胞摄取铁的主要机制是通过转铁蛋白–转铁蛋白受体(TF-TFR)系统。TFRC是一种II型跨膜糖蛋白,几乎存在于所有哺乳动物细胞上,主要功能是通过与转铁蛋白结合,其复合物通过网格蛋白依赖性的内吞作用内化来摄取铁,随后进行胞吞作用 [34] 。TFRC正常情况下以低水平表达,而在增殖能力强和代谢旺盛的细胞膜表面呈高表达 [35] [36] 。而自噬在维持细胞铁稳态方面也发挥着关键作用,铁蛋白通过自噬进入溶酶体来释放铁 [37] 。Hou等人在血管性痴呆症模型的大鼠中发现,铁含量增加通过AMPK通路正向调节大鼠海马体神经元自噬 [38] 。Park E验证了活性氧(reactive oxygen species, ROS)诱导LC3B转化并激活自噬,调节铁蛋白降解和TFRC表达 [39] 。

3.2. 自噬联合TFRC在妇科肿瘤中的研究

自噬既可以作为肿瘤抑制因子,也可以作为肿瘤启动因子。其走向取决于癌症的类型和阶段、基因突变和肿瘤微环境 [40] 。已有研究表明,在胰腺癌 [41] 、肺癌 [42] 、卵巢癌 [43] 、宫颈癌 [44] 、甲状腺癌 [45] 、结肠癌 [46] 等在内的许多癌症中,TFRC的表达明显增高,且与预后不良有关。宫颈癌是最常见的妇科恶性肿瘤。在Yang等人的研究中表明,新型MIR-G1的过表达增强了宫颈癌Hela细胞的恶性生物学行为,促进了核自噬,并促进了体内肿瘤生长 [47] 。而李沫等人的研究则表明,过表达CCAT1促进宫颈癌细胞增长,抑制细胞自噬囊泡聚集,抑制宫颈癌HeLa细胞自噬 [48] 。同样,在卵巢癌和子宫内膜癌中,在不同条件下,自噬对于肿瘤的作用不同 [40] [49] [50] 。

4. 结论

综上所述,相对于正常细胞而言,肿瘤细胞摄取吸收更多的铁来促进其生存和生长,肿瘤细胞也利用自噬的生存功能来防止细胞损伤和促进肿瘤的发生。包括宫颈癌和卵巢癌在内的妇科肿瘤中,TFRC呈现高表达。铁蓄积和自噬都可以促进肿瘤增长,自噬激活可以调控TFRC的表达。因此,靶向TFRC联合自噬可以作为治疗肿瘤的新方向,但二者相互之间的作用仍不明确。所以未来我们需要对其机制进行更进一步的研究。

参考文献

[1] Hu, Y. and Reggiori, F. (2022) Molecular Regulation of Autophagosome Formation. Biochemical Society Transactions, 50, 55-69.
https://doi.org/10.1042/BST20210819
[2] White, E. (2015) The Role for Autophagy in Cancer. The Journal of Clinical Investigation, 125, 42-46.
https://doi.org/10.1172/JCI73941
[3] Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Dis-ease. Cell, 132, 27-42.
https://doi.org/10.1016/j.cell.2007.12.018
[4] Li, X., He, S. and Ma, B. (2020) Autophagy and Autopha-gy-Related Proteins in Cancer. Molecular Cancer, 19, 12.
https://doi.org/10.1186/s12943-020-1138-4
[5] Morales, M. and Xue, X. (2021) Targeting Iron Metabolism in Cancer Therapy. Theranostics, 11, 8412-8429.
https://doi.org/10.7150/thno.59092
[6] Shen, Y., Li, X., Dong, D., Zhang, B., Xue, Y. and Shang, P. (2018) Transferrin Receptor 1 in Cancer: A New Sight for Cancer Therapy. American Journal of Cancer Research, 8, 916-931.
[7] Torti, S.V., Manz, D.H., Paul, B.T., Blanchette-Farra, N. and Torti, F.M. (2018) Iron and Cancer. Annual Review of Nutrition, 38, 97-125.
https://doi.org/10.1146/annurev-nutr-082117-051732
[8] Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Re-ceptor Mediating Ferritinophagy. Nature, 509, 105-109.
https://doi.org/10.1038/nature13148
[9] Kataura, T., Sed-lackova, L., Otten, E.G., Kumari, R., Shapira, D., Scialo, F., Stefanatos, R., Ishikawa, K.I., Kelly, G., Seranova, E., et al. (2022) Autophagy Promotes Cell Survival by Maintaining NAD Levels. Developmental Cell, 57, 2584-2598.e2511.
https://doi.org/10.1016/j.devcel.2022.10.008
[10] Qin, Y., Qiu, J., Wang, P., Liu, J., Zhao, Y., Jiang, F. and Lou, H. (2021) Impaired Autophagy in Microglia Aggravates Dopaminergic Neurodegeneration by Regulating NLRP3 In-flammasome Activation in Experimental Models of Parkinson’s Disease. Brain, Behavior, and Immunity, 91, 324-338.
https://doi.org/10.1016/j.bbi.2020.10.010
[11] Glick, D., Barth, S. and Macleod, K.F. (2010) Autophagy: Cellular and Molecular Mechanisms. The Journal of Pathology, 221, 3-12.
https://doi.org/10.1002/path.2697
[12] Amaravadi, R., Kimmelman, A.C. and White, E. (2016) Recent Insights into the Function of Autophagy in Cancer. Genes & Development, 30, 1913-1930.
https://doi.org/10.1101/gad.287524.116
[13] Matoba, K. and Noda, N.N. (2021) Structural Catalog of Core Atg Proteins Opens New Era of Autophagy Research. Journal of Biochemistry, 169, 517-525.
https://doi.org/10.1093/jb/mvab017
[14] Zachari, M. and Ganley, I.G. (2017) The Mammalian ULK1 Complex and Autophagy Initiation. Essays in Biochemistry, 61, 585-596.
https://doi.org/10.1042/EBC20170021
[15] Kim, K.H. and Lee, M.S. (2014) Autophagy—A Key Player in Cellular and Body Metabolism. Nature Reviews Endocrinology, 10, 322-337.
https://doi.org/10.1038/nrendo.2014.35
[16] Zhao, H., Yang, M., Zhao, J., Wang, J., Zhang, Y. and Zhang, Q. (2013) High Expression of LC3B Is Associated with Progression and Poor Outcome in Triple-Negative Breast Cancer. Medical Oncology (Northwood, London, England), 30, Article No. 475.
https://doi.org/10.1007/s12032-013-0475-1
[17] Lazova, R., Camp, R.L., Klump, V., Siddiqui, S.F., Amaravadi, R.K. and Pawelek, J.M. (2012) Punctate LC3B Expression Is a Common Feature of Solid Tumors and Associated with Proliferation, Metastasis, and Poor Outcome. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 18, 370-379.
https://doi.org/10.1158/1078-0432.CCR-11-1282
[18] Islam, M.A., Sooro, M.A. and Zhang, P. (2018) Autophagic Regulation of p62 Is Critical for Cancer Therapy. International Journal of Molecular Sciences, 19, Article No. 1405.
https://doi.org/10.3390/ijms19051405
[19] Feng, X., Du, W., Ding, M., Zhao, W., Xirefu, X., Ma, M., Zhuang, Y., Fu, X., Shen, J., Zhang, J., et al. (2022) Myosin 1D and the Branched Actin Network Control the Condensation of p62 Bodies. Cell Research, 32, 659-669.
https://doi.org/10.1038/s41422-022-00662-6
[20] Fu, L.L., Cheng, Y. and Liu, B. (2013) Beclin-1: Autophagic Regulator and Therapeutic Target in Cancer. The International Journal of Biochemistry & Cell Biology, 45, 921-924.
https://doi.org/10.1016/j.biocel.2013.02.007
[21] Kang, R., Zeh, H.J., Lotze, M.T. and Tang, D. (2011) The Beclin 1 Network Regulates Autophagy and Apoptosis. Cell Death and Differentiation, 18, 571-580.
https://doi.org/10.1038/cdd.2010.191
[22] Kaur, S. and Changotra, H. (2020) The Beclin 1 Interactome: Modifica-tion and Roles in the Pathology of Autophagy-Related Disorders. Biochimie, 175, 34-49.
https://doi.org/10.1016/j.biochi.2020.04.025
[23] Prerna, K. and Dubey, V.K. (2022) Beclin1-Mediated Interplay between Autophagy and Apoptosis: New Understanding. International Journal of Biological Macromolecules, 204, 258-273.
https://doi.org/10.1016/j.ijbiomac.2022.02.005
[24] Kimmelman, A.C. and White, E. (2017) Autophagy and Tumor Metabolism. Cell Metabolism, 25, 1037-1043.
https://doi.org/10.1016/j.cmet.2017.04.004
[25] Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bar-tolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., et al. (2007) Ambra1 Regulates Autophagy and Development of the Nervous System. Nature, 447, 1121-1125.
https://doi.org/10.1038/nature05925
[26] Chang, P., Li, H., Hu, H., Li, Y. and Wang, T. (2021) The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Frontiers in Immunology, 12, Article ID: 763831.
https://doi.org/10.3389/fimmu.2021.763831
[27] Yang, Z., Goronzy, J.J. and Weyand, C.M. (2015) Autophagy in Autoimmune Disease. Journal of Molecular Medicine (Berlin, Germany), 93, 707-717.
https://doi.org/10.1007/s00109-015-1297-8
[28] Bravo-San Pedro, J.M., Kroemer, G. and Galluzzi, L. (2017) Au-tophagy and Mitophagy in Cardiovascular Disease. Circulation Research, 120, 1812-1824.
https://doi.org/10.1161/CIRCRESAHA.117.311082
[29] Gozuacik, D. and Kimchi, A. (2004) Autophagy as a Cell Death and Tumor Suppressor Mechanism. Oncogene, 23, 2891-2906.
https://doi.org/10.1038/sj.onc.1207521
[30] Wijshake, T., Zou, Z., Chen, B., Zhong, L., Xiao, G., Xie, Y., Doench, J.G., Bennett, L. and Levine, B. (2021) Tumor-Suppressor Function of Beclin 1 in Breast Cancer Cells Requires E-cadherin. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020478118.
https://doi.org/10.1073/pnas.2020478118
[31] Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J.M., Dell’antonio, G., et al. (2011) Pancreatic Cancers Require Autophagy for Tumor Growth. Genes & Development, 25, 717-729.
https://doi.org/10.1101/gad.2016111
[32] Lazova, R., Klump, V. and Pawelek, J. (2010) Autophagy in Cutaneous Malignant Melanoma. Journal of Cutaneous Pathology, 37, 256-268.
https://doi.org/10.1111/j.1600-0560.2009.01359.x
[33] Liu, J. and Debnath, J. (2016) The Evolving, Multifaceted Roles of Autophagy in Cancer. In: Advances in Cancer Research, Vol. 130, Elsevier, Amsterdam, 1-53.
https://doi.org/10.1016/bs.acr.2016.01.005
[34] Gammella, E., Buratti, P., Cairo, G. and Recalcati, S. (2017) The Transferrin Receptor: The Cellular Iron Gate. Metallomics: Integrated Biometal Science, 9, 1367-1375.
https://doi.org/10.1039/C7MT00143F
[35] Daniels-Wells, T.R. and Penichet, M.L. (2016) Transferrin Receptor 1: A Target for Antibody-Mediated Cancer Therapy. Immunotherapy, 8, 991-994.
https://doi.org/10.2217/imt-2016-0050
[36] Daniels, T.R., Delgado, T., Rodriguez, J.A., Helguera, G. and Penichet, M.L. (2006) The Transferrin Receptor Part I: Biology and Targeting with Cytotoxic Antibodies for the Treatment of Cancer. Clinical Immunology (Orlando, Fla), 121, 144-158.
https://doi.org/10.1016/j.clim.2006.06.010
[37] Chen, L.L., Huang, Y.J., Cui, J.T., Song, N. and Xie, J. (2019) Iron Dysregulation in Parkinson’s Disease: Focused on the Autophagy-Lysosome Pathway. ACS Chemical Neuroscience, 10, 863-871.
https://doi.org/10.1021/acschemneuro.8b00390
[38] Huo, T., Jia, Y., Yin, C., Luo, X., Zhao, J., Wang, Z. and Lv, P. (2019) Iron Dysregulation in Vascular Dementia: Focused on the AMPK/Autophagy Pathway. Brain Research Bulle-tin, 153, 305-313.
https://doi.org/10.1016/j.brainresbull.2019.09.006
[39] Park, E. and Chung, S.W. (2019) ROS-Mediated Autoph-agy Increases Intracellular Iron Levels and Ferroptosis by Ferritin and Transferrin Receptor Regulation. Cell Death & Disease, 10, Article No. 822.
https://doi.org/10.1038/s41419-019-2064-5
[40] Orfanelli, T., Jeong, J.M., Doulaveris, G., Holcomb, K. and Witkin, S.S. (2014) Involvement of Autophagy in Cervical, Endometrial and Ovarian Cancer. International Journal of Cancer, 135, 519-528.
https://doi.org/10.1002/ijc.28524
[41] Yang, C., Li, J., Guo, Y., Gan, D., Zhang, C., Wang, R., Hua, L., Zhu, L., Ma, P., Shi, J., et al. (2022) Role of TFRC as a Novel Prognostic Biomarker and in Immunotherapy for Pancreatic Carcinoma. Frontiers in Molecular Biosciences, 9, Article ID: 756895.
https://doi.org/10.3389/fmolb.2022.756895
[42] Kukulj, S., Jaganjac, M., Boranic, M., Krizanac, S., Santic, Z. and Poljak-Blazi, M. (2010) Altered Iron Metabolism, Inflammation, Transferrin Receptors, and Ferritin Expression in Non-Small-Cell Lung Cancer. Medical Oncology (Northwood, London, England), 27, 268-277.
https://doi.org/10.1007/s12032-009-9203-2
[43] Huang, Y., Huang, J., Huang, Y., Gan, L., Long, L., Pu, A. and Xie, R. (2020) TFRC Promotes Epithelial Ovarian Cancer Cell Proliferation and Metastasis via Up-Regulation of AXIN2 Expression. American Journal of Cancer Research, 10, 131-147.
[44] Huang, N., Wei, Y., Cheng, Y., Wang, X., Wang, Q., Chen, D. and Li, W. (2022) Iron Metabolism Protein Transferrin Receptor 1 Involves in Cervical Cancer Progression by Affecting Gene Expression and Alternative Splicing in HeLa Cells. Genes & Genomics, 44, 637-650.
https://doi.org/10.1007/s13258-021-01205-w
[45] Parenti, R., Salvatorelli, L. and Magro, G. (2014) Anaplastic Thyroid Carcinoma: Current Treatments and Potential New Therapeutic Options with Emphasis on TfR1/CD71. Interna-tional Journal of Endocrinology, 2014, Article ID: 685396.
https://doi.org/10.1155/2014/685396
[46] Horniblow, R.D., Bedford, M., Hollingworth, R., Evans, S., Sutton, E., Lal, N., Beggs, A., Iqbal, T.H. and Tselepis, C. (2017) BRAF Mutations Are Associated with Increased Iron Regulatory Protein-2 Expression in Colorectal Tumorigenesis. Cancer Science, 108, 1135-1143.
https://doi.org/10.1111/cas.13234
[47] Yang, Z., Sun, Q., Guo, J., Wang, S., Song, G., Liu, W., Liu, M. and Tang, H. (2019) GRSF1-Mediated MIR-G-1 Promotes Malignant Behavior and Nuclear Autophagy by Directly Upregulating TMED5 and LMNB1 in Cervical Cancer Cells. Autophagy, 15, 668-685.
https://doi.org/10.1080/15548627.2018.1539590
[48] 李沫, 宓淑芳, 王孝信. lncRNA-CCAT1通过调控PI3K/Akt/mTOR信号通路对宫颈癌HeLa细胞自噬的影响[J]. 中国免疫学杂志, 2021, 37(15): 1855-1859.
[49] Nie, X., Liu, D., Zheng, M., Li, X., Liu, O., Guo, Q., Zhu, L. and Lin, B. (2022) HERPUD1 Promotes Ovarian Cancer Cell Survival by Sustaining Autophagy and Inhibit Apoptosis via PI3K/AKT/mTOR and p38 MAPK Signaling Pathways. BMC Cancer, 22, Article No. 1338.
https://doi.org/10.1186/s12885-022-10248-5
[50] Zhu, H., Diao, S., Lim, V., Hu, L. and Hu, J. (2019) FAM83D Inhibits Autophagy and Promotes Proliferation and Invasion of Ovarian Cancer Cells via PI3K/AKT/mTOR Pathway. Acta Biochimica et Biophysica Sinica, 51, 509-516.
https://doi.org/10.1093/abbs/gmz028