CNFs/PANI复合纤维的可控制备及电化学性能研究
Controllable Preparation and Electrochemical Properties Study of CNFs/PANI Composite Fibers
DOI: 10.12677/MS.2023.1312116, PDF, 下载: 85  浏览: 140  科研立项经费支持
作者: 卜 焱, 郭丽莹, 胡铭琪, 刘美琳, 邹云伟, 周雪娇*:哈尔滨师范大学光电带隙材料教育部重点实验室,黑龙江 哈尔滨
关键词: 电化学静电纺丝比电容CNFs/PAN复合电极化学聚合 Electrochemistry Electrospinning Specific Capacitance CNFs/PAN Composite Electrode Chemical Polymerization
摘要: 本文通过静电纺丝技术制备出电导率良好的自支撑碳纳米纤维网络(CNFs)作为电极内部的集流器,并在室温下采用重复化学原位聚合法在CNFs表面均匀沉积一层聚苯胺(PANI)聚合物,成功制备出一维3D的CNFs/PANI独立复合电极。采用扫描电子显微镜和X射线衍射仪对样品形貌和组成成分进行详细分析。在三电极体系下,CNFs/PANI复合电极的比电容达到了412 F/g,在经过5000次充放电循环后比电容仍保持初始比电容81%。
Abstract: In this paper, the self-supported carbon nanofiber networks (CNFs) with good electrical conductivity were prepared by electrospinning as the collector inside the electrode, and a layer of polyaniline (PANI) polymer was uniformly deposited on the surface of CNFs by repeated chemical in situ polymerization at room temperature, and the one-dimensional 3D CNFs/PANI independent composite electrode was successfully prepared. The sample morphology and composition were analyzed in detail by scanning electron microscopy and X-ray diffractometer. In the three-electrode system, the specific capacitance of CNFs/PANI composite electrode reached 41 F/g, and the initial specific capacitance remained 81% after 5000 charge and discharge cycles.
文章引用:卜焱, 郭丽莹, 胡铭琪, 刘美琳, 邹云伟, 周雪娇. CNFs/PANI复合纤维的可控制备及电化学性能研究[J]. 材料科学, 2023, 13(12): 1036-1042. https://doi.org/10.12677/MS.2023.1312116

参考文献

[1] Conway, B.E. (1991) Transition from “Supercapacitors” to “Battery” Behavior in Electrochemical Energy Storage. Jour-nal of the Electrochemical Society, 138, 1539-1548.
https://doi.org/10.1149/1.2085829
[2] Xiong, G.P., Meng, C.Z., Reifenberger, R.G. and Fisher, T.S. (2014) Graphitic Petal Electrodes for All-Solid-State Flexible Supercapacitors. Advanced Energy Materials, 4, Article ID: 1300515.
https://doi.org/10.1002/aenm.201300515
[3] Lu, X.H., Yu, M.H., Wang, G.M., Tong, Y.X. and Li, Y. (2014) Flexible Solid-State Supercapacitors: Design, Fabrication and Applications. Energy & Environmental Science, 7, 2160-2181.
https://doi.org/10.1039/c4ee00960f
[4] Tamilarasan, P. and Ramaprabhu, S. (2013) Graphene Based All-Solid-State Supercapacitors with Ionic Liquid Incorporated Polyacrylonitrile Electrolyte. Energy, 51, 374-381.
https://doi.org/10.1016/j.energy.2012.11.037
[5] Xiong, G.P., Meng, C.Z., Reifenberger, R.G., Irazaqui, P.P. and Fisher, T.S. (2014) A Review of Graphene-Based Electrochemical Microsupercapacitors. Electroanalysis, 26, 30-51.
https://doi.org/10.1002/elan.201300238
[6] Gwon, H., Kim, H.S., Lee, K.U., Seo, D.H., Park, Y.C., Lee, Y.S., et al. (2011) Flexible Energy Storage Devices Based on Graphene Paper. Energy & Environmental Science, 4, 1277-1283.
https://doi.org/10.1039/c0ee00640h
[7] Wang, K., Zhao, P., Zhou, X.M., Wu, H.P. and Wei, Z.X. (2011) Flexible Supercapacitors Based on Cloth-Supported Electrodes of Conducting Polymer Nanowire Array/SWCNT Composites. Journal of Materials Chemistry, 21, 16373-16378.
https://doi.org/10.1039/c1jm13722k
[8] Xu, C.K., Wu, J.M., Desai, U.V. and Gao, D. (2011) Multilayer Assem-bly of Nanowire Arrays for Dye-Sensitized Solar Sell. Journal of the American Chemical Society, 133, 8122-8125.
https://doi.org/10.1021/ja202135n
[9] Chaudhari, S., Sharma, Y., Archana, P.S., Jose, R., Ramakrishna, S., Mhaisalkr, S., et al. (2013) Electrospun Polyaniline Nanofibers Web Electrodes for Supercapacitors. Journal of Applied Polymer Science, 129, 1660-1668.
https://doi.org/10.1002/app.38859
[10] Miao, F.J., Shao, C.L., Li, X.H., Lu, N., Wang, K.X., Zhang, X., et al. (2015) Flexible Solid-State Supercapacitors Based on Freestanding Electrodes of Electrospun Polyacryloni-trile@polyaniline Core-Shell Nanofibers. Electrochimica Acta, 176, 293-300.
https://doi.org/10.1016/j.electacta.2015.06.141
[11] Wang, D.W., Li, F., Zhao, J.P., Ren, W.C., Chen, Z.G., Tan, J., et al. (2009) Fabrication of Graphene/Polyaniline Composite Paper via in situ Anodic Electropolymerization for High Performance Flexible Electrode. ACS Nano, 3, 1745-1752.
https://doi.org/10.1021/nn900297m
[12] He, X.P., Gao, B., Wang, G.B., Wei, J.T. and Zhao, C. (2013) A New Nanocomposite: Carbon Cloth Based Polyaniline for an Electrochemical Supercapacitor. Electrochim Acta, 111, 210-215.
https://doi.org/10.1016/j.electacta.2013.07.226
[13] Wei, J.Y., Zhang, J.N., Liu, Y., Xu, G.H., Chen, Z.M. and Xu, Q. (2013) Controlled Growth of Whiskerlike Polyaniline on Carbon Nanofibers and Their Long Cycle Life for Superca-pacitors. RSC Advances, 3, 3957-3962.
https://doi.org/10.1039/c3ra23040f
[14] Tran, C., Singhal, R., Lawrence, D. and Kalra, V. (2015) Polyani-line-Coated Freestanding Porous Carbon Nanofibers as Efficient Hybrid Electrodes for Supercapacitors. Journal of Power Sources, 293, 373-379.
https://doi.org/10.1016/j.jpowsour.2015.05.054
[15] Lei, D.Y., Devarayan, K., Seo, M.K., Kim, Y.G. and Kim, B.S. (2015) Flexible Polyaniline-Decorated Carbon Fiber Nanocomposite Mats as Supercapacitors. Materials Letters, 154, 173-176.
https://doi.org/10.1016/j.matlet.2015.04.095
[16] Cheng, Y.L., Huang, L., Xiao, X., Yao, B., Yuan, L.Y., Li, T.Q., et al. (2015) Flexible and Crosslinked N-Doped Carbon Nanofiber Network for High Performance Free-standing Supercapacitor Electrode. Nano Energy, 15, 66-74.
https://doi.org/10.1016/j.nanoen.2015.04.007
[17] Lin, W.H., Xu, K., Peng, J., Xing, Y.X., Gao, S.X., Ren, Y.Y., et al. (2015) Hierarchically Structured Carbon Nanofiber Silsesquioxane-Polyaniline Nanohybrids for Flexible Superca-pacitor Electrodes. Journal of Materials Chemistry A, 3, 8438-8449.
https://doi.org/10.1039/C4TA06806H
[18] Dandekar, M.S., Arabale, G. and Vijayamohanan, K. (2005) Prepara-tion and Characterization of Composite Electrodes of Coconut-Shell-Based Active Carbon and Hydrous Ruthenium Ox-ide for Supercapacitors. Journal of Power Sources, 141, 198-203.
https://doi.org/10.1016/j.jpowsour.2004.09.008
[19] Luo, Z.H., Zhu, L.H., Zhang, H.Y. and Tang, H.Q. (2013) Polyaniline Uniformly Coated on Graphene Oxide Sheets as Supercapacitors Material with Improved Capacitive Proper-ties. Materials Chemistry and Physics, 139, 572-579.
https://doi.org/10.1016/j.matchemphys.2013.01.059
[20] Lin, Y.W. and Wu, T.M. (2009) Synthesis and Charac-terization of Externally Doped Sulfonated Polyaniline/Multi- Walled Carbon Nanotube Composites. Composites Science and Technology, 69, 2559-2565.
https://doi.org/10.1016/j.compscitech.2009.07.013
[21] Wang, X.F., Liu, B., Wang, Q.F., Song, W.F., Hou, X.J., Chen, D., et al. (2013) Three-Dimensional Hierarchical GeSe2 Nanostructures for High Performance Flexible All-Solid-State Supercapacitors. Advanced Materials, 25, 1479-1486.
https://doi.org/10.1002/adma.201204063
[22] Yang, L., Cheng, S., Ding, Y., Zhu, X.B., Wang, Z.L. and Liu, M.L. (2012) Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High Capacity Pseudocapacitors. Nano Letters, 12, 321-325.
https://doi.org/10.1021/nl203600x
[23] Lang, X.Y., Hirata, A., Fujita, T. and Chen, M.W. (2011) Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nature Nanotechnology, 6, 232-236.
https://doi.org/10.1038/nnano.2011.13