铜/金刚石复合材料的研究进展
Research Progress of Copper/Diamond Composites
DOI: 10.12677/MS.2023.1312117, PDF, 下载: 149  浏览: 311  科研立项经费支持
作者: 梁兴宇, 龙骋宇, 甘达桓, 洪伟浩, 李安敏, 覃伟沛*:广西大学资源环境与材料学院,广西 南宁
关键词: 铜基复合材料制备方法作用机理 Copper Matrix Composite Preparation Method Action Mechanism
摘要: 近年来,随着5G技术的不断发展,其核心部件的散热问题越来越引起了重视。传统的铜基材料已经不能满足需求,而金刚石的热导率可高达2000 W/(m•K),并且密度轻,因此将其制备成铜/金刚石复合材料既能充分利用金刚石高热导率及低密度的特点,又能将铜的良好导电能力与之相结合,开发出具有良好散热能力的电子器件。本文详细介绍了铜/金刚石复合材料的研究进展,包括制备方法和作用机理。此外,还总结了当前研究中需要解决的问题。
Abstract: In recent years, with the continuous development of 5G technology, the heat dissipation problem of its core components has attracted more and more attention. Traditional copper-based materials can no longer meet the demand, while the thermal conductivity of diamond can be as high as 2000 W/(m•K), and the density is light, so its preparation into copper/diamond composites can make full use of the characteristics of diamond’s high thermal conductivity and low density, but also can combine the good electrical conductivity of copper, to develop electronic devices with good heat dissipation ability. This paper describes in detail the research progress of copper/diamond composites, including the preparation method and mechanism of action. In addition, the problems that need to be solved in the current research are summarized.
文章引用:梁兴宇, 龙骋宇, 甘达桓, 洪伟浩, 李安敏, 覃伟沛. 铜/金刚石复合材料的研究进展[J]. 材料科学, 2023, 13(12): 1043-1054. https://doi.org/10.12677/MS.2023.1312117

参考文献

[1] 张耀坤, 徐纯. 5G产业链主要新材料研究进展[J]. 新材料产业, 2020(5): 11-14.
[2] 臧传明. 粉末冶金法制备短C-f/Cu复合材料工艺研究[D]: [硕士学位论文]. 西安: 西安科技大学, 2009.
[3] 王晔. 高铁制动用粉末冶金摩擦材料的制备及性能研究[D]: [博士学位论文]. 北京: 北京科技大学, 2015.
[4] 唐佳, 陈玉祥. 碳纤维研究及发展现状[J]. 化工设计通讯, 2017, 43(10): 63.
[5] Wang, C., et al. (2019) Simultaneous Achievement of High Strength and High Ductility in Copper Matrix Composites with Carbon Nanotubes/Cu Composite Foams as Reinforcing Skeletons. Nanotechnology, 31, Article ID: 045701.
https://doi.org/10.1088/1361-6528/ab49bd
[6] 戴书刚, 李金旺, 董传俊. 金刚石/铜高导热复合材料制备工艺的研究进展[J]. 精细化工, 2019, 36(10): 1995-2008.
[7] 邓丽芳, 朱心昆, 陶静梅, 等. 活性元素在铜/金刚石复合材料中的应用[J]. 电子工艺技术, 2009, 30(3): 128-132.
[8] Gundrum, B.C., Cahill, D.G. and Averback, R.S. (2005) Thermal Conductance of Metal-Metal Interfaces. Physical Review B, 72, Article ID: 245426.
https://doi.org/10.1103/PhysRevB.72.245426
[9] Kang, Q., He, X., Ren, S., et al. (2013) Preparation of Cop-per-Diamond Composites with Chromium Carbide Coatings on Diamond Particles for Heat Sink Applications. Applied Thermal Engineering, 60, 423-429.
https://doi.org/10.1016/j.applthermaleng.2013.05.038
[10] 李明君, 马永, 高洁, 等. 高导热金刚石/铜复合材料的研究进展[J/OL]. 中国表面工程: 1-12.
http://www.csejournal.com/ch/reader/create_pdf.aspx?file_no=20220414&year_id=2022&quarter_id=4&falg=1, 2022-10-28.
[11] Yuan, M., Tan, Z., Fan, G., et al. (2018) Theoretical Modelling for Interface Design and Thermal Conductivity Prediction in Diamond/Cu Composites. Diamond and Related Materials, 81, 38-44.
https://doi.org/10.1016/j.diamond.2017.11.010
[12] Tan, Z., Li, Z., Fan, G., et al. (2013) Enhanced Thermal Con-ductivity in Diamond/Aluminum Composites with a Tungsten Interface Nanolayer. Materials & Design, 47, 160-166.
https://doi.org/10.1016/j.matdes.2012.11.061
[13] 张永杰. 电子封装用金刚石/铜复合材料导热性能的数值模拟研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2017.
[14] 张永杰, 董应虎, 张瑞卿, 等. 金刚石/铜复合材料导热性能的数值模拟[J]. 材料热处理学报, 2018, 39(6): 110-117.
https://doi.org/10.13289/j.issn.1009-6264.2018-0017
[15] Pan, Y., He X., Ren, S., Wu, M. and Qu, X.H. (2018) Optimized Thermal Conductivity of Diamond/Cu Composite Prepared with Tungsten-Copper-Coated Diamond Particles by Vacuum Sintering Technique. Vacuum, 153, 74-81.
https://doi.org/10.1016/j.vacuum.2018.03.052
[16] 鲍瑞, 张文府, 易健宏, 等. 粉末冶金法制备协同增强铜基复合材料的研究进展[J]. 粉末冶金材料科学与工程, 2022, 27(1): 1-12.
[17] Xiang, S., Du, X., Liang, Y., Zhou, M.C. and Zhang, X.F. (2021) Optimizing Phase Interface of Titanium Carbide-Reinforced Copper Matrix Composites Fabricated by Electropulsing-Assisted Flash Sintering. Materials Science and Engineering A, 819, Article ID: 141506.
https://doi.org/10.1016/j.msea.2021.141506
[18] 赵勇智, 李颖. 粉末冶金法制备金刚石/铜复合材料热导率研究[J]. 金刚石与磨料磨具工程, 2016, 36(1): 79-82, 90.
https://doi.org/10.13394/j.cnki.jgszz.2016.1.0017
[19] 张习敏, 郭宏. 一种石墨烯/金刚石混合增强铜基复合材料及其制备方法[P]. 中国专利, CN201711376262.8. 2019-06-25.
[20] Zhao, C. and Wang, J. (2013) Enhanced Mechanical Properties in Diamond/Cu Composites with Chromium Carbide Coating for Structural Applications. Materials Science and Engineering: A, 588, 221-227.
https://doi.org/10.1016/j.msea.2013.09.034
[21] Fan, Y., Guo, H., Xu, J., et al. (2011) Effects of Boron on the Microstructure and Thermal Properties of Cu/Diamond Composites Prepared by Pressure Infiltration. International Journal of Minerals, Metallurgy, and Materials, 18, 472-478.
https://doi.org/10.1007/s12613-011-0465-2
[22] Wang, L., Li, J., Che, Z., et al. (2018) Combining Cr Pre-Coating and Cr Alloying to Improve the Thermal Conductivity of Diamond Particles Reinforced Cu Matrix Composites. Journal of Alloys and Compounds, 749, 1098-1105.
https://doi.org/10.1016/j.jallcom.2018.03.241
[23] Li, J., Wang, X., Qiao, Y., et al. (2015) High Thermal Conduc-tivity through Interfacial Layer Optimization in Diamond Particles Dispersed Zr-Alloyed Cu Matrix Composites. Scripta Materialia, 109, 72-75.
https://doi.org/10.1016/j.scriptamat.2015.07.022
[24] Li, J., Zhang, H., Wang, L., et al. (2016) Optimized Thermal Properties in Diamond Particles Reinforced Copper-Titanium Matrix Composites Produced by Gas Pressure Infiltration. Composites Part A: Applied Science and Manufacturing, 91, 189-194.
https://doi.org/10.1016/j.compositesa.2016.10.005
[25] Dong, Y., Zhang, R., He, X., Ye, Z.G. and Qu, X.H. (2012) Fabrication and Infiltration Kinetics Analysis of Ti-Coated Diamond/Copper Composites with Near-Net-Shape by Pres-sureless Infiltration. Materials Science and Engineering: B, 177, 1524-1530.
https://doi.org/10.1016/j.mseb.2012.08.009
[26] Chung, C.Y., Lee, M.T., Tsai, M.Y., Chu, C.H. and Lin, S.J. (2014) High Thermal Conductive Diamond/Cu-Ti Composites Fabricated by Pressureless Sintering Technique. Applied Thermal Engineering, 69, 208-213.
https://doi.org/10.1016/j.applthermaleng.2013.11.065
[27] Bakshi, S.R., Lahiri, D. and Agarwal, A. (2010) Carbon Nanotube Reinforced Metal Matrix Composites—A Review. International Materials Reviews, 55, 41-64.
https://doi.org/10.1179/095066009X12572530170543
[28] 淦作腾, 任淑彬, 沈晓宇, 等. 放电等离子烧结法制备金刚石/Cu复合材料[J]. 粉末冶金材料科学与工程, 2010, 15(1): 59-63.
[29] Zhang, Y., Zhang, H., Wu, J. and Wang, X.T. (2011) Enhanced Thermal Conductivity in Copper Matrix Composites Reinforced with Titanium-Coated Diamond Particles. Scripta Materialia, 65, 1097-1100.
https://doi.org/10.1016/j.scriptamat.2011.09.028
[30] Ren, S., Shen, X., Guo, C., et al. (2011) Effect of Coating on the Microstructure and Thermal Conductivities of Diamond-Cu Composites Prepared by Powder Metallurgy. Composites Science and Technology, 71, 1550-1555.
https://doi.org/10.1016/j.compscitech.2011.06.012
[31] Schubert, T., Zieliński, W., Michalski, A., et al. (2008) In-terfacial Characterization of Cu/Diamond Composites Prepared by Powder Metallurgy for Heat Sink Applications. Scripta Materialia, 58, 263-266
https://doi.org/10.1016/j.scriptamat.2007.10.011
[32] Ciupiński, Ł., Kruszewski, M.J., Grzonka, J., et al. (2017) Design of Interfacial Cr3C2 Carbide Layer via Optimization of Sintering Parameters Used to Fabricate Copper/Diamond Composites for Thermal Management Applications. Materials & Design, 120, 170-185.
https://doi.org/10.1016/j.matdes.2017.02.005
[33] 赵龙, 宋平新, 张迎九, 等. 高温高压法制备金刚石/铜复合材料的研究[J]. 金刚石与磨料磨具工程, 2018, 38(2): 15-19.
[34] Physico-Chemical Society of Japan (1975) Pro-ceedings of the Fourth International Conference on High Pressure, Kyoto, November 25-29, 1974.
https://searchworks.stanford.edu/view/879530
[35] Yoshida, K. and Morigami, H. (2004) Thermal Properties of Diamond/Copper Composite Material. Microelectronics Reliability, 44, 303-308.
https://doi.org/10.1016/S0026-2714(03)00215-4
[36] Ekimov, E.A., Suetin, N.V., Popovich, A.F. and Ralchenko, V.G. (2008) Thermal Conductivity of Diamond Composites Sintered under High Pressures. Diamond and Related Mate-rials, 17, 838-843.
https://doi.org/10.1016/j.diamond.2007.12.051
[37] Chen, H., Jia, C. and Li, S. (2013) Effect of Sintering Parame-ters on the Microstructure and Thermal Conductivity of Diamond/Cu Composites Prepared by High Pressure and High Temperature Infiltration. International Journal of Minerals, Metallurgy, and Materials, 20, 180-186.
https://doi.org/10.1007/s12613-013-0711-x
[38] He, J., Wang, X., Zhang, Y., Zhao, Y.M. and Zhang, H.L. (2015) Thermal Conductivity of Cu-Zr/Diamond Composites Produced by High Temperature-High Pressure Method. Compo-sites Part B: Engineering, 68, 22-26.
https://doi.org/10.1016/j.compositesb.2014.08.023
[39] 邓安强, 樊静波, 谭占秋, 等. 金刚石/铜复合材料在电子封装材料领域的研究进展[J]. 金刚石与磨料磨具工程, 2010, 30(5): 56-61.
[40] 张文凯, 彭放, 郭振堂, 等. 高压烧结镀Cr、Ti膜金刚石/铜复合材料热导率研究[J]. 高压物理学报, 2012, 26(3): 306-312.
[41] 邹泽玉. 过渡金属掺杂的石墨烯铜基复合材料第一性原理计算及性能研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2020.
[42] 韩金江, 陈冰威, 路朋献, 等. 金刚石/铜(银、碳化钛)界面性质的第一性原理计算[J]. 金刚石与磨料磨具工程, 2022, 42(5): 535-542.
[43] 吴玉会. 稀土元素在金刚石工具中的应用及作用机理[D]: [硕士学位论文]. 天津: 河北工业大学, 2004.
[44] 张晓宇, 许旻, 曹生珠, 等. 掺杂稀土La减少金刚石/铜复合材料界面缺陷的研究[J]. 稀有金属与硬质合金, 2018, 46(6): 70-76.
[45] Pang, X., Yang, J., Pang, M., et al. (2020) Enhanced C Atom Adsorption on Cu (111) Substrate by Doping Rare Earth Element Y for Cu-Diamond Composites: A First-Principles Study. Journal of Al-loys and Compounds, 831, Article ID: 154747.
https://doi.org/10.1016/j.jallcom.2020.154747
[46] Pang, X., Yang, J., Pang, M., et al. (2019) Theoretical Understanding of Atomic and Electronic Structures of the ZrC (111)/Cu (111) In-terface. Journal of Alloys and Compounds, 791, 431-437.
https://doi.org/10.1016/j.jallcom.2019.03.276
[47] Pang, X., Yang, X., Yang, J., et al. (2021) Investigation on the Interface Characteristic between ZrC (111) and Diamond (111) Surfaces by First-Principles Calculation. Diamond and Related Materials, 113, Article ID: 108297.
https://doi.org/10.1016/j.diamond.2021.108297
[48] Pang, X., Yang, J., Pang, M., et al. (2019) Adsorption and Migration Behavior of Molybdenum Atom on Graphite (0001) Surface. Applied Surface Science, 470, 1064-1070.
https://doi.org/10.1016/j.apsusc.2018.11.222
[49] Zhang, X., Guo, H., Yin, F., Fan, Y.M. and Zhang, Y.Z. (2011) Interfacial Microstructure and Properties of Diamond/Cu-xCr Composites for Electronic Packaging Applications. Rare Metals, 30, 94-98.
https://link.springer.com/article/10.1007/s12598-011-0204-x
https://doi.org/10.1007/s12598-011-0204-x
[50] 潘彦鹏. 双镀层法制备金刚石/铜复合材料及其性能研究[D]: [博士学位论文]. 北京: 北京科技大学, 2019.
[51] 赵龙, 宋平新, 张迎九, 等. 高导热金刚石/铜电子封装材料: 制备技术、性能影响因素、界面结合改善方法[J]. 材料导报, 2018, 32(11): 1842-1851.